튜토리얼 144

연예인 얼굴 인식 서비스를 만들어보자 #2-CSV에 있는 이미지 목록을 텐서로 읽어보자

연예인 얼굴 인식 서비스를 만들어보자 #2 CSV 목록에 있는 이미지 데이타를 읽어보자 조대협 (http://bcho.tistory.com) 앞의 글(http://bcho.tistory.com/1166) 에서는 얼굴 인식 데이타를 확보하고, 전처리를 통해서 96x96 사이즈로 만드는 것을 살펴보았다.그러면, 이 전처리가 끝난 데이타를 텐서플로우에서 학습용으로 쓰기 위해서 데이타를 읽어 들이는 것을 살펴보겠다. 파일에서 학습데이타를 읽는 방법과 큐에 대한 설명은 아래 두 글을 참고하기 바란다.http://bcho.tistory.com/1165http://bcho.tistory.com/1163파일 포맷파일 포맷은 다음과 같다/Users/terrycho/traning_datav2/training/007BIL_..

연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습 데이타 준비하기

연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습데이타 준비하기 조대협 (http://bcho.tistory.com) CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다. 이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face )얼굴 데이타를 내려 받자먼저 얼굴 인식 모델을 만들려면, ..

텐서 보드를 이용하여 학습 과정을 시각화 해보자

텐서보드를 이용하여 학습 과정을 시각화 해보자 조대협 (http://bcho.tistory.com) 텐서플로우로 머신러닝 모델을 만들어서 학습해보면, 각 인자에 어떤 값들이 학습이 진행되면서 어떻게 변화하는지 모니터링 하기가 어렵다. 앞의 예제들에서는 보통 콘솔에 텍스트로 loss 값이나, accuracy 값을 찍어서, 학습 상황을 봤는데, 텐서보다는 학습에 사용되는 각종 지표들이 어떻게 변화하는지 손쉽게 시각화를 해준다. 예를 들어 보면 다음 그림은 학습을 할때 마다 loss 값이 어떻게 변하는지를 보여주는 그래프이다.가로축은 학습 횟수를 세로축은 모델의 loss 값을 나타낸다. 잘 보면 두개의 그래프가 그려져 있는 것을 볼 수 있는데, 1st 그래프는 첫번째 학습, 2nd 는 두번째 학습에서 추출한 ..

딥러닝을 이용한 숫자 이미지 인식 #2/2-예측

딥러닝을 이용한 숫자 이미지 인식 #2/2 앞서 MNIST 데이타를 이용한 필기체 숫자를 인식하는 모델을 컨볼루셔널 네트워크 (CNN)을 이용하여 만들었다. 이번에는 이 모델을 이용해서 필기체 숫자 이미지를 인식하는 코드를 만들어 보자 조금 더 테스트를 쉽게 하기 위해서, 파이썬 주피터 노트북내에서 HTML 을 이용하여 마우스로 숫자를 그릴 수 있도록 하고, 그려진 이미지를 어떤 숫자인지 인식하도록 만들어 보겠다. 모델 로딩 먼저 앞의 예제에서 학습을한 모델을 로딩해보도록 하자.이 코드는 주피터 노트북에서 작성할때, 모델을 학습 시키는 코드 (http://bcho.tistory.com/1156) 와 별도의 새노트북에서 구현을 하도록 한다. 코드import tensorflow as tfimport nump..

딥러닝을 이용한 숫자 이미지 인식 #1/2-학습

딥러닝을 이용한 숫자 이미지 인식 #1/2 조대협 (http://bcho.tistory.com) 지난 글(http://bcho.tistory.com/1154 ) 을 통해서 소프트맥스 회귀를 통해서, 숫자를 인식하는 모델을 만들어서 학습 시켜 봤다.이번글에서는 소프트맥스보다 정확성이 높은 컨볼루셔널 네트워크를 이용해서 숫자 이미지를 인식하는 모델을 만들어 보겠다. 이 글의 목적은 CNN 자체의 설명이나, 수학적 이론에 대한 이해가 목적이 아니다. 최소한의 수학적 지식만 가지고, CNN 네트워크 모델을 텐서플로우로 구현하는데에 그 목적을 둔다. CNN을 이해하기 위해서는 Softmax 등의 함수를 이해하는게 좋기 때문에 가급적이면 http://bcho.tistory.com/1154 예제를 먼저 보고 이 문서..

텐서플로우 #3-숫자를 인식하는 모델을 만들어보자

텐서플로우로 모델을 만들어보자Softmax를 이용한 숫자 인식조대협 (http://bcho.tistory.com) 텐서플로우와 머신러닝에 대한 개념에 대해서 대략적으로 이해 했으면 간단한 코드를 한번 짜보자. MNIST그러면 이제 실제로 텐서플로우로 모델을 만들어서 학습을 시켜보자. 예제에 사용할 시나리오는 MNIST (Mixed National Institute of Standards and Technology database) 라는 데이타로, 손으로 쓴 숫자이다. 이 손으로 쓴 숫자 이미지를 0~9 사이의 숫자로 인식하는 예제이다. 이 예제는 텐서플로우 MNIST 튜토리얼 (https://www.tensorflow.org/tutorials/mnist/beginners/) 을 기반으로 작성하였는데, 설..

텐서플로우-#1 자료형의 이해

텐서플로우-#1 자료형의 이해 조대협 (http://bcho.tistory.com) 딥러닝에 대한 대략적인 개념을 익히고 실제로 코딩을 해보려고 하니, 모 하나를 할때 마다 탁탁 막힌다. 파이썬이니 괜찮겠지 했는데, (사실 파이썬도 다 까먹어서 헷갈린다.) 이건 라이브러리로 도배가 되어 있다.당연히 텐서플로우 프레임웍은 이해를 해야 하고, 데이타를 정재하고 시각화 하는데, numpy,pandas와 같은 추가적인 프레임웍에 대한 이해가 필요하다. node.js 시작했을때도 자바스크립트 때문에 많이 헤매고 몇달이 지난후에야 어느정도 이해하게 되었는데, 역시나 차근차근 기초 부터 살펴봐야 하지 않나 싶다. 텐서 플로우에 대해 공부한 내용들을 하나씩 정리할 예정인데, 이 컨텐츠들은 유투브의 이찬우님의 강의를 기..

머신러닝의 과학습 / 오버피팅의 개념

머신러닝의 과학습 / 오버피팅의 개념 조대협 (http://bcho.tistory.com) 머신 러닝을 공부하다보면 자주 나오는 용어 중에 하나가 오버피팅 (Overfitting)이다. 과학습이라고도 하는데, 그렇다면 오버 피팅은 무엇일까? 머신 러닝을 보면 결과적으로 입력 받은 데이타를 놓고, 데이타를 분류 (Classification) 하거나 또는 데이타에 인접한 그래프를 그리는 (Regression) , “선을 그리는 작업이다.”그러면 선을 얼마나 잘 그리느냐가 머신 러닝 모델의 정확도와 연관이 되는데, 다음과 같이 붉은 선의 샘플 데이타를 받아서, 파란선을 만들어내는 모델을 만들었다면 잘 만들어진 모델이다. (기대하는) 언더 피팅 만약에 학습 데이타가 모자라거나 학습이 제대로 되지 않아서, 트레이..

Docker Kubernetes의 UI

Docker Kubernetes UI 조대협 (http://bcho.tistory.com) 오늘 도커 밋업에서 Kubernetes 발표가 있어서, 발표전에 데모를 준비하다 보니, 구글 클라우드의 Kubernetes 서비스인 GKE (Google Container Engine)에서 Kubernetes UI를 지원하는 것을 확인했다. Google Container Service (GKE) GKE는 구글 클라우드의 도커 클라우드 서비스이다. 도커 컨테이너를 관리해주는 서비스로는 Apache mesos, Docker Swarm 그리고 구글의 Kuberenetes 가 있는데, GKE는 이 Kuberentes 기반의 클라우드 컨테이너 서비스이다. 대부분의 이런 컨테이너 관리 서비스는 아직 개발중으로 운영에 적용하기..

파이어베이스를 이용한 유니티 게임 로그 분석

파이어베이스를 이용한 유니티 게임 로그 분석 조대협 (http://bcho.tistory.com)모바일 로그 분석일반적으로 모바일 로그 분석은 클라우드 기반의 무료 솔루션을 이용하다가 자체 구축으로 가는 경우가 많다.클라우드 기반의 무료 로그 분석 솔루션으로는 구글 애널러틱스, 야후의 플러리, 트위터의 패브릭 그리고 구글의 파이어베이스 등이 있다.이런 무료 로그 분석 솔루션들을 사용이 매우 간편하고, 핵심 지표를 쉽게 뽑아 줄 수 있으며, 별도의 운영이 필요 없다는 장점을 가지고 있다.그러나 이런 클라우드 기반의 무료 솔루션의 경우에는 요약된 정보들만 볼 수 있고 또한 내가 원하는 지표를 마음대로 지정을 할 수 없기 때문에, 어느정도 서비스가 성장하고 팀의 여력이 되면 별도의 로그 수집 및 분석 솔루션을..