텐서플로우로 모델을 만들어보자
Softmax를 이용한 숫자 인식
조대협 (http://bcho.tistory.com)
텐서플로우와 머신러닝에 대한 개념에 대해서 대략적으로 이해 했으면 간단한 코드를 한번 짜보자.
MNIST
그러면 이제 실제로 텐서플로우로 모델을 만들어서 학습을 시켜보자. 예제에 사용할 시나리오는 MNIST (Mixed National Institute of Standards and Technology database) 라는 데이타로, 손으로 쓴 숫자이다. 이 손으로 쓴 숫자 이미지를 0~9 사이의 숫자로 인식하는 예제이다.
이 예제는 텐서플로우 MNIST 튜토리얼 (https://www.tensorflow.org/tutorials/mnist/beginners/) 을 기반으로 작성하였는데, 설명이 빠진 부분과 소스코드 일부분이 수정되었으니 내용이 약간 다르다는 것을 인지해주기를 바란다.
MNIST 숫자 이미지를 인식하는 모델을 softmax 알고리즘을 이용하여 만든 후에, 트레이닝을 시키고, 정확도를 체크해보도록 하겠다.
데이타셋
MNIST 데이타는 텐서플로우 내에 라이브러리 형태로 내장이 되어 있어서 쉽게 사용이 가능하다. tensorflow.examples.tutorials.mnist 패키지에 데이타가 들어 있는데, read_data_sets 명령어를 이용하면 쉽게 데이타를 로딩할 수 있다.
데이타 로딩 코드
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)
Mnist 데이타셋에는 총 60,000개의 데이타가 있는데, 이 데이타는 크게 아래와 같이 세종류의 데이타 셋으로 나눠 진다. 모델 학습을 위한 학습용 데이타인 mnist.train 그리고, 학습된 모델을 테스트하기 위한 테스트 데이타 셋은 minst.test, 그리고 모델을 확인하기 위한 mnist.validation 데이타셋으로 구별된다.
각 데이타는 아래와 같이 학습용 데이타 55000개, 테스트용 10,000개, 그리고, 확인용 데이타 5000개로 구성되어 있다.
데이타셋 명 | 행렬 차원 | 데이타 종류 | 노트 |
mnist.train.images | 55000 x 784 | 학습 이미지 데이타 | |
mnist.train.labels | 55000 x 10 | 학습 라벨 데이타 | |
mnist.test.images | 10000 x 784 | 테스트용 이미지 데이타 | |
mnist.test.labels | 10000 x 10 | 테스트용 라벨 데이타 | |
mnist.validation.images | 5000 x 784 | 확인용 이미지 데이타 | |
mnist.validation.labels | 5000 x 10 | 확인용 라벨 데이타 |
각 데이타셋은 학습을 위한 글자 이미지를 저장한 데이타 image 와, 그 이미지가 어떤 숫자인지를 나타낸 라벨 데이타인 label로 두개의 데이타 셋으로 구성되어 있다.
이미지
먼저 이미지 데이타를 보면 아래 그림과 같이 28x28 로 구성되어 있는데,
이를 2차원 행렬에서 1차원으로 쭈욱 핀 형태로 784개의 열을 가진 1차원 행렬로 변환되어 저장이 되어 있다.
mnist.train.image는 이러한 784개의 열로 구성된 이미지가 55000개가 저장이 되어 있다.
텐서플로우의 행렬을 나타내는 shape의 형태로는 shape=[55000,784] 이 된다.
마찬가지로, mnist.train.image 도 784개의 열로 구성된 숫자 이미지 데이타를 10000개를 가지고 있고 텐서플로우의 shape으로는 shape=[10000,784] 로 표현될 수 있다.
라벨
Label 은 이미지가 나타내는 숫자가 어떤 숫자인지를 나타내는 라벨 데이타로 10개의 숫자로 이루어진 1행 행렬이다. 0~9 순서로, 그 숫자이면 1 아니면 0으로 표현된다. 예를 들어 1인경우는 [0,1,0,0,0,0,0,0,0,0,0] 9인 경우는 [0,0,0,0,0,0,0,0,0,1] 로 표현된다.
이미지 데이타에 대한 라벨이기 때문에, 당연히 이미지 데이타 수만큼의 라벨을 가지게 된다.
Train 데이타 셋은 이미지가 55000개 였기 때문에, Train의 label의 수 역시도 55000개가 된다.
소프트맥스 회귀(Softmax regression)
숫자 이미지를 인식하는 모델은 많지만, 여기서는 간단한 알고리즘 중 하나인 소프트 맥스 회귀 모델을 사용하겠다.
소프트맥스 회귀에 대한 알고리즘 자체는 자세히 설명하지 않는다. 소프트맥스 회귀는 classification 알고리즘중의 하나로, 들어온 값이 어떤 분류인지 구분해주는 알고리즘이다.
예를 들어 A,B,C 3개의 결과로 분류해주는 소프트맥스의 경우 결과값은 [0.7,0.2,0.1] 와 같이 각각 A,B,C일 확률을 리턴해준다. (결과값의 합은 1.0이 된다.)
(cf. 로지스틱 회귀는 두 가지로만 분류가 가능하지만, 소프트맥스 회귀는 n 개의 분류로 구분이 가능하다.)
모델 정의
소프트맥스로 분류를 할때, x라는 값이 들어 왔을때, 분류를 한다고 가정했을때, 모델에서 사용하는 가설은 다음과 같다.
y = softmax (W*x + b)
W는 weight, 그리고 b는 bias 값이다.
y는 최종적으로 10개의 숫자를 감별하는 결과가 나와야 하기 때문에, 크기가 10인 행렬이 되고,
10개의 결과를 만들기 위해서 W역시 10개가 되어야 하며, 이미지 하나는 784개의 숫자로 되어 있기 때문에, 10개의 값을 각각 784개의 숫자에 적용해야 하기 때문에, W는 784x10 행렬이 된다. 그리고, b 는 10개의 값에 각각 더하는 값이기 때문에, 크기가 10인 행렬이 된다.
이를 표현해보면 다음과 같은 그림이 된다.
이를 텐서플로우 코드로 표현하면 다음과 같다.
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
k = tf.matmul(x, W) + b
y = tf.nn.softmax(k)
우리가 구하고자 하는 값은 x 값으로 학습을 시켜서 0~9를 가장 잘 구별해내는 W와 b의 값을 찾는 일이다.
여기서 코드를 주의깊게 봤다면 하나의 의문이 생길것이다.
x의 데이타는 총 55000개로, 55000x784 행렬이 되고, W는 784x10 행렬이다. 이 둘을 곱하면, 55000x10 행렬이 되는데, b는 1x10 행렬로 차원이 달라서 합이 되지 않는다.
텐서플로우와 파이썬에서는 이렇게 차원이 다른 행렬을 큰 행렬의 크기로 늘려주는 기능이 있는데, 이를 브로드 캐스팅이라고 한다. (브로드 캐스팅 개념 참고 - http://bcho.tistory.com/1153)
브로드 캐스팅에 의해서 b는 55000x10 사이즈로 자동으로 늘어나고 각 행에는 첫행과 같은 데이타들로 채워지게 된다.
소프트맥스 알고리즘을 이해하고 사용해도 좋지만, 텐서플로우에는 이미 tf.nn.softmax 라는 함수로 만들어져 있고, 대부분 많이 알려진 머신러닝 모델들은 샘플들이 많이 있기 때문에, 대략적인 원리만 이해하고 가져다 쓰는 것을 권장한다. 보통 모델을 다 이해하려고 하다가 수학에서 부딪혀서 포기하는 경우가 많은데, 디테일한 모델을 이해하기 힘들면, 그냥 함수나 예제코드를 가져다 쓰는 방법으로 접근하자. 우리가 일반적인 프로그래밍에서도 해쉬테이블이나 트리와 같은 자료구조에 대해서 대략적인 개념만 이해하고 미리 정의된 라이브러리를 사용하지 직접 해쉬 테이블등을 구현하는 경우는 드물다.
코스트(비용) 함수
이 소프트맥스 함수에 대한 코스트 함수는 크로스엔트로피 (Cross entropy) 함수의 평균을 이용하는데, 복잡한 산식 없이 그냥 외워서 쓰자. 다행이도 크로스엔트로피 함수역시 함수로 구현이 되어있다.
Cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y_))
가설에 의해 계산된 값 y를 넣지 않고 tf.matmul(x, W) + b 를 넣은 이유는 tf.nn.softmax_cross_entropy_with_logits 함수 자체가 softmax를 포함하기 때문이다.
y_은 학습을 위해서 입력된 값이다.
텐서플로우로 구현
자 그럼 학습을 위한 전체 코드를 보자
샘플코드
# Import data
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
k = tf.matmul(x, W) + b
y = tf.nn.softmax(k)
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
learning_rate = 0.5
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
print ("Training")
sess = tf.Session()
init = tf.global_variables_initializer() #.run()
sess.run(init)
for _ in range(1000):
# 1000번씩, 전체 데이타에서 100개씩 뽑아서 트레이닝을 함.
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
print ('b is ',sess.run(b))
print('W is',sess.run(W))
데이타 로딩
# Import data
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)
앞에서 데이타에 대해서 설명한것과 같이 데이타를 로딩하는 부분이다. read_data_sets에 들어가 있는 디렉토리는 샘플데이타를 온라인에서 다운 받는데, 그 데이타를 임시로 저장해놓을 위치이다.
모델 정의
다음은 소프트맥스를 이용하여 모델을 정의한다.
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
k = tf.matmul(x, W) + b
y = tf.nn.softmax(k)
x는 트레이닝 데이타를 저장하는 스테이크홀더, W는 Weight, b는 bias 값이고, 모델은 y = tf.nn.softmax(tf.matmul(x, W) + b) 이 된다.
코스트함수와 옵티마이저 정의
모델을 정의했으면 학습을 위해서, 코스트 함수를 정의한다.
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
learning_rate = 0.5
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
코스트 함수는 크로스 엔트로피 함수의 평균값을 사용한다. 크로스엔트로피 함수는 아래와 같은 모양인데, 이 값을 전체 트레이닝 데이타셋의 수로 나눠 준다.
그래서 최종적으로 cost 함수는 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_)) 이 된다.
이 때 주의할점은 y가 아니라 k를 넣어야 한다. softmax_cross_entropy_with_logits 함수는 softmax를 같이 하기 때문에, 위의 y값은 이미 softmax를 해버린 함수이기 때문에 softmax가 중복될 수 있다.
이 코스트 함수를 가지고 코스트가 최소화가 되는 W와 b를 구해야 하는데, 옵티마이져를 사용한다. 여기서는 경사 하강법(Gradient Descent Optimizer)를 사용하였고 경사하강법에 대한 개념은 http://bcho.tistory.com/1141 를 참고하기 바란다.
GradientDescent에서 learning rate는 학습속도 인데, 학습 속도에 대한 개념은 http://bcho.tistory.com/1141 글을 참고하기 바란다.
세션 초기화
print ("Training")
sess = tf.Session()
init = tf.global_variables_initializer() #.run()
sess.run(init)
tf.Session() 을 이용해서 세션을 만들고, global_variable_initializer()를 이용하여, 변수들을 모두 초기화한후, 초기화 값을 sess.run에 넘겨서 세션을 초기화 한다.
트레이닝 시작
세션이 생성되었으면 이제 트레이닝을 시작한다.
for _ in range(1000):
# 1000번씩, 전체 데이타에서 100개씩 뽑아서 트레이닝을 함.
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
여기서 주목할점은 Batch training 과 Stochastic training 인데, Batch training이란, 학습을 할때 전체 데이타를 가지고 한번에 학습을 하는게 아니라 전체 데이타셋을 몇 개로 쪼갠후 나눠서 트레이닝을 하는 방법을 배치 트레이닝이라고 한다. 그중에서 여기에 사용된 배치 방법은 Stochastic training 이라는 방법인데, 원칙대로라면 전체 55000개 의 학습데이타가 있기 때문에 배치 사이즈를 100으로 했다면, 100개씩 550번 순차적으로 데이타를 읽어서 학습을 해야겠지만, Stochastic training은 전체 데이타중 일부를 샘플링해서 학습하는 방법으로, 여기서는 배치 한번에 100개씩의 데이타를 뽑아서 1000번 배치로 학습을 하였다.
(텐서플로우 문서에 따르면, 전체 데이타를 순차적으로 학습 시키기에는 연산 비용이 비싸기 때문에, 샘플링을 해도 비슷한 정확도를 낼 수 있기 때문에, 예제 차원에서 간단하게, Stochastic training을 사용한것으로 보인다.)
결과값 출력
print ('b is ',sess.run(b))
print('W is',sess.run(W))
마지막으로 학습에서 구해진 W와 b를 출력해보자
다음은 실행 결과 스크린 샷이다.
먼저 앞에서 데이타를 로딩하도록 지정한 디렉토리에, 학습용 데이타를 다운 받아서 압축 받는 것을 확인할 수 있다. (Extracting.. 부분)
그 다음 학습이 끝난후에, b와 W 값이 출력되었다. W는 784 라인이기 때문에, 중간을 생략하고 출력되었으나, 각 행을 모두 찍어보면 아래와 같이 W 값이 들어가 있는 것을 볼 수 있다.
모델 검증
이제 모델을 만들고 학습을 시켰으니, 이 모델이 얼마나 정확하게 작동하는지를 테스트 해보자. mnist.test.image 와 mnist.test.labels 데이타셋을 이용하여 테스트를 진행하는데, 앞에서 나온 모델에 mnist.test.image 데이타를 넣어서 예측을 한 후에, 그 결과를 mnist.test.labels (정답)과 비교해서 정답률이 얼마나 되는지를 비교한다.
다음은 모델 테스팅 코드이다. 이 코드를 위의 코드 뒤에 붙여서 실행하면 된다.
모델 검증 코드
print ("Testing model")
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('accuracy ',sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
print ("done")
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
코드를 보자, tf.argmax 함수를 이해해야 하는데, argmax(y,1)은 행렬 y에서 몇번째에 가장 큰 값이 들어가 있는지를 리턴해주는 함수이다. 아래 예제 코드를 보면
session = tf.InteractiveSession()
data = tf.constant([9,2,11,4])
idx = tf.argmax(data,0)
print idx.eval()
session.close()
[9,2,11,4] 에서 최대수는 11이고, 이 위치는 두번째 (0 부터 시작한다)이기 때문에 0을 리턴한다.
두번째 변수는 어느축으로 카운트를 할것인지를 선택한다. , 1차원 배열의 경우에는 0을 사용한다.
여기서 y는 2차원 행렬인데, 0이면 같은 열에서 최대값인 순서, 1이면 같은 행에서 최대값인 순서를 리턴한다.
그럼 원래 코드로 돌아오면 tf.argmax(y,1)은 y의 각행에서 가장 큰 값의 순서를 찾는다. y의 각행을 0~9으로 인식한 이미지의 확률을 가지고 있다.
아래는 4를 인식한 y 값인데, 4의 값이 0.7로 가장높기 (4일 확률이 70%, 3일 확률이 10%, 1일 확률이 20%로 이해하면 된다.) 때문에, 4로 인식된다.
여기서 tf.argmax(y,1)을 사용하면, 행별로 가장 큰 값을 리턴하기 때문에, 위의 값에서는 4가 리턴이된다.
테스트용 데이타에서 원래 정답이 4로 되어 있다면, argmax(y_,1)도 4를 리턴하기 때문에, tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))는 tf.equals(4,4)로 True를 리턴하게 된다.
모든 테스트 셋에 대해서 검증을 하고 나서 그 결과에서 True만 더해서, 전체 트레이닝 데이타의 수로 나눠 주면 결국 정확도가 나오는데, tf.cast(boolean, tf.float32)를 하면 텐서플로우의 bool 값을 float32 (실수)로 변환해준다. True는 1.0으로 False는 0.0으로 변환해준다. 이렇게 변환된 값들의 전체 평균을 구하면 되기 때문에, tf.reduce_mean을 사용한다.
이렇게 정확도를 구하는 함수가 정의되었으면 이제 정확도를 구하기 위해 데이타를 넣어보자
sess.run(accuracy, feed_dict={x: mnist.test.images,y_: mnist.test.labels})
x에 mnist.test.images 데이타셋으로 이미지 데이타를 입력받아서 y (예측 결과)를 계산하고, y_에는 mnist.test.labels 정답을 입력 받아서, y와 y_로 정확도 accuracy를 구해서 출력한다.
최종 출력된 accuracy 정확도는 0.9 로 대략 90% 정도가 나온다.
Testing model
('accuracy ', 0.90719998)
done
다른 알고리즘의 정확도는 http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html 를 참고하면 된다.
다음글에서는 소프트맥스 모델 대신 CNN (Convolutional Neural Network)를 이용하여, 조금 더 정확도가 높은 MNIST를 구현하고 테스트해보도록 하겠다.
참고 자료
텐서플로우 MNIST https://www.tensorflow.org/tutorials/mnist/beginners/
2017년 1월 6일 추가
위의 코드 부분에 잘못된 부분이 있어서 수정합니다.
k = tf.matmul(x, W) + b
y = tf.nn.softmax(k)
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
learning_rate = 0.5
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.softmax_cross_entropy_with_logits.md 레퍼런스에 따르면
WARNING: This op expects unscaled logits, since it performs a softmax
on logits
internally for efficiency. Do not call this op with the output of softmax
, as it will produce incorrect results.
tf.nn.softmax_cross_entropy_with_logits 함수는 softmax를 포함하고 있다. 그래서 softmax를 적용한 y를 넣으면 안되고 softmax 적용전인 k를 넣어야 한다.
'빅데이타 & 머신러닝 > 머신러닝' 카테고리의 다른 글
딥러닝을 이용한 숫자 이미지 인식 #2/2-예측 (12) | 2017.01.09 |
---|---|
딥러닝을 이용한 숫자 이미지 인식 #1/2-학습 (7) | 2017.01.09 |
텐서플로우 #2 - 행렬과 텐서플로우 (7) | 2016.12.26 |
텐서플로우-#1 자료형의 이해 (15) | 2016.12.09 |
딥러닝 - 초보자를 위한 컨볼루셔널 네트워크를 이용한 이미지 인식의 이해 (20) | 2016.11.30 |