클라우드 컴퓨팅 & NoSQL/google cloud

파이어베이스를 이용한 유니티 게임 로그 분석

Terry Cho 2016. 11. 15. 14:45

파이어베이스를 이용한 유니티 게임 로그 분석


조대협 (http://bcho.tistory.com)

모바일 로그 분석

일반적으로 모바일 로그 분석은 클라우드 기반의 무료 솔루션을 이용하다가 자체 구축으로 가는 경우가 많다.

클라우드 기반의 무료 로그 분석 솔루션으로는 구글 애널러틱스, 야후의 플러리, 트위터의 패브릭 그리고 구글의 파이어베이스 등이 있다.

이런 무료 로그 분석 솔루션들을 사용이 매우 간편하고, 핵심 지표를 쉽게 뽑아 줄 수 있으며, 별도의 운영이 필요 없다는 장점을 가지고 있다.

그러나 이런 클라우드 기반의 무료 솔루션의 경우에는 요약된 정보들만 볼 수 있고 또한 내가 원하는 지표를 마음대로 지정을 할 수 없기 때문에, 어느정도 서비스가 성장하고 팀의 여력이 되면 별도의 로그 수집 및 분석 솔루션을 만드는 것이 일반적이다.

오픈 소스 기반의 분석 솔루션

오픈 소스를 조합해서 모바일 로그 수집 시스템을 만들면 대략 다음과 같은 모양이 된다.


API 서버에서 로그를 수집해서 카프카등의 큐를 통해서 로그를 모으고, 실시간은 스파크 스트리밍, 배치는 하둡이나 스파크 스트리밍 프레임웍을 이용합니다. 대쉬 보드는 만드는 곳도 있지만, 주피터 노트북이나 제플린 노트북과 같은 노트북을 이용한다.

요즘은 데이타 저장 및 분석에 ELK (Elastic Search + Logstash + Kibana)와 같은 솔루션도 많이 사용하고 있다.


그런데 이런 오픈 소스 솔루션 기반으로 로그 분석 시스템을 개발하면 몇가지 문제가 발생한다.

  • 개발에 드는 노력
    이런 오픈소스 스택으로 시스템을 개발하려면, 이 프레임웍에 대해서 잘 아는 전문가가 필요합다. 일반적인 스타트업에서는 구하기도 힘들고, 기업이 어느정도 규모가 되더라도 빅데이타 관련 기술을 다룰 줄 아는 엔지니어는 여전히 귀한 엔지니어이고, 이런 엔지니어들이 있다하더라도, 시스템 설계및 구현에는 수개월의 기간이 소요 되게 된다.

  • 시스템 구매와 운영
    다음 문제는 모바일 데이타는 양이 많기 때문에, 위에서 언급한 빅데이타 관련 오픈 소스를 사용하게 되는데, 이러한 시스템은 하드웨어 자원이 수십에서 수백대가 필요하거니와, 이를 설치하고 운영하는 것 역시 쉽지 않다.
    로그를 수집하고 분석하는 로직을 만들어야 하는 엔지니어들이 정작 데이타 분석 보다는 시스템 운영과 유지보수에 많은 시간을 낭비해야 한다는 문제가 발생한다.
    규모가 작은 스타트업이나 엔지니어링 능력이 되지 않는 기업들은 이런 빅데이타 분석은 엄두도 내지 못하는 상황이 되고, 디테일한 데이타 분석을 하지 못하게 되니 자연히 경쟁력이 떨어지게 될 수 있다.

  • 연산 시간
    그리고 수집 수백대의 서버를 가지고 있다하더라도, 데이타 연산 시간은 수십분에서 수시간이 소요된다. 특히 데이타 분석 서버들이 분석을 하고 있을때는 다른 분석을 하고 싶은 사람들은 연산이 끝날때 까지 기다려야 하고, 수시간을 들여서 연산한 결과라도 연산이 잘못되었으면 다시 로직을 수정해서 수시간 동안 다시 연산을 해야 한다.
    비지니스 조직 입장에서는 지표 분석 결과를 얻는데, 수시간이 걸리니 의사 결정의 민첩성이 떨어지게 된다.

클라우드 기반의 분석 솔루션

근래에 이런 빅데이타 분석이 클라우드 컴퓨팅 기술과 만나면서 한번의 큰 변화를 겪게 되는데, 흔히들 빅데이타의 민주화라고 이야기 한다.  빅데이타 분석이 클라우드 컴퓨팅과 만나면서 겪은 큰 변화는 다음과 같다 .

클라우드 스케일의 연산

먼저 스케일이 달라집니다. 클라우드의 대용량 자원을 이용하여, 연산을 하기 때문에, 훨씬 더 빠른 연산을 저 비용에 할 수 있다.

예를 들어 구글의 빅쿼리의 경우에는 1000억개의 문자열(ROW)를  Regular expression을 이용하여 스트링 Like 검색을 하고 이를 group by 로 그룹핑하여 연산 하는 쿼리를 수행할때


“8600개의 CPU, 3600개의 디스크, 350GB의 네트워크 대역폭"


이 사용이 되고, 쿼리 수행 시간은 약 20~30초, 클라우드 사용 비용은 20$ (2만원) 정도가 소요 된다.

오픈 소스 기반으로 왠만한 규모로는 동시에 단일 연산으로 이렇게 수천개의 CPU를 같이 돌릴 수 있는 인프라를 사내에 가지고 있기도 힘들뿐 더러, 이만한 리소스를 20$라는 저렴한 비용에 사용하기란 거의 불가능에 가깝다.

이런 빠른 연산으로 인해서, 현업에서는 연산 결과를 기다리지 않고 바로바로 볼 수 있고, 비용 역시 저렴하기 때문에, 어느정도 자금력과 개발력이 있는 기업이 아니더라도 고성능의 빅데이타 분석 시스템 구현이 가능하게 된다.

NoOPS

다음 장점으로는 운영이 필요 없다는 것인데, 앞에서도 설명했듯이, 오픈 소스를 이용해서 빅데이타 분석 시스템을 직접 구축한 경우에는 시스템 인스톨과, 구성, 그리고 운영에 많은 시간이 소요 되는데, 클라우드 기반의 빅데이타 솔루션은 설정과 운영을 클라우드 서비스 제공자가 대행을 하기 때문에, 엔지니어링 팀은 별도의 설정과 유지보수 없이 본연의 역할인 데이타 분석에만 집중할 수 있게 된다. (아마 직접 하둡이나 스파크 클러스터를 운영해본 사람이라면 이 의미를 잘 이해하리라 본다.)


이렇게 클라우드가 빅데이타 영역에 도입되면서 이제는 빅데이타 분석이 뛰어난 엔지니어링 지식과 자금력이 없더라도 단시간내에 저비용으로 효율적인 데이타 분석이 가능하게 되었기 때문에, 이를 빅데이타의 민주화라고 부른다.

파이어베이스 애널러틱스

파이어베이스는 얼마전에 구글이 인수해서 클라우드 서비스 형태로 제공하고 있는 통합 모바일 개발 프레임웍이다. 웹은 지원하지 않고 모바일만 지원하는 형태의 프레임웍이며, 리얼타임 데이타 베이스, 광고 네트워크 통합, 푸쉬 서비스, 사용자 개인 인증 서비스등 여러가지 기능을 가지고 있는데, 그 중에서, 파이어베이스 애널러틱스는 모바일 빅데이타 분석에 최적화된 시스템이다.

빅쿼리와 파이어베이스의 조합

게임 체인저

파이어베이스는 모바일 데이타 분석에서 거의 게임 체인저라고 할만한 기술인데, 기존의 클라우드 기반의 모바일 데이타 분석 솔루션은 가장 큰 문제점이, 개발자가 정의한 로그 이벤트 (커스텀 로그)를 수집할 수 없다는 문제와  그리고 수집한 원본 데이타를 볼 수 없기 때문에, 원하는 지표를 마음대로 수집하고 분석하는 것이 불가능했다.

그런데 파이어베이스 애널러틱스는 이 두가지 기능을 지원하기 시작하였다.

커스텀 이벤트 정의를 통해서 개발자가 원하는 로그를 손쉽게 정의해서 수집이 가능하고, 또한 수집한 로그는 모두 구글의 빅데이타 저장 및 분석 플랫폼인 빅쿼리에 저장되고 바로 분석이 가능하다.

빅쿼리

파이어베이스 애널러틱스의 데이타는 빅쿼리에 저장이 되는데, 앞에서 예를 든것과 같이, 빅쿼리는 한번 연산에 수천개의 CPU와 디스크를 사용하여, 하둡이나 스파크에서 수시간이 걸리는 연산을 불과 수십초만에 처리가 가능하다.

빅쿼리의 또 다른 장점중의 하나는 이런 연산 속도 뿐만 아니라 RDBMS와는 다르게 JSON과 같이 트리형 (계층 구조를 가지는) 데이타형을 그대로 저장하고 쿼리가 가능하다는 것이다.


빅쿼리에 대한 자세한 설명은

를 참고하기 바란다.

파이어베이스 기반의 로그 분석

파이어베이스 애널러틱스는 뒤로는 빅쿼리 연동을 통해서 모든 원본 데이타의 수집과 분석을 지원하고 앞으로는 파이어베이스 에이전트를 모바일 디바이스에 탑재 하는 방식으로 최소한의 코드 개발로 모바일 앱으로 부터 모든 데이타를 수집할 수 있다.  파이어베이스 애널러틱스는 안드로이드와 iOS 플랫폼을 지원한다.

게임 프레임웍 지원

반가운 소식중의 하나는 파이어베이스 애널러틱스가 이제 유니티3D나, 언리얼(C++) 과 같은 게임 엔진을 지원한다. 현재 두 플랫폼에 대한 지원은 베타로 공개되어 있다.

코드 예제

그러면 파이어베이스 애널러틱스를 이용해서 로그를 수집하는 코드는 어떻게 삽입을 할까? 안드로이드와 유니티 3D의 예를 들어서 보자.

안드로이드 예제 코드

상세한 코드는 http://bcho.tistory.com/1131 를 참고하기 바란다.

코드 부분을 발췌해서 보면 다음과 같다.


//생략

:


import com.google.firebase.analytics.FirebaseAnalytics;


public class MainActivity extends AppCompatActivity {


 // add firebase analytics object

 private FirebaseAnalytics mFirebaseAnalytics;


   public void onSendEvent(View view){

     // 중간 생략

     Bundle bundle = new Bundle();

     bundle.putString(FirebaseAnalytics.Param.ITEM_ID, contentsId);

     bundle.putString(FirebaseAnalytics.Param.ITEM_NAME, contentsName);

     bundle.putString(FirebaseAnalytics.Param.CONTENT_TYPE, contentsCategory);

     mFirebaseAnalytics.logEvent(FirebaseAnalytics.Event.SELECT_CONTENT, bundle);


 }

}



기본적으로 gradle 빌드 스크립트에 파이어베이스 애널러틱스 모듈을 import 하고, FirebaseAnalytics 객체만 선언해주면 기본적인 사용자 로그 (앱 실행, 종료등), 일일 방문자, 동시 접속자, 접속 디바이스 종류, 사용자 연령과 성별들을 모두 수집해준다.

빌드 스크립트 수정 및 소스코드에 한줄의 코드만 추가해주면 된다.

다음으로, 각각의 이벤트를 추가하고자 한다면, 위와 같이 Bundle 객체를 정의해서, 넘기고자 하는 인자를 정의해주고 logEvent라는 메서드를 호출해주면 파이어베이스로 로그가 전달된다.

유니티 3D 예제 코드

유니티 3D에서 파이어베이스에 로그를 남기는 것도 다르지 않다.

다음 코드를 보자


       Firebase.Analytics.Parameter[] param = {

           new Firebase.Analytics.Parameter("sessionid", sessionid),

           new Firebase.Analytics.Parameter("score", (string)ApplicationModel.score.ToString())

       };

       Firebase.Analytics.FirebaseAnalytics.LogEvent(ApplicationModel.EVENT.END_SESSION, param);


Parameter라는 배열로, 파이어베이스에 남길 로그의 인자들을 정의한후에, LogEvent 메서드를 이용하여 이벤트 명과, 앞에서 정의된 인자들 (Parameter)를 남겨주면 로그는 자동으로 파이어베이스로 전달된다.


파이어베이스 애널러틱스를 이용한 모바일 데이타 분석

그러면 파이어베이스를 이용하여 모바일 로그 분석을 어떻게 할 수 있는지 알아보자. 마침 유니티 3D가 얼마전 부터 베타로 지원이 되기 때문에, 간단한 게임을 이용한 로그 수집을 설명한다.

샘플 게임 설명

샘플에 사용한 게임은 간단한 RPG 형태의 게임으로 다음과 같이 구성된다.



시작 화면

시작화면에서는 로그 분석을 위해서, 사용자의 나이와 성별을 입력 받는다.


게임 화면

다음 게임이 시작되면, 화면을 터치하여 토끼 캐릭터를 이동 시키고, 돼지를 클릭하면 돼지를 공격한다.

돼지를 공격할때 마다 데미지는 돼지의 종류에 따라 일정 값 범위내에서 랜덤으로 판정되고, 생명 값이 남아있지 않으면 돼지가 죽게 된다.

맵내에 돼지는 7개가 유지되도록 되어 있으며, 돼지가 줄면, 돼지는 하늘에서 부터 떨어지게 되어 있다.

게임은 120초 동안 진행되며, 120초가 지나면 자동으로 종료된다.

종료 화면

게임이 종료되면 점수를 표시한다.

데이타  분석 지표 디자인

그러면 이 게임으로 어떻게 데이타를 분석할것인지에 대해서 고민해보자.

일일 접속 사용자나 사용자에 대한 사용 시간,횟수등은 파이어베이스 애널러틱스에서 기본적으로 수집이 되기 때문에, 조금 더 의미 있는 데이타를 수집해보도록 한다.

캐릭터 이동 히트맵

이 예제에서 다소 중점을 둔 부분중의 하나는 캐릭터 이동 히트맵이다.

게임에서 난이도 조정등에 사용할 수 있는 정보중의 하나가 NPC 캐릭터의 이동 동선과, 플레이어 캐릭터의 이동 동선이다. 주로 플레이어가 죽는 위치를 데드존 (Dead zone)이라고 하면, 이 데드존 위치를 찾아낼 수 있고, 이 데드존에서 플레이어와 NPC의 타입,레벨 등을 조사하여 난이도를 조정한다거나, 또는 AI(인공지능) 플레이어 캐릭터의 경우에는 이동 동선을 추적함으로써 맵 내에서 AI가 원하는 데로 잘 움직이는지를 추적해볼 수 있다.

아래는 데드존을 기반으로 캐릭터와 NPC의 레벨을 분석해놓은 예제이다.


<그림. 게임맵상에서 데드존의 플레이어와 NPC 캐릭터간의 레벨 분석 >


아래는 흥미로운 분석중의 한예인데, 게임맵에서, 각 위치별로 자주 발생하는 채팅 메세지를 표시한 내용이다.




<그림. 게임맵상에서 자주 사용되는 채팅 메세지 분석>


그림 출처 : http://www.cs.cornell.edu/courses/cs4152/2013sp/sessions/15-GameAnalytics.pdf


이런 시스템 역시 쉽게 개발이 가능한데, 파이어베이스 애널러틱스를 이용하여 채팅 로그를 수집한 후, 자연어 분석 API를 이용하면, 명사와 형용사등을 추출하여 자주 오가는 말들을 통계를 낼 수 있다.

http://bcho.tistory.com/1136 는 구글의 자연어 분석 API를 이용하여 트위터의 내용을 실시간으로 분석한 내용이다.

나이별  점수 분포

다음으로 일반적인 분석 시스템에서 수집되지 않는 커스텀 로그 분석 시나리오중 사용자 나이별 점수대를 분석해본다.

게임실행에서 종료까지 실행한 사용자

마지막으로 유용하게 사용되는 퍼널 분석의 예로 게임을 시작해서 종료할때까지의 도달율을 측정해봤다.

게임을 인스톨하고 시작한다음, 캐릭터를 움직이고, 캐릭터를 이용하여 공격을하고, 2분동안 플레이해서 게임을 종료한 사용자의 비율을 분석해본다.

로그 메세지 디자인

그러면 이러한 게임 로그를 분석하기 위해서 수집할 로그 메세지는 어떤 형태가 될지 디자인을 해보자.

로그 이벤트는 아래와 같이 7가지로 정의한다.

  • START_SESSION,END_SESSION 은 게임을 시작과 끝날때 발생하는 이벤트이다.

  • NPC_CREATE,NPC_MOVE,NPC_DIE 는 NPC(돼지)를 생성하고 이동하고, 그리고 죽었을때 각각 발생하는 이벤트이다. 이동은 이벤트의 수가 많기 때문에, 10초 단위로 수집하였다.

  • PLAYER_MOVE,PLAYER_ATTACK 은 플레이어 캐릭터의 이동과 NPC를 공격하는 이벤트를 수집한다.


각 이벤트를 플레이하는 판과 연결하기 위해서 각 플레이는 고유의 sessionid가 생성되서 게임이 시작될때부터 끝날때 까지 모든 이벤트에 저장된다.



Event name

Param

Key

Value

Type

Note


START_SESSION

This event is triggered when player press “START” button after submitting player’s age & gender

sessionid

Unique session Id for this play

String


age

Player’s age

String


sex

Player’s gender

String

true : man

false : woman

PLAYER_MOVE

It record location of player in game map periodically (every 2sec)

sessionid




Pos_X




Pox_Z




PLAYER_ATTACK

This event is occurred when player attack NPC.

sessionid

Unique session Id for this play



npc_id

Attacked NPC ID



type

Type of NPC



pos_X

NPC location X



pos_Z

NPC location Y



damage

Damage that NPC get in this attack



life

Left life for this NPC



NPC_CREATE

When new NPC is created, this event is logged.

sessionid

Unique session Id for this play



npc_id

Attacked NPC ID



type

Type of NPC



pos_X

NPC location X



pos_Y

NPC location Y



NPC_MOVE

Every 2sec for each NPC, it records the location of NPC.

sessionid

Unique session Id for this play



npc_id

Attacked NPC ID



type

Type of NPC



pos_X

NPC location X



pos_Y

NPC location Y



NPC_DIE

It is triggered when NPC is dead by attack

sessionid

Unique session Id for this play



npc_id

Attacked NPC ID



type

Type of NPC



pos_X

NPC location X



pos_Y

NPC location Y



END_SCENE

It is triggered when game stage(session) is over

sessionid

Unique session Id for this play



score

Score for this play




이렇게 정의된 로그는 파이어베이스 애널러틱스에 의해서 빅쿼리로 자동으로 저장되게 된다.

실시간 디버깅

이런 로깅을 삽입하면, 로그가 제대로 저장이 되는지 확인이 필요한데, 파이어베이스 애널러틱스는 특성상 로그 이벤트가 1000개가 쌓이거나 또는 컨버전 이벤트가 발생하거나 또는 1시간 주기로 로그를 서버에 전송하기 때문에 바로 올라오는 로그 메세지를 확인할 수 없다.

그래서 이번에 새로 소개되니 기능이 “DEBUG VIEW”라는 기능인데, 이 특정 디바이스에 디버깅 옵션을 지정하면, 실시간으로 올라오는 로그를 확인할 수 있다.

로그는 모바일앱에서 업로드한 후 약 10~20초 후에, 화면에 반영된다.



대쉬 보드를 이용한 지표 분석

대쉬 보드는 파이어 베이스 애널러틱스에서 기본으로 제공되는 지표로 모바일 서비스에 공통적으로 필요한 지표들을 분석하여 웹으로 출력해준다.

DAU/WAU/MAU 분석

가장 기본적인 지표로는 월간,주간,일간 방문자 수로를 그래프로 출력해준다.

평균 플레이 시간 분석

다음은 평균 플레이 시간으로, 사용자가 하루에 평균 얼마나 앱을 사용하였는지, 동시 접속자수 (Session)과,  한번 접속했을때 얼마나 오래 앱을 사용 하였는지 (Session duration)등을 분석하여 그래프로 출력해준다.


국가별 접속 내역 분석

다음은 국가별 접속 내용으로, 글로벌 서비스에는 필수로 필요한 분석 내용이다.


사용자 데모그래픽 정보 분석

사용자에 대한 데모 그래픽 정보 즉 성별과, 나이를 분석해주는데, 앱에 별도로 사용자 로그인 기능이 없거나, 사용자 정보를 추적하는 기능이 없더라도, 파이어베이스 애널러틱스는 여러군데에서 수집한 로그를 기반으로 사용자의 성별과 나이를 분석해 준다.



특정 이벤트에 대한 분석

다음은 특정 이벤트에 대한 분석이 가능하다. 게임에서 사용자가 스테이지를 넘어가는 이벤트등 파이어베이스에 정의된 이벤트 이외에도 사용자가 정의한 이벤트에 대한 분석이 가능하다.

또한 이벤트가 발생한 사용자에 대한 데모 그래픽 정보 (연령,성별,국가)를 같이 분석해서 해당 이벤트가 어떤 사용자 층에서 발생하였는지를 분석해 준다.


예를 들어 게임의 보너스 스테이지를 많이 클리어한 사용자의 통계만을 볼 수 있고, 그 보너스 스테이지를 클리어한 사용자의 나이,성별, 국가 정보등을 볼 수 있다.



게임 플레이 완료율에 대한 퍼널 분석

다음은 앞에서 데이타 분석 모델을 정의할때 정의한 문제로 사용자가 게임을 시작해서 플레이를 끝낸 사용자 까지를 퍼널(깔때기) 분석을 적용한 예이다.

해당 시간에 총 93번의 게임이 플레이 되었으며, 캐릭터까지는 이동하였으나, 공격을 하지 않은 플레이는 3번, 그리고 끝까지 게임 플레이를 끝낸 사용자는 총 62번으로 측정되었다.



이외에도 상품 구매에 대한(인앱)에 대한 분석이나, 디바이스 종류, 앱 버전, 그리고 어느 광고 네트워크에서 사용자가 인입되었는지 등의 분석등 다양한 분석이 가능한데, 대쉬보드의 자세한 지표에 대해서는 http://bcho.tistory.com/1132 를 참고하기 바란다.

노트북을 이용한 커스텀 로그 분석

앞에서는 파이어베이스에서 제공되는 로그와 분석 방법에 대해서만 분석을 진행하였다. 이번에는 커스텀 로그와 원본(raw)데이타를 이용한 데이타 분석에 대해서 알아보자.


모든 원본 데이타는 앞에서도 언급했듯이 구글의 빅쿼리에 저장되기 때문에, SQL 쿼리를 이용하여 자유롭게 데이타 분석이 가능하고 그래프로도 표현이 가능하다.

별도의 개발이 없이 자유롭게 쿼리를 실행하고 그래프로 표현할 수 있는 도구로는 노트북이 있는데, 빅쿼리는 주피터 노트북과 제플린이 지원된다. 주피처 노트북 오픈소스를 구글 클라우드에 맞춘 버전은 Google Cloud Datalab이라는 것이 있는데, 여기서는 데이타랩을 이용하여 분석하였다.

캐릭터 이동 히트맵 분석

앞에서 NPC_MOVE와 PLAYER_ATTACK을 이용하여, NPC의 이동 동선과, PLAYER가 공격을 한 위치를 수집하였다.

이를 히트맵으로 그려보면 다음과 같다.


좌측은 NPC가 주로 이동하는 경로이고 우측은 플레이어가 NPC를 주로 공격한 위치로, 많이 간곳일 수록 진하게 칠해진다.

NPC 캐릭터는 전체 맵에 걸쳐서 이동을 하는 것을 볼 수 있고, 주로 우측 나무 근처를 많이 움직이는 것을 볼 수 있다. 오른쪽 사용자가 공격한 위치를 보면 주로 중앙에 모여 있기 때문에 우측 나무 근처로 움직인 NPC는 생존 확률이 높았을 것으로 생각해볼 수 있다.

그리고 NPC 이동 맵에서 중간중간에 진하게 보이는 점은 NPC 가 생성되는 위치이기 때문에, 이동이 많이 관측되었다.

연령별 플레이 점수 분석

다음으로 플레이어 연령별 점수대를 보면, 최고 점수는 30대가 기록하였고, 대략 4900점대인데 반해서, 전체적인 평균 점수는 40대가 높은 것을 볼 수 있다. (이 데이타는 연령별로 수집된 데이타의 양이 그리 많지 않기 때문에 정확하지는 않다. 어디까지나 분석 예제용으로만 이해하기 바란다.)



분석에 사용된 코드는 아래에 있다. 이 코드는 데모용이고 최적화가 되어있지 않기 때문에, 운영 환경에서는 반드시 최적화를 해서 사용하기 바란다.


https://github.com/bwcho75/bigquery/blob/master/GameData/Game%20Data%20Demo.ipynb


참고로, 모든 데이타 분석은 주로 파이썬을 이용하였는데, 근래에 빅데이타 분석용 언어로 파이썬이 많이 사용되기 때문에, 파이썬을 공부해놓으면 좀 더 쉽게 데이타 분석이 가능하다. 또한 파이썬으로 데이타를 분석할때 많이 쓰이는 프레임웍으로는 팬다스 (pandas)와 넘파이 (numpy)가 있는데, 이 둘 역시 같이 익혀놓는것이 좋다.

파이어베이스 노티피케이션 서비스를 통한 이벤트 기반의 푸쉬 타게팅

파이어베이스 애널러틱스와 연계해서 유용하게 사용할 수 있는 기능은 파이어베이스 노티피케이션 이라는 서비스가 있다.


파이어 베이스 노티피케이션 서비스는 파이어베이스에서 제공되는 웹 콘솔을 이용하여 관리자가 모바일 서비스에 손쉽게 푸쉬 메세지를 보낼 수 있는 서비스이다.

푸쉬 타게팅을 위한 별도의 서버 시스템을 개발하지 않고도 마케팅이나 기획자등 비 개발인력이 타게팅된 푸쉬 메세지를 손쉽게 보낼 수 있게 디자인된 서비스인데, 특히 파이어 베이스 애널러틱스와 연계가 되면 세세한 타게팅이 가능하다.


이벤트 로그 기반의 타케팅

푸쉬 타겟을 정할때, 파이어베이스 애널러틱스에서 수집한 이벤트를 조건으로 해서 푸쉬를 타게팅할 수 있다.

예를 들어

  • 게임 스테이지 3 이상을 클리어한 플레이어한 푸쉬를 보낸다.

  • NPC를 10,000개 이상 죽인 플레이어에게 푸쉬를 보낸다.

  • 아이템을 100개이상 구매한 사용자에게 푸쉬를 보낸다.

와 같이 서비스에서 수집된 이벤트에 따라서 다양한 조건을 정의할 수 있다.



<그림. 파이어베이스 노티피케이션에서 특정 사용자 층을 타게팅 해서 보내는 화면 >


이런 타게팅은 파이어베이스 애널러틱스에서 Audience로 사용자 군을 정의한 후에, (로그 이벤트 조건이나 사용자 이벤트 조건 등), 이 조건에 타겟해서 푸쉬를 파이어베이스 노티피케이션 서비스에서 정의한다.

사용자 정보 기반의 타게팅

서비스의 로그 이벤트 정보뿐 아니라, 사용자에 대해서도 푸쉬 타게팅이 가능한데, 특정 성별이나 나이에 대해 푸쉬를 보내거나, 특정 단말을 사용하는 사용자, 특정 국가에 있는 사용자등 다양한 사용자 관련 정보로 푸쉬를 보낼 수 있다.

사용자 정보 역시 앞의 이벤트 로그 정보처럼 개발자가 커스텀 필드를 추가하여 사용자 정보를 로그에 수집할 수 있다.


스케쥴링

이런 타게팅 푸쉬는 바로 웹에서 보낼 수 도 있지만, 특정 시간에 맞춰서 미리 예약을 해놓는 것도 가능하다.  




비용 정책 분석

파이어베이스 애널러틱스에서 원본 데이타를 수집 및 분석 하려면 빅쿼리를 연동해야 하는데, 빅쿼리 연동은 파이어베이스의 무료 플랜으로는 사용이 불가능하다. Blaze 플랜으로 업그레이드 해야 하는데, Blaze 플랜은 사용한 만큼 비용을 내는 정책으로 다른 서비스를 사용하지 않고, 파이어베이스 애널러틱스와 빅쿼리 연동만을 사용할 경우에는 파이어베이스에 추가로 과금되는 금액은 없다. (0원이다.)

단 빅쿼리에 대한 저장 가격과 쿼리 비용은 과금이 되는데,  빅쿼리 저장 가격은 GB당 월 0.02$ 이고, 90일동안 테이블의 데이타가 변하지 않으면 자동으로 0.01$로 50%가 할인된다.

그리고 쿼리당 비용을 받는데, 쿼리는 GB 스캔당 0.005$가 과금된다.


자세한 가격 정책 및, 파이어베이스 애널러틱스에 대한 데이타 구조는 http://bcho.tistory.com/1133 를 참고하기 바란다.