빅데이타 & 머신러닝/생성형 AI (ChatGPT etc) 40

생성형 AI로 코드 품질을 높이는 방법

쓰레드에서 @choi.openai 라는 분이 LLM 모델로 코드를 생성할때, "LLM에게 "더 나은 코드를 작성해달라"고 반복적으로 요구하면 실제로 더 나은 코드를 생성할 수 있다는 결과가 나왔습니다."라는 이야기가 있어서 테스트를 해봤다. 이 내용의 원본은 https://minimaxir.com/2025/01/write-better-code/ 이다.  Gemini를 이용해서 다음과 같이 간단한 REST API를 FastAPI로 만드는 프롬프트를 작성하였다.Create the REST API code with fastAPI. - get request with HTTP POST. Input body has username,address,gender fields. - have proper error hand..

2024년 LLM 애플리케이션 아키텍쳐 및 2025년 전망

2024년 LLM 애플리케이션 아키텍쳐 및 2025년 전망조대협(http://bcho.tistory.com) Langchain은 LLM (ChatGPT등)을 이용하여 애플리케이션을 개발할 수 있는 프레임웍이다.Langchain은 LangSmith라는 이름으로 LLM 애플리케이션의 실행 내역을 추적할 수 있는 기능을 가지고 있는데, 이를 통해서 사용자들의 LLM Application의 구조를 예측할 수 있다.  이번에 2024년 Langchain의 사용량에 대한 리포트가 나왔는데, 이를 통해서 LLM application이 어떻게 변화하고 있는지를 유추해볼 수 있다.  블로그 소스 : https://blog.langchain.dev/langchain-state-of-ai-2024/?fbclid=IwZXh0..

RAG 성능 튜닝 - Embedding fine tuning

다른 아이디어로는 Embedding 모델을 파인튜닝 하는 방법이 있다. OSS 나 클라우드 제공 Embedding 모델은 범용 목적에 맞춰져 있기 때문에, 특정 서비스의 단어 도메인과 맞지 않는 경우가 많다. 그래서, 이를 그 도메인의 단어로 파인튜닝하게 되면 Embedding된 결과를 통해서 유사 문서 (질문에 대한 답변)을 찾는 정확도가 향상되기 때문에 결과적으로 RAG의 성능을 향상 시킬 수 있다.  구글의 경우 Gecko Embedding 모델에 대한 파인 튜닝을 지원한다. https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-embeddings 텍스트 임베딩 조정  |  Generative AI on Vertex AI  |  Goo..

Small to Big Chunking in RAG

RAG에서 Chunk 를 retrieval 할때, 그 Chunk의 위와 아랫부분을 확장해서 같이 리턴하는 방법으로, 더 상세한 컨택스트를 리턴할 수 있다. 언뜻 보면 Parent/Child Chunking 기법과 유사하기는 하지만, 구현이 간단해 보이고, 문장을 중심으로 확장해서 컨택스트를 추출한다는 면에서 훨씬 효과가 있어보인다.  출처 https://www.youtube.com/watch?v=TRjq7t2Ms5I

LLM 애플리케이션 아키텍처 (1/2)

LLM 애플리케이션 아키텍처 (1/2) 조대협 (http://bcho.tistory.com) ChatGPT나, Gemini 모델과 같은 LLM 을 이용한 애플리케이션을 개발하는 형태를 보면, 보통 LLM에 프롬프트 엔지니어링을 사용한 프롬프트를 입력으로 사용하고, 리턴을 받아서 사용한다. 그리고 약간 발전된 형태의 경우에는 파인 튜닝을 사용하거나, 아주 발전된 형태는 외부 문서 저장소를 사용하는 형태 정도의 수준으로 개발한다. 즉 LLM을 한번 정도 호출하는 정도의 구조를 가지고 있다. 그러나 운영환경에 올라가는 LLM 기반의 애플리케이션의 구조는 이것보다 훨씬 복잡하다. 아래 그림은 LLM 애플리케이션의 아키텍처 예시이다. 단순하게 프롬프트를 작성해서 LLM을 한번만 호출하는 것이 아니라, 여러 예제를..

#19 ChatGPT에서 질문과 관련된 웹페이지 크롤링하기

조대협 (http://bcho.tistory.com) Langchain 에서 Agent가 사용하는 Tool을 사용자가 쉽게 개발해서 추가할 수 있다. 이번 예제에서는 DuckDuckSearch Tool을 이용하여, 질문에 관련된 웹사이트를 검색한후, 그 중 한 웹사이트의 내용을 크롤링해서 웹페이지 내용을 읽어온후에, 이를 요약하는 예제를 만들어 본다. 이를 위해서 웹페이지를 크롤링하는 툴을 BeautifulSoup 을 이용해서 만들어 본다. 커스텀 툴을 정의하는 방법은 몇가지가 있는데, 이 예제에서는 데코레이터를 사용하는 방법과 StructuredTool을 사용하는 방법 두가지를 살펴보자. 먼저 decorator를 사용하는 방법이다. HEADERS = { 'User-Agent': 'Mozilla/5.0 ..

#18.LangSmith를 이용한 Langchain agent 내부 동작 구조 이해

앞의 예제는 agent를 생성할때 initialize_agent를 사용하는 방식으로 Langchain 0.1.0 까지는 지원하지만 deplicate 될 예정이고 새 버전의 create_react_agent 함수를 사용하기를 권장하고 있다. create_react_agent를 사용하려면 직접 agentExecutor도 선언해야 하고, 프롬프트도 정의해야하기 때문에 기존 방식에 비해서 다소 번거롭지만 좀 더 많은 컨트롤을 할 수 있다. 이번에는 create_react_agent를 이용하는 방식을 설명하면서 내부적으로 agent가 어떻게 동작하는지를 자세하게 살펴보고, 더불어서 langsmith 모니터링 툴을 이용하여, agent에서 내부의 동작을 어떻게 모니터링하고 추적하는지에 대해서 알아보록 한다. Lan..

Langchain을 이용한 LLM 애플리케이션 구현 #17-ChatGPT 구글 검색 엔진과 연동하기

Agent/Tool 을 이용하여 ChatGPT와 구글 검색엔진 연동하기 조대협 (http://bcho.tistory.com) LLM 모델은 기본적으로 학습 당시에 저장된 데이터만을 기반으로 답변을 한다. RAG를 이용하여 외부의 벡터 데이터 베이스에 있는 내용을 참고하여 지식 데이터를 확장할 수 있지만, 이 역시 저장한 문서에만 해당된다. LLM 애플리케이션을 데이터를 확장하고 싶다면? 예를 들어 LLM에 저장되지 않은 데이터를 구글 서치 엔진을 통해서 검색해서 참고하거나 유투브의 비디오 스크립트를 참고할 수 있다면? 아니면 회사내의 데이터베이스의 정보를 참고해서 답변을 할 수 있다면? 이러한 요구사항에 부합하여 LLM이 외부 정보를 참고하여 답변을 할 수 있도록 기능을 제공하는 컴포넌트가 langcha..

Langchain을 이용한 LLM 애플리케이션 구현 - #15 자연어로 SQL 쿼리하기

자연어로 SQL 생성하기 조대협 (http://bcho.tistory.com) 지금까지 살펴본 Chain 은 모두 LLMChain으로, 입력값을 프롬프트에 삽입하여 모델에 입력해서 결과를 리턴하는 형태였다. Chain 기능을 통해서 연결될 수 있는 체인은 LLMChain 뿐만 아니라 단순하게 출력값을 포맷팅 하는 체인이나, 아니면 문서 파일을 읽어드리는 체인등 여러가지 용도의 체인이 있을 수 있다. 또한 필요하다면 개발자가 직접 체인을 만들어서 사용할 수 도 있다. 이러한 체인들을 유틸리티 체인이라고 한다. 유틸리티 체인중에서 대표적인 체인인 create_sql_query_chain을 알아보자. 이 체인은 데이터베이스의 스키마를 기반으로 입력된 질문을 SQL로 변환해주는 역할을 한다. 이 예제는 미국의 ..