클라우드 컴퓨팅 & NoSQL 381

쿠버네티스의 HPA/VPA 오토스케일링을 위한 모니터링 아키텍처

쿠버네티스의 HPA/VPA 오토스케일링을 위한 모니터링 아키텍처 조대협 (http://bcho.tistory.com) 쿠버네티스에서 HPA/VPA는 내부 메트릭을 이용하여 오토스케일링을 판단하는데, 이를 위해서 내부 메트릭을 수집하고 서빙하기 위한 모니터링 아키텍쳐가 어떻게 구현되었는지에 대해서 알아본다. 각 노드에서 동작하는 컨테이너에 대한 리소스 정보 (CPU,메모리, 네트워크 사용량)은 cAdvisor를 통하여 수집되어 Kubelet을 통해서, 컨트롤 플레인에 전달된다. cAdvisot는 컨테이너에 대한 리소스 정보만 수집하지만, Kubelet은 컨테이너 이외의 노드나 애플리케이션에 대한 정보를 수집한다. 이렇게 Kubelet에 저장된 정보는 metric server로 전달되고, metric api..

도커 컨테이너 파일 포맷 및 Image Pull Time

도커 이미지는 JSON 설정 파일 및 각 레이어 파일로 되어 있는데, 이 레이어 파일을 tar / gzip 으로 되어 있음 = 아래 Docker 컨테이너 이미지 Manifest file = { "schemaVersion": 2, "mediaType": "application/vnd.docker.distribution.manifest.v2+json", "config": { "mediaType": "application/vnd.docker.container.image.v1+json", "size": 30008, "digest": "sha256:4e35ecd1a7547e482e9db2c4a889fe9085c6b8a61285cc921ca1ce6f6c7cf5bb" }, "layers": [ { "mediaType..

Apache Spark #1 - 아키텍쳐 및 기본 개념

Apache Spark의 개념 이해 #1 기본 동작 원리 및 아키텍처 조대협 (http://bcho.tistory.com) 아파치 스파크는 빅데이터 분석 프레임웍으로, 하둡의 단점을 보완하기 위해서 탄생하였다. 하둡을 대체하기 보다는 하둡 생태계를 보완하는 기술로 보면 되는데 실제로 기동할때 하둡의 기능들을 사용하게 된다. 하둡이 맵리듀스 방식으로 디스크(HDFS)에 저장된 파일 데이터를 기반으로 배치 분석을 진행한다면, 스파크는 디스크나 기타 다른 저장소(데이터 베이스등)에 저장된 데이터를 메모리로 올려서 분석하는 방식으로 배치 분석 뿐만 아니라, 스트리밍 데이터 양쪽 분석을 모두 지원한다. 기본 동작 원리 및 아키텍쳐 기본적인 동작 원리를 살펴 보면 다음과 같다. 스파크 클러스터의 구조는 크게 Mas..

Prometheus 를 스케일링 하기 위한 Thanos (타노스)

문제 정의 프로메테우스가 좋은 모니터링 시스템이긴 하지만 두가지 결정적인 문제점을 가지고 있다. 결정적으로 클러스터링 구조를 지원하지 않기 때문에, 확장성과 가용성 문제를 가지고 있다. 확장성 측면에서는 디스크를 증설하거는 것과 같은 하드웨어 스펙 증설로 어느정도는 해결이 가능하지만 데이타 볼륨이 늘어나고 모니터링 대상이 늘어나면 하나의 프로메테우스 인스턴스로는 감당이 어렵다. 이런 문제를 해결하는 방법으로는 Federation 이라는 방법을 사용한다. 프로메테우스 인스턴스를 여러개를 기동한 다음에, 중앙에 다른 프로메테우스로 부터 메트릭을 수집하는 다른 프로메테우스를 놓는 방식이고, 데이타 양에 대한 문제는 데이타의 해상도 (예를 들어 전면에 데이타 수집 서버가 10초 단위로 수집 했다면, 중앙 서버에..

오픈소스 모니터링 툴 - Prometheus #3 그라파나를 이용한 시각화

프로메테우스 #3. 그라파나를 이용한 시각화조대협 (http://bcho.tistory.com) 그라파나(Grafana)는 메트릭을 시각화 해주는 오픈소스 도구이다. Graphite, Prometheus, InfluxDB등 다양한 데이타베이스와 메트릭수집 시스템을 지원하고, 하나의 대쉬보드에 동시에 여러 메트릭 시스템들의 지표를 표시할 수 있고 무엇보다 설치 및 사용 방법이 쉽기 때문에 널리 사용되고 있다특히 프로메테우스를 잘 지원하고 있기 때문에, 프로메테우스의 메트릭을 그래프로 시각화 하는데도 많이 사용된다. 그라파나의 설치는 비교적 간단한 편이기 때문에 여기서는 별도로 설명하지 않는다. 설치 방법은 공식 문서 https://grafana.com/docs/grafana/latest/installati..

오픈소스 모니터링 툴 - Prometheus #2 Hello Prometheus

프로메테우스#2 Hello Prometheus 조대협 (http://bcho.tistory.com)프로메테우스에 대해서, 이해하기 위해서 간단한 테스트를 진행하는데, 테스트는 http://www.katacoda.com/ 를 이용하였다. 웹상에서 쿠버네티스, 프로메테우스,텐서플로우등 다양한 기술을 별도의 설정이나 서버없이 해볼 수 있기 때문에, 기술에 대한 개념을 잡는데 매우 유용하다. 설정 파일 정의 프로메테우스의 설정은 prometheus.yml 파일에 정의 한다. 아래는 간단한 예제이다. global: scrape_interval: 15s evaluation_interval: 15s scrape_configs: - job_name: 'prometheus' static_configs: - targets..

오픈소스 모니터링툴 - Prometheus #1 기본 개념과 구조

프로메테우스 #1 기본 개념과 구조조대협 (http://bcho.tistory.com) 프로메테우스는 오픈 소스 기반의 모니터링 시스템이다. ELK 와 같은 로깅이 아니라, 대상 시스템으로 부터 각종 모니터링 지표를 수집하여 저장하고 검색할 수 있는 시스템이다. 구조가 간단해서 운영이 쉽고, 강력한 쿼리 기능을 가지고 있으며, 그라파나(Grafana) 를 통한 시각화를 지원한다. 무엇보다 넓은 오픈 소스 생태계를 기반으로 해서, 많은 시스템을 모니터링할 수 있는 다양한 플러그인을 가지고 있는 것이 가장 큰 장점이다. 특히 이런 간편함 때문에 특히나 쿠버네티스의 메인 모니터링 시스템으로 많이 사용되면서 요즘 특히 더 주목을 받고 있다. 기본 구조프로메테우스의 기본적인 아키텍처 부터 살펴보자먼저 수집 저장 ..

오픈소스 부하테스트툴 Locust #2 - 분산 부하 테스팅 (with 쿠버네티스)

Locust 와 쿠버네티스를 이용한 분산 부하 테스트조대협 (http://bcho.tistory.com)분산 부하 테스트locust는 여러개의 worker를 이용하여, 부하를 대량으로 발생 시키는 분산 부하 테스트가 가능하다. 특히 분산 클러스터 구성 설정이 매우 간단하다는 장점을 가지고 있다. 마스터 노드의 경우에는 아래와 같이 --master 옵션을 지정하여 마스터 노드로 구동하면 되고, % locust -f {task file name} --host={target host address} --master 워커 노드의 경우에는 실행 모드를 slave로 하고, 마스터 노드의 주소만 명시해주면 된다. % locust -f {task file name} --host={target host address} ..

오픈소스 부하테스트툴 Locust #1 - 설치와 스크립트 작성 방법

부하테스트를 위한 Locust조대협 (http://bcho.tistory.com) 백앤드 개발을 하다보면 많이 사용되는 도구 중의 하나가 부하 테스트 툴인데, 대표적인 도구로는 Apache Jmeter, nGrinder,SOAP UI 등의 도구가 있지만 다소 사용이 어렵고 스케일링을 하는데 어려움이 있는데, locust라는 도구는 설치와 사용이 편리하고, 테스트 시나리오를 파이썬 스크립트로 작성을 하기 때문에 다양한 시나리오 구현이 가능하다. 특히 쿠버네티스에 쉽게 배포할 수 있도록 Helm으로 패키지화가 되어 있기 때문에, 필요한 경우 대규모 부하테스트 환경을 설치하고 테스트가 끝나면 쉽게 지워버릴 수 있다. (참고 : locust는 영어로 메뚜기라는 뜻인데, 부하를 주는 것을 swarming 이라고 ..

Istio Traffic management

Istio Traffic management조대협 (http://bcho.tistory.com) Istio의 기능중의 하나가, 들어오는 트래픽을 여러 서비스로 라우팅을 하거나, 또는 트래픽에 테스트를 위해서 인위적으로 장애를 만들어 내는 것과 같은 트래픽 관리 기능이 있다. 이러한 기능을 사용하려면, Istio에서 트래픽 관리에 사용되는 컴포넌트들의 컨셉을 알아야 한다. 초기에 Kubernetes의 트래픽 관리 기능인 Service, Ingress와 개념이 헷갈렸는데, 잘 정리해놓은 문서가 있어서 개념을 잘 정리할 수 있었다. Istio 트래픽 관리 컴포넌트는 크게 Gateway, VirtualService, DestinationRule 3가지로 정의된다.GatewayGateway는 외부로부터 트래픽을 ..