블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 

'소개'에 해당되는 글 49

  1. 2019.06.20 쿠버네티스 패키지 매니저 Helm #2-4. Chart Hook
  2. 2019.05.14 SRE #4-예제로 보는 SLI/SLO 정의 방법
  3. 2019.05.10 SRE #2-SRE는 어떻게 일하는가?
  4. 2019.05.10 AutoEncoder vs Variant AutoEncoder
  5. 2019.05.10 SRE - #1 SRE/DEVOPS의 개념과 SRE는 무엇을하는가? (4)
  6. 2019.04.24 서버리스 오픈소스 - knative #2 비동기 처리를 위한 Eventing
  7. 2019.04.23 서버리스 오픈소스 - knative #1 소개 & Serving
  8. 2018.11.25 Istio #4 - Istio 설치와 BookInfo 예제 (2)
  9. 2018.09.27 쿠버네티스 개념 설명과 에코 시스템 (Spinnaker, Istio, KNative 설명) (3)
  10. 2018.08.11 쿠버네티스 #15 - 모니터링 (3/3) 구글 스택드라이버를 이용한 쿠버네티스 모니터링
  11. 2018.07.16 쿠버네티스 #13 - 모니터링 (1/2)
  12. 2018.06.11 쿠버네티스 #5 - 디스크 (볼륨/Volume) (4)
  13. 2018.05.30 쿠버네티스 #3- 개념이해 (2/2) 컨트롤러
  14. 2018.05.21 쿠버네티스 #2 - 개념 이해 (1/2) (5)
  15. 2018.04.15 Circuit breaker 패턴을 이용한 장애에 강한 MSA 서비스 구현하기 #2 - Spring에서 Circuit breaker 구현
  16. 2017.07.15 데이타 워크플로우 관리를 위한 Apache Airflow #1 - 소개 (1)
  17. 2017.06.15 연예인 얼굴 인식 모델을 만들어보자 - #2. CNN 모델을 만들고 학습시켜 보자 (15)
  18. 2017.01.31 텐서 보드를 이용하여 학습 과정을 시각화 해보자
  19. 2016.11.30 머신러닝의 과학습 / 오버피팅의 개념 (1)
  20. 2016.10.04 수학포기자를 위한 딥러닝-#2 머신러닝 개념 이해 (6)
 

쿠버네티스 패키지 매니저 Helm

#2-4 Helm Chart Hook


조대협 (http://bcho.tistory.com)

Hook은 차트 설치나, 삭제와 같이 차트의 라이프 사이클 중에, 차크 개발자가 동작을 추가해줄 수 있도록 해주는 기능이다. mySQL을 차트로 설치한 후에, mySQL에 테이블을 생성하고 데이타를 로딩하거나, 차트로 Pod를 설치하기전에 Configmap이나 Secret 의 값을 세팅해놓는 것과 같은 작업을 예를 들 수 있다. 

등을 들 수 있다.


Hook 으로 실행되는 리소스는 따로 있는 것이 아니라, 기존의 쿠버네티스 리소스 (Job, Cron Job 등)에 metadata.annotations.”helm.sh/hook”  으로 태그를 달아주면, 이 리소스들은 Hook으로 정의되어 차트 인스톨 전후에 정해진 시점에 실행된다. 

아래는 차트 인스톨 전에  작업을 처리하도록 Hook을 정의한 예제이다. 


apiVersion: ...

kind: ....

metadata:

  annotations:

    "helm.sh/hook": "pre-install"

# ...


예를 들어 아래 그림과 같이 차트에, Deployment,Service,Job 등의 리소스를 차트에 정의해서 배포하고자 한다. 그중에, 인스톨 전과 후에 특정 작업을 Job을 이용해서 처리하고자 한다면, 그 Job들에 annotation으로, Helm Hook임을 명시해줘야 한다. 


<그림. Helm 차트내의 리소스와 Hook으로 정의된 리소스들>


이 차트를 실행하게 되면 다음과 같은 순서로 실행이 된다. 먼저 차트에 정의되어 있는 리소스 중에서 Hook 으로 정의된 리소스중, pre-install 로 정의된 리소스가 먼저 실행이 되고, 그 다음에 다른 리소스가 인스톨이 된다. 인스톨이 완료되고 나면 그후에 post-install 로 정의된 Hook이 실행되는 형태이다. 



<그림. Helm 차트에서 리소스들의 배포 순서>


Hook 종류

Hook 은 인스톨 전과 후 뿐만 아니라, 릴리즈를 삭제하거나 업그레이드 할때 등 다양한 시점에 Hook을 삽입할 수 있도록 정의되어 있다.  자세한 Hook 의 종류는 https://github.com/helm/helm/blob/master/docs/charts_hooks.md 문서를 참고하기 바란다. 정의된 Hook 중 몇가지를 보면 다음과 같다. 


  • pre-install: 리소스를 설치하기전에 실행된다. (정확히 이야기 하면 리소스를 설치하기 위한 템플릿이 렌더링 된 후에, 렌더링된 템플릿으로 리소스를 설치하기 전에 실행된다. )

  • post-install: Helm 차트에 의해서 리소스들이 모두 설치 된 후에 실행된다. 

  • pre-delete: 릴리즈의 리소스를 삭제할때, 삭제 전에 실행된다.

  • post-delete:릴리즈의 리소스를 삭제한 후에, 실행된다.  

  • pre-upgrade: 릴리즈를 업그레이드 하기 전,  ( 템플릿이 렌더링 된 후에) 리소스가 생성되기 바로 전에 실행된다.

  • post-upgrade: 릴리즈 업그레이드가 끝난 후에, 실행된다. 

  • pre-rollback: 릴리즈를 기존 버전으로 롤백 할때 실행된다. (템플릿이 렌더링 된 후에 )

  • post-rollback: 릴리즈에 대한 롤백이 완료된 후에 실행된다. 

  • crd-install:  CRD 리소스를 인스톨하는데, 다른 Hook이나 기타 모든 다른 태스크 보다 우선적으로 실행된다. 이 Hook은 다른 리소스에서 이 CRD를  참조하여사용할때 주로 사용된다. 

  • test-success: “helm test” 명령을 실행할때 수행되는데, 그 결과가 성공 (return code == 0)일때만 실행된다. 

  • test-failure: “helm test” 명령을 실행할때 수행되는데, 그 결과가 실패 (return code != 0)일때만 실행된다. 

Hook weight & policy

Hook에는 실행 시점을 정의하는 기능 뿐만 아니라, 여러개의 Hook이 정의되었을때 실행 순서를 정하거나 또는 Hook 실행이 끝났을때 Hook 리소스를 지울지 나둘지등의 정책을 결정하는 기능이 있다. 

Hook weight

Hook weight는 여러개의 Hook 이 있을때, Hook 들의 실행 순서를 정의하기 위해서 사용한다. 음/양수 모두를 사용할 수 있으며, 작은 수를 가지고 있는 Hook 부터 우선 실행된다.

Hook weight는 아래 그림과 같이 annotations 부분에 “helm.sh/hook-weight” 항목으로 지정할 수 있다. 

 annotations:

    "helm.sh/hook-weight": "5"

Hook delete policy

Hook 이 실행된 후에, Hook 리소스들을 지울지 말지를 설정할 수 있는데, Hook이 실행된 후에, Hook 리소스는 일반적으로는 남아 있다. 만약에 Hook 이 실행된 후에, Hook을 삭제 하고 싶으면 annotation에 “helm.sh/hook-delete-policy”에 아래와 같이 삭제 정책을 정하면 된다. 


annotations:

    "helm.sh/hook-delete-policy": hook-succeeded 

삭제 정책으로 사용할 수 있는 정책은 다음과 같다. 

  • "hook-succeeded" : Hook 이 성공적으로 실행이 되고 나면, 삭제하도록 한다. 

  • "hook-failed" : Hook 실행이 실패하였을 경우 삭제 한다. 

  • "before-hook-creation" : Hook 을 실행하기 전에, 기존의 Hook을 삭제하고 실행하도록 한다. 


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

SRE #4-예제로 살펴보는 SLI/SLO 정의 방법

조대협 (http://bcho.tistory.com)


앞에서 SRE의 주요 지표인 SLO/SLI의 개념에 대해서 설명하였는데, 그러면 실제 서비스에서는 어떻게 SLO/SLI를 정의하는지에 대해서 알아본다.

SLI는 사용자 스토리당 3~5개 정도가 적당하다. 사용자 스토리는 로그인, 검색, 상품 상세 정보와 같이 하나의 기능을 의미한다고 보면된다.


아래 그림과 같은 간단한 게임 서비스가 있다고 가정하자. 이 서비스는 웹사이트를 가지고 있고, 그리고 앱을 통해서 접근이 가능한데, 내부적으로 API 서비스를 통해서 서비스가 된다. 내부 서비스에는 사용자 랭킹(Rank ), 사용자 프로파일 (User profiles) 등의 서비스가 있다.



이 서비스에서 "사용자 프로필" 에 대한 SLI를 정의해보도록 하자.

SLI 지표 레퍼런스

앞에서 설명한 SLI 지표로 주로 사용되는 지표들을 되집어 보면 다음과 같다.

  • 응답 시간 (Request latency) : 시스템의 응답시간

  • 에러율 (Error rate%)  : 전체 요청에서 실패한 요청의 비율

  • 처리량(Throughput) : 일반적으로 초당 처리량으로 측정하고 TPS (Thoughput per second) 또는 QPS (Query per second)라는 단위를 사용한다.

  • 가용성(availability)  : 시스템의 업타임 비율로, 앞에서 예를 들어 설명하였다.

  • 내구성(Durability-스토리지 시스템만 해당) : 스토리지 시스템에만 해당하는데, 장애에도 데이타가 유실되지 않을 확률이다.

이런 지표들이 워크로드 타입에 따라 어떤 지표들이 사용되는지 정의해놓은 정보를 다시 참고해 보면 다음과 같다.

  • 사용자에게 서비스를 제공하는 서비스 시스템 (웹,모바일등) : 가용성, 응답시간, 처리량

  • 스토리지 시스템(백업,저장 시스템): 가용성, 응답시간, 내구성

  • 빅데이터 분석 시스템 : 처리량, 전체 End-to-End 처리 시간

  • 머신러닝 시스템 : 서빙 응답시간, 학습 시간, 처리량, 가용성, 서빙 정확도


이 서비스는 "사용자에게 서비스를 제공하는 서비스 시스템 패턴" 이기 때문에, 이 중에서 가용성과 응답시간을 SLI로 사용하기로 한다.

가용성 SLI

가용성은 프로파일 페이지가 성공적으로 로드된 것으로 측정한다.

그러면 성공적으로 로드 되었다는 것은 어떻게 측정할 것인가? 그리고, 성공호출 횟수와 실패 횟수는 어떻게 측정할것인가? 에 대한 질문이 생긴다.

이 서비스는 웹기반 서비스이기 때문에, HTTP GET /profile/{users}와 /profile/{users}/avatar 가 성공적으로 호출된 비율을 측정하면 된다. 성공 호출은 어떻게 정의할것인가? HTTP response code 200번만 성공으로 생각할 수 있지만 5xx는 시스템 에러이지만 3xx, 4xx는 애플리케이션에서 처리하는 에러 처리 루틴이라고 봤을때, 3xx,4xx도 성공 응답에 포함시켜야 한다. 그래서 2xx,3xx,4xx의 횟수를 성공 호출로 카운트 한다.


그러면 이 응답을 어디서 수집해야 할것인가? 앞의 아키텍쳐 다이어그램을 보면 API/웹서비스 앞에 로드밸런서가 있는 것을 볼 수 있는데, 개별 서버 (VM)에서 측정하는 것이 아니라 앞단의 로드밸런서에서 측정해도 HTTP 응답 코드를 받을 수 있기 때문에, 로드밸런서의 HTTP 응답 코드를 카운트 하기로 한다.

응답시간 SLI

그러면 같은 방식으로 응답시간에 대한 SLI를 정의해보자

응답 시간은 프로파일 페이지가 얼마나 빨리 로드 되었는지를 측정한다. 그런데 빠르다는 기준은 무엇이고, 언제부터 언제까지를 로딩 시간으로 측정해야 할것인가?

이 서비스는 HTTP GET /profile/{users} 를 호출하기 때문에, 이 서비스가 100ms 를 임의의 기준값으로 하여, 이 값 대비의 응답시간으로 정의한다.

응답 시간 역시 가용성과 마찬가지로 로드밸런서에서 측정하도록 한다.


이렇게 SLI를 정의하였으면, 여기에 측정 기간과 목표값을 정해서 SLO를 정한다.



가용성 SLO는 28일 동안 99.95%의 응답이 성공한것으로 정의한다.

응답시간 SLO는 28일 동안 90%의 응답이 500ms 안에 도착하는 것으로 정의한다. 또는 좀더 발전된 방법으로 99% 퍼센타일의 응답의 90%가 500ms 안에 도착하는 것으로 높게 잡을 수 있지만, 처음 정한 SLO이기때문에, 이정도 수준으로 시작하고 점차 높여가는 모델을 사용한다.

복잡한 서비스의 SLI 의 정의

앞의 예제를 통해서 SLI와 SLO를 정의하는 방법에 대해서 알아보았다. 사용자 스토리 단위로 SLI를 정한다하더라도, 현실에서의 서비스는 훨씬 복잡하고 많은 개수를 갖는다.

SLI가 많아지면, 관련된 사람들이 전체 SLI를 보기 어렵기 때문에 조금 더 단순화되고 직관적인 지표가 필요하다.

예를 들어보다. 구글 플레이 스토어를 예를 들어봤을때, 구글 플레이스토어는 홈 화면, 검색, 카테고리별 앱 리스트 그리고 앱 상세 정보와 같이 크게 4가지 사용자 스토리로 정의할 수 있다.


이 4가지 사용자 스토리를 aggregation (합이나 평균)으로 합쳐서 하나의 지표인 탐색(Browse)라는 지표로 재 정의할 수 있다. 아래는 4개의 SLI를 각각 측정한 값이다.



이 개별 SLI들을 합쳐서 표현하면 다음과 같이 표현할 수 있다. 전체 SLI의 값을 합친 후에, 백분률로 표현하였다.


이 하나의 지표를 사용하면 4개의 기능에 대한 SLI를 대표할 수 있다. 이렇게 개별 SLI의 합이나 평균을 사용하는 경우는 대부분의 경우에는 충분하지만 특정 서비스가 비지니스 임팩트가 더 클 경우 이를 동일하게 취급해서 합해버리면 중요한 서비스가 나도 이 대표값에는 제대로 반영이 안될 수 있기 때문에, 필요한 경우 개별 SLI에 적절한 가중치를 곱해서 값을 계산하는 것도 방법이 된다.



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요


SRE는 어떻게 일하는가?

조대협 (http://bcho.tistory.com)


이글은 앞의 글 "SRE/DEOPS의 개념과 SRE는 무엇을 하는가?" (https://bcho.tistory.com/1325) 와 연결된 글입니다.

How SRE does Devops?

그럼 SRE들은 이런한 일들을 어떤 방법으로 수행할까?

앞에서 SRE가 해야 하는 일에 대해서 설명하면서 각각에 대해서 일부를 언급했지만, 다시 SRE가 해야하는 일을 하기 위해서는 어떻게(How) 해야 하는지에 대해서 다시 정리해보자.

SRE는 앞에서 언급한 다섯가지 일을 하기 위해서 아래와 같이 다섯 가지 방법을 사용한다.


(참고 : 구글 NEXT 발표자료 https://drive.google.com/file/d/1iOMaYIwlUBiGoG2mf8MFzl3EHy5xGJpq/view

Reduce organizational silos

첫번째는 부서간 (개발과 운영)의 사일로(단절) 현상을 없애는 노력을 한다. 여러가지 방법이 있겠지만 앞에서도 언급한 Share ownership 기반으로, 시스템 안정성에 대한 오너쉽(주인인식)을 서로 공유한다. 앞에 자세한 설명을 하였기 때문에 기타 부연 설명은 생략하겠다.

Accept failure as normal

두번째는 장애에 대해서 민감하게 반응하지 않아야 하는데, 이를 위해서는 서로 비난 하지 않는 문화와 장애가 발생후에 이를 회고 하고 향후 대책을 수립하는 Postmortem  회고를 수행한다. 또한 시스템의 가용성에 대한 적절한 관리를 위해서 Error budget 의 개념을 도입하여 사용한다.

Implement gradual changes

변화 관리 특히 배포에 관련해서 큰 변경보다는 작은 변경이 배포하기도 편하고 장애가 났을때도 쉽게 롤백이 가능해서 MTTR을 줄일 수 있기 때문에, 점진적인 변경 방법을 쓴다. 카날리 배포나 롤링 업그레이드들이 이에 해당한다.


Leverage tooling and automation

시스템 운영을 자동화 함으로써 사람이 운영에 관여하면서 발생할 수 있는 오류를 최소화하고, 수동(메뉴얼) 작업을 줄여서 사람은 좀 더 가치가 있는 일에 집중할 수 있도록 한다.

이렇게 하려면 수동작업의 양을 측정하고, 수동작업의 양을 적절한 수준으로 조절해야 하는데 이를 위해서 Toil 이라는 개념을 사용할 수 있다. 이 Toil의 개념은 나중에 다시 자세하게 설명하도록 한다.

Measure everything

그리고 SRE는 의사결정을 데이타에 기반으로하기 때문에, 어떤 값들을 어떻게 메트릭으로 표현할것인지를 정하고, 시스템 지표뿐만 아니라, 수동 작업 시간, 장애 시간등 모든 것을 측정해서 데이타화 한다.

Metric matters

앞에 까지 SRE가 무엇이고,  SRE가 하는일은 무엇이며, 어떻게 그런일을 하는지에 대해서 알아보았다. SRE 프랙티스 에서는 의사 결정을 데이터에 따라 하기 때문에, 지표를 정의하는 것이 중요하다. 그러면 SRE 에서는 어떤 지표를 어떻게 사용하는지에 대해서 알아보자. 다음글 https://bcho.tistory.com/1328



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

AutoEncoder vs Variant AutoEncoder

빅데이타/머신러닝 | 2019. 5. 10. 22:30 | Posted by 조대협

AutoEncoder vs Variant AutoEncoder


조대협 (http://bcho.tistory.com)


Abnormal

AutoEncoder는 입력값을 기반으로 여기서 특징을 뽑아내고, 뽑아낸 특징으로 다시 원본을 재생하는 네트워크이다. 이미지 합성이나 압축, Abnormal Detection 등 여러 유스케이스에 사용이 될 수 있지만, 특히 추출된 특징 (latent coding)은 데이타의 특징을 이해하는데도 유용하게 사용될 수 있다.

이 글에서는 AutoEncoder와 요금 각광 받는 VAE (Variant Auto Encoder) 의 차이를 알아보고 특히 latent coding의 값이 어떻게 다르게 표현되며, 어떤 의미를 가지는지에 대해서 이해한다.


일반 오토 인코더의 모양은 다음과 같다.



<그림 AutoEncoder의 구조>

출처 : https://excelsior-cjh.tistory.com/187


입력값 x로 부터 추출된 특징을 latent code z 라고 하는데,

이를 조금 더 이해하기 쉽게 표현해보면 다음과 같다.


<그림. AutoEncode의 latent code z 표현 방식 비교>

출처 : https://www.jeremyjordan.me/variational-autoencoders/


위의 그림은 오토 인코더를 이용해서 특징을 추출한 결과로 6개의 특징을 추출하였는데, 추출된 특징 latent code z는 특정 숫자값을 갖는다.

VAE는 이 latent code z의 값을 하나의 숫자로 나타내는 것이 아니라 가우시안 확률 분포에 기반한 확률값 (값의 범위)로 나타낸다.

아래 그림은 오토 인코더와 VAE에서 latent code z를 표현하는 방법을 설명한 것인데



<그림. AutoEncoder와 VAE의 latent code z 표현 방식 비교>

출처 : https://www.jeremyjordan.me/variational-autoencoders/


얼굴의 특징을 추출했다고 했을때 좌측은 오토인코더로 하나의 숫자로 특징을 표현하였고, 우측은 가우시안 확률 분포로 특징을 표현하였다. (확률값으로) 그래서 네트워크의 모양을 보면 다음과 같다.



<그림. VAE 구조>

출처 : https://excelsior-cjh.tistory.com/187


AutoEncoder latent coding 값이 single value z라면, VAE는 latent coding z를 가우시안 분포로 나타내기 위해서 평균과, 분산값으로 나타낸다.


AutoEncoder와 VAE의 latent space를 시각화 해보면 다음과 같은 차이를 발견할 수 있다. 아래 그림은 4 dimension latent space를 PCA(차원감소기법)을 통해서 2차원으로 변환한후 시각화 한 내용이다.


<그림. AE vs VAE의 latent space 비교>

출처 : https://thilospinner.com/towards-an-interpretable-latent-space/


MNIST에 대한 latent space인데, 각 점의 색깔은 0~9 숫자(이미지 라벨)을 표현한다.

좌측의 AE의 latent space는 군집이 넓게 퍼져있고, 중심점을 기반으로 잘 뭉치지 않는데 반해서 VAE는 중심점을 기반으로 좀더 컴팩트하게 잘 뭉쳐지는 것을 볼 수 있다.  그래서 원본 데이타를 재생하는데, AE에 비해 장점이 많고, latent space를 통해서 데이타의 군집을 파악하는데도 군집 강도가 높기 때문에 데이타의 특징을 파악하는데 좀더 유리하다.



참고 :


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Site Reliability Engineering(SRE)

#1 SRE/DEVOPS의 개념

조대협 (http://bcho.tistory.com)

배경

Devops는 운영팀과 개발팀을 하나의 팀으로 묶어놓고 전체적인 개발 사이클을 빠르게 하고자 하는 조직 구조이자 문화이다.


이 Devops라는 컨셉이 소개된지는 오래되었지만, Devops의 개념 자체는 명확하지만 이 Devops를 어떻게 실전에 적용할것인 가는 여전히 어려운 문제였다.(예전에 정리한 Devops에 대한 개념들 1 , 2)  예전 직장들에 있을때 Devops의 개념이 소개되었고 좋은 개념이라는 것은 이해하고 있었지만, 여전히 운영팀은 필요하였고, 그 역할이 크게 바뀌지 않았다. 심지어 Devops를 하는 기업들도 보면 기존 개발팀/운영팀이 있는데, 새롭게 Devops팀을 만들거나 또는 운영팀 간판을 Devops팀으로만 바꾸는 웃지 못할 결과들이 있었다.

나중에 위메프에서 CTO를 하셨던 김요섭님의 강의를 들을 수 있는 기회가 있었는데, 그때 구글이나 넷플릭스와 같은 사례에 대해 들을 수 있었지만, 그에 대한 디테일한 프렉틱스는 찾을 수 가 없었다.


여러 고민을 하고 있다가 구글에 입사한 후에, 구글의 Devops에 대해서 알게되었고, 여러 자료를 찾아서 공부하고 나니 어느정도 이해가 되서, 개념을 정리해놓는다.

Devops와 SRE

일반적으로 개발팀은 주어진 시간내에 새로운 기능을 내기 위해서 개발 속도에 무게를 두고, 운영팀의 경우에는 시스템 안정성에 무게를 둔다. 그래서 개발팀이 무리하게 기능을 배포하게 되면 장애로 이어지고, 이러한 장애로 인하여 서로를 욕하는 상황이 만들어져서 팀이 서로 멀어지게된다. 그래서 Devops는 이러한 두팀을 한팀에 묶어 놓고 운영하는 문화이자 일종의 운영 철학이다.

그런데 그러면 운영팀과 개발팀을 묶어놓으면 운영을 하던 사람들은 무엇을 하는가? 요즘은 클라우드가 발전해서 왠만한 부분은 개발자들이 직접 배포하고 운영도 할 수 있지만 시스템이 커지면 여전히 운영의 역할은 필요하다. 그렇다면 Devops 엔지니어라고 이름을 바꾼 Devops 엔지니어들이 하는 일은 무엇인가?


그 해답을 구글의 SRE(Site Reliability Engineering)에서 찾을 수 있었는데, 개발자가 셀프 서비스로 운영을 하려면 그 플랫폼이 자동화되어 있어야 한다. 애플리케이션을  빌드하고 유연하게 배포하고, 이를 모니터링할 수 있는 플랫폼이 필요한데, SRE의 역할은 이러한 플랫폼을 개발하고, 이 플랫폼 위에서 개발자들이 스스로 배포,운영을 하는 것이 목표이다. 물론 완벽한 셀프 서비스는 불가능하다. 여전히 큰 장애 처리나 배포등은 SRE 엔지니어가 관여하지만 많은 부분을 개발팀이 스스로 할 수 있도록 점점 그 비중을 줄여 나간다.


그러면 구글 버전의 Devops인 SRE는 서로 다른것인가? 그 관계는 어떻게 되는가? 이 질문에 대해서는 다음 하나의 문장으로 정리할 수 있다.

“ class SRE implements Devops

Devops가 개발과 운영의 사일로(분단) 현상을 해결하기 위한 방법론이자 하나의 조직문화에 대한 방향성이다. 그렇다면 SRE는 구글이 Devops에 적용하기 위한 구체적인 프렉틱스(실사례)와 가이드로 생각하면 된다. 구글도 다른 기업들과 마찬가지로  회사의 성장과 더블어 2000 년도 즈음에 개발자들이 속도에 무게를 두고 운영팀이 안정성에 무게를 둬서 발생하는 문제에 부딪혔고, 이 문제를 풀고자 하는 시도를 하였는데 이것이 바로 SRE (Site Reliability Engineering)이다. SRE는 크게 3가지 방향으로 이런 문제를 풀려고 했는데,

  • 첫번째는, 가용성에 대한 명확한 정의

  • 두번째는, 가용성 목표 정의

  • 세번째는, 장애 발생에 대한 계획

구글 팀은 이러한 원칙을 개발자/운영자뿐만 아니라 임원들까지 동의를 하였는데, 좀 더 구체적으로 이야기를 하면, 이러한 원칙에 따라 장애에 대한 책임을 모두 공유한다는 컨셉이다. 즉 장애가 나도 특정 사람이나 팀을 지칭해서 비난 하는게 아니라, 공동책임으로 규정하고 다시 장애가 나지 않을 수 있는 방법을 찾는 것이다.

위의 3가지 원칙에 따라서, 가용성을 측정을 위해서 어떤 지표를 사용할지를 명확히 정하고 두번째로는 그 지표에 어느 수준까지 허용을 할것인지를 정해서 그에 따른 의사결정은 하는 구조이다.

SRE는 단순히 구글의 운영팀을 지칭하는 것이 아니라, 문화와 운영 프로세스 팀 구조등 모든 개념을 포함한 포괄적인 개념이다.

What does an SRE Engineer do?

그러면 SRE에서 SRE엔지니어가 하는 일은 무엇일까? 아래 그림과 같이 크게 다섯까지 일을 한다.



<출처. 구글 넥스트 2018 발표 자료>

Metric & Monitoring

첫번째는 모니터링 지표를 정의하고, 이 지표를 모니터링 시스템을 올리는 일이다. 뒤에 설명하겠지만 구글에서는 서비스에 대한 지표를 SLI (Service Level Indictor)라는 것을 정하고, 각 지표에 대한 안정성 목표를 SLO (Service Level Objective)로 정해서 관리한다.

이러한 메트릭은 시스템을 운영하는 사람과 기타 여러 이해 당사자들에게 시스템의 상태를 보여줄 수 있도록 대쉬 보드 형태로 시각화 되어 제공된다.

그리고 마지막으로 할일은 이런 지표들을 분석해서 인사이트를 찾아내는 일이다. 시스템이 안정적인 상황과 또는 장애가 나는 지표는 무엇인지 왜인지? 그리고 이러한 지표를 어떻게 개선할 수 있는지를 고민한다. 기본적으로 SRE에서 가장 중요한점중 하나는 모든것을 데이타화하고, 의사결정을 데이타를 기반으로 한다.

Capacity Planning

두번째는 용량 계획인데, 시스템을 운영하는데 필요한 충분한 하드웨어 리소스(서버, CPU,메모리,디스크,네트워크 등)을 확보하는 작업이다. 비지니스 성장에 의한 일반적인 증설뿐만 아니라 이벤트나 마케팅 행사, 새로운 제품 출시등으로 인한 비정상적인 (스파이크성등) 리소스 요청에 대해서도 유연하게 대응할 수 있어야 한다.

시스템의 자원이란 시스템이 필요한 용량(LOAD), 확보된 리소스 용량 그리고 그 위에서 동작하는 소프트웨어의 최적화, 이 3가지에 대한 함수 관계이다.

즉 필요한 용량에 따라 적절하게 시스템 자원을 확보하는 것뿐만 아니라, 그 위에서 동작하는 소프트웨어 대한 성능 튜닝 역시 중요하다는 이야기다. 소프트웨어의 품질은 필요한 자원을 최소화하여 시스템 용량을 효율적으로 쓰게 해주기도 하지만 한편으로는 안정성을 제공해서 시스템 전체에 대한 안정성에 영향을 준다.

그래서 SRE 엔지니어는 자원 활용의 효율성 측면에서 소프트웨어의 성능을 그리고 안정성 측면에서 소프트웨어의 안정성을 함께 볼 수 있어야 한다.

Change Management

세번째는 한글로 해석하자면 변경 관리라고 해석할 수 있는데, 쉽게 이야기 하면 소프트웨어 배포/업데이트 영역이라고 보면 된다. (물론 설정 변경이나 인프라 구조 변경도 포함이 되지만)

시스템 장애의 원인은 대략 70%가 시스템에 변경을 주는 경우에 발생한다. 그만큼 시스템의 안정성에는 변경 관리가 중요하다는 이야기인데, 이러한 에러의 원인은 대부분 사람이 프로세스에 관여했을때 일어나기 때문에, 되도록이면 사람을 프로세스에서 제외하고 자동화하는 방향으로 개선 작업이 진행된다.

이러한 자동화의 베스트프래틱스는 다음과 같이 3가지 정도가 된다.

  • 점진적인 배포와 변경 (카날리 배포나 롤링 업데이트와 같은 방법)

  • 배포시 장애가 발생하였을 경우 빠르고 정확하게 해당 문제를 찾아낼 수 있도록 할것

  • 마지막으로 문제가 발생하였을때 빠르게 롤백할 수 잇을것

자동화는 전체 릴리스 프로세스 중에 일부분일 뿐이다. 잠재적인 장애를 막기 위해서는 코드 관리, 버전 컨트롤, 테스트 등 전체 릴리즈 프로세스를 제대로 정의 하는 것이 중요하다.

Emergency Response

네번째는 장애 처리이다. 시스템 안정성이란 MTTF(Mean Time to failure:장애가 발생하지 않고 얼마나 오랫동안 시스템이 정상 작동했는가? 일종의 건설현장의 "무사고 연속 몇일"과 같은 개념)와 MTTR(Mean time to recover:장애가 났을때 복구 시간)의 복합 함수와 같은 개념이다.

이 중에서 장애처리에 있어서 중요한 변수는 MTTR인데, 장애 시스템을 가급적 빠르게 정상화해서 MTTR을 줄이는게 목표중의 하나이다.

장애 복구 단계에서 사람이 직접 매뉴얼로 복구를 하게 되면 일반적으로 장애 복구 시간이 더 많이 걸린다. 사람이 컨트롤을 하되 가급적이면 각 단계는 자동화 되는게 좋으며, 사람이 해야 하는 일은 되도록이면 메뉴얼화 되어 있는 것이 좋다. 이것을 “Playbook”이라고 부르는데, 물론 수퍼엔지니어가 있는 경우에 수퍼엔지니어가 기가막히게 시스템 콘솔에 붙어서 장애를 해결할 수 있겠지만 대부분의 엔지니어가 수퍼엔지니어가 아니기 때문에, “Playbook” 기반으로 장애 처리를 할 경우 “Playbook”이 없는 경우에 비해 3배이상 MTTR이 낮다는 게 통계이다.

그리고 "Playbook”이 있다고 하더라도, 엔지니어들 마다 기술 수준이나 숙련도가 다르기 때문에, "Playbook”에 따른 장애 복구 모의 훈련을 지속적으로 해서 프로세스에 익숙해지도록 해야한다.

Culture

마지막으로 문화인데, SRE 엔지니어는 앞에서 설명한 운영에 필요한  작업뿐만 아니라 SRE 문화를 전반적으로 만들고 지켜나가는 작업을 해야 한다. 물론 혼자서는 아니라 전체 조직의 동의와 지원이 필요하고, 특히 경영진으로 부터의 동의와 신뢰가 없다면 절대로 성공할 수 없다.

나중에 설명하겠지만 SRE에는 Error budget 이라는 개념이 있는데, 모든 사람(경영층 포함)해서 이 Error budget에 대해서 동의를 하고 시작한다. Error budget은 특정 시스템이 일정 시간동안 허용되는 장애 시간이다. 예를 들어 일년에 1시간 장애가 허용 된다면 이 시스템의 Error budget는 1시간이고, 장애가 날때 마다 장애시간만큼 그 시간을 Error budget에서 차감한 후에, Error budget이 0이 되면 더 이상 신규 기능을 배포하지 않고 시스템 안정성을 올리는 데 개발의 초점을 맞춘다.

그런데 비지니스 조직에서 신규 기능 출시에 포커스하고 Error budget이 0이 되었는데도 신규 기능 릴리즈를 밀어붙이면 어떻게 될까? 아니면 시스템 운영 조직장이 Error budget이 10시간이나 남았는데도 불구하고 10분 장애가 났는데, 전체 기능 개발을 멈추고 시스템을 장애에 잘 견디게 고도화하라고 하면 어떻게 될까? 이러한 이유로 전체 조직이 SRE 원칙에 동의해야 하고,장애가 났을 때도 서로 욕하지 말고 책임을 나눠 가지는 문화가 필요하다.

이런 문화를 만들기 위해서는 크게 3가지 가이드가 있는데 다음과 같다.

  • 데이타에 기반한 합리적인 의사결정
    모든 의사결정은 데이타 기반으로 되어야 한다. 앞에서도 설명했듯이 이를 지키기 위해서는 임원이나 부서에 상관없이 이 원칙에 동의해야 하고, 이것이 실천되지 않는다면 사실상 SRE를 적용한다는 것은 의미가 없다. 많은 기업들이 모니터링 시스템을 올려서 대쉬 보드를 만드는 것을 봤지만 그건 운영팀만을 위한것이었고, SRE를 하겠다고 표방한 기업이나 팀들 역시 대표가 지시해서. 또는 임원이 지시해서 라는 말 한마디에 모든 의사결정이 무너지는 모습을 봤을 때, 이 원칙을 지키도록 고위 임원 부터 동의하지 않는 다면 SRE 도입 자체가 의미가 없다.

  • 서로 비난하지 않고, 장애 원인을 분석하고 이를 예방하는 포스트포턴 문화
    장애는 여러가지 원인에서 오지만, 그 장애 상황과 사람을 욕해봐야 의미가 없다. 장애는 이미 발생해버린 결과이고, 그 장애의 원인을 잘 분석해서 다음에 그 장애가 발생하지 않도록 하는  것이 중요하다. 보통 장애가 나고나서 회고를 하면 다음에는 프로세스를 개선한다던가. 주의하겠다는 식으로 마무리가 되는 경우가 많은데. 사람이 실수를 하도록 만든 프로세스와 시스템이 잘못된것이다. 사람은 고칠 수 없지만 시스템과 프로세스는 개선할 수 있다. 그리고 모든 개선은 문서화되어야 하고 가능한것들은 앞에서 언급한 Playbook에 반영되어야 한다.

  • 책임을 나눠가지는 문화
    그리고 장애에 대해 책임을 나눠 가지는 문화가 있어야 한다. 예를 들어 장애란 개발팀 입장에서 장애는 코드의 품질이 떨어져씩 때문에 장애가 일어난 것이고, 운영팀입장에서는 운영이 고도화 되지 않아씩 때문이며, 비지니스쪽에서는 무리하게 일정을 잡았기 때문이다.  책임을 나눠 가지는 문화는 누군가를 욕하지 않기 위해서라기 보다는 나의 책임으로 일어난 장애이기 때문에, 장애를 없애기 위한 노력도 나의 역할이 되고 동기가 된다.


지금까지 간단하게 나마 SRE의 개념과 SRE엔지니어가 무슨 일을 하는지에 대해서 설명하였다. 다음은 그러면 SRE 엔지니어들이 어떻게 이런일을 해나갈 수 있는지 How(방법)에 대해서 설명하도록 하겠다. 다음글 https://bcho.tistory.com/1325




Reference


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

  1. scinix 2019.05.11 17:40  댓글주소  수정/삭제  댓글쓰기

    Change Management는 "변화관리"보다는 "변경관리"로 번역하시는 게 맞을 것 같네요. ("What does..." 챕터에 있는 대부분의 내용은 ITMS 운영에서 일반적인 내용인데, 해당 부분은 국내에서는 "변경관리"로 부릅니다. 그리고 "변화관리"는 조금 다른 의미로 쓰입니다.)
    글 뒤 쪽의 "포스트포던"은 아마 포스트모텀(Postmortem; 부검)의 오타가 아닌가 싶네요.

    참고로, 저는 이 주제와 관련해서 다음 팟케스트를 재밌게 들었... 아니, 읽었습니다.
    https://www.gcppodcast.com/post/episode-127-sre-vs-devops-with-liz-fong-jones-and-seth-vargo/

  2. sangikbae 2019.05.13 12:58  댓글주소  수정/삭제  댓글쓰기

    예를 들어 장애란 개발팀 입장에서 장애는 코드의 품질이 떨어져씩 때문에 장애가 일어난 것이고, 운영팀입장에서는 운영이 고도화 되지 않아씩 때문이며, 비지니스쪽에서는 무리하게 일정을 잡았기 때문이다. 책임을 나눠 가지는 문화는 누군가를 욕하지 않기 위해서라기 보다는 나의 책임으로 일어난 장애이기 때문에, 장애를 없애기 위한 노력도 나의 역할이 되고 동기가 된다.

    울림이있네요

  3. 제쉬 2019.05.14 08:04  댓글주소  수정/삭제  댓글쓰기

    관리자의 승인을 기다리고 있는 댓글입니다

Serveless를 위한 오픈소스 KNative #2 Eventing


조대협 (http://bcho.tistory.com)


knative의 다른 모듈로써는 비동기 메세지 처리를 위한 eventing 이라는 모듈이 있다. 카프카나, 구글 클라우드 Pub/Sub, AWS SQS와 같은 큐에서 메시지를 받거나 또는 Cron과 같은 타이머에서 이벤트가 발생하면 이를 받아서 처리할 수 있는 비동기 메커니즘을 제공하는 모듈이라고 보면 된다.


메시지 큐나 cron 과 같이 이벤트를 발생 시키는 자원들은 knative에 event source 라는 Custom Resource로 등록이 되고, 등록된 event source는 이벤트가 발생되면 지정된 knative 서비스로 이벤트 메시지를 HTTP로 전송한다. 이때 이벤트를 받는 knative 서비스는 앞에서 언급한 knative serving의 서비스이다. 이때 이벤트에 대한 스펙은 CNCF Serverless WG 에서 정의한 CloudEvents 스펙에 기반한다.

Hello Eventing

자세하게 Eventing에 대해서 알아보기 전에 간단한 예제를 살펴보자. 예제는 knative.dev의 cronjob  예제이다.  Crontab으로 이벤트를 생성하면, event-display 라는 서비스에서 이 이벤트를 받아서 이벤트의 내용을 간략하게 로그로 출력하는 예제이다.


먼저 이벤트를 읽어드릴 event-display 서비스를 배포하자. 해당 서비스는 HTTP post로 받은 이벤트의 내용을 log로 출력해주는 코드로 이벤트의 포맷은 앞에서 설명한 CloudEvent의 포맷을 따른다.

Go 로 구현된 코드이며, 코드 원본은 여기에 있다.

 해당 컨테이너를 배포하기 위해서 아래와 같이 service.yaml 파일을 만들고, kubectl apply -f service.yaml 을 이용해서 배포하면, crontab 에서 이벤트를 받는 serving 인스턴스가 준비된다.

apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: event-display

spec:

 runLatest:

   configuration:

     revisionTemplate:

       spec:

         container:

           image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/event_display

<그림. Event consumer용 knative 서비스 배포>


다음 Crontab event 소스를 아래와 같이 yaml로 정의한다.


apiVersion: sources.eventing.knative.dev/v1alpha1

kind: CronJobSource

metadata:

 name: test-cronjob-source

spec:

 schedule: "*/2 * * * *"

 data: '{"message": "Hello world!"}'

 sink:

   apiVersion: serving.knative.dev/v1alpha1

   kind: Service

   name: event-display

<그림. Crontab event source 정의>


spec>schedule 부분에 이벤트 주기에 대한 설정을 crontab 포맷을 따라서 하고, data 부분에 cron 이벤트가 발생할때 마다 보낼 데이타를 정의한다.

데이타를 보낼 목적지는 sink 부분에 지정하는데, kind에 타입을 정의하고 (여기서는 knative의 Service로 지정) 그리고 service 의 이름을 name에 정의한다. 앞에서 knative serving 서비스를 event-display로 지정하였기 때문에, 서비스명을 event-display로 정의한다.

yaml 파일 설정이 끝났으면 kubectl apply -f  명령을 이용해서 이벤트 소스를 등록하고, 동작을 하는지 확인해보도록 하자.


%kubectl logs -l serving.knative.dev/service=event-display -c user-container --since=10m


명령을 이용하면 앞에서 배포한 event-display 서비스의 로그를 볼 수 있는데, 결과를 보면 다음과 같다.



Data 부분에서 crontab 이벤트 소스에서 보내온 “message”:”Hello world!” 문자열이 도착한것을 확인할 수 있다.

Eventing detail

이벤트는 앞의 예제에서 본것과 같이 이벤트 소스에서 바로 Knative 서빙에서 받아서 처리하는 가장 기본적인 비동기 이벤트 처리 패턴이다.


Broker & Trigger

이러한 패턴이외에도 좀 더 다양한 패턴 구현이 가능한데, 두번째가 Broker와 Trigger이다. Broker는 이벤트 소스로 부터 메시지를 받아서 저장하는 버킷 역할을 하고, Broker에는 Trigger를 달 수 있는데, Trigger에는 메시지 조건을 넣어서, 특정 메시지 패턴만 서비스로 보낼 수 있다. 위의 패턴에서 필터를 추가한 패턴으로 보면 된다.



이해를 돕기 위해서 예제를 보자. 다음은 knative.dev 공식 사이트에 나와 있는 예제중에, Google Cloud Pub/Sub Source를 Broker로 연동하는 예제이다.


# Replace the following before applying this file:

#   MY_GCP_PROJECT: Replace with the GCP Project's ID.


apiVersion: sources.eventing.knative.dev/v1alpha1

kind: GcpPubSubSource

metadata:

 name: testing-source

spec:

 gcpCredsSecret:  # A secret in the knative-sources namespace

   name: google-cloud-key

   key: key.json

 googleCloudProject: MY_GCP_PROJECT  # Replace this

 topic: testing

 sink:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Broker

   name: default

<그림. github-pubsub-source.yaml>


위의 코드는 GCP Pub/Sub Source를 등록하는 부분인데, sink 부분은 이 소스에서 오는 메시지를 어디로 보낼지를 정하는 부분이다. 위에 보면 Broker로 보내는것을 볼 수 있다. Broker는 Default Broker로 보낸다.


다음은 Broker에서 받은 메시지를 Trigger 조건에 따라서 Knative Serving 서비스로 보내는 설정이다.


apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: event-display

spec:

 template:

   spec:

     containers:

     - # This corresponds to

       # https://github.com/knative/eventing-sources/blob/release-0.5/cmd/event_display/main.go           

       image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/event_display@sha256:bf45b3eb1e7fc4cb63d6a5a6416cf696295484a7662e0cf9ccdf5c080542c21d


---


# The GcpPubSubSource's output goes to the default Broker. This Trigger subscribes to events in the

# default Broker.


apiVersion: eventing.knative.dev/v1alpha1

kind: Trigger

metadata:

 name: gcppubsub-source-sample

spec:

 subscriber:

   ref:

     apiVersion: serving.knative.dev/v1alpha1

     kind: Service

     name: event-display


< 그림. Trigger와 이벤트 메시지를 수신하는 Service를 정의한 부분>


서비스는 event-display라는 서비스를 정의하였고, 그 아래 Trigger 부분을 보면 gcppubsub-source-sample 이라는 이름으로 Trigger를 정의하였다. Broker 명을 정의하지 않으면 이 Trigger는 default broker에 적용된다. 별다른 조건이 없기 때문에, Broker의 모든 메시지를 대상 서비스인 event-display로 전달한다.

Channel & subscription

다음 개념은 Channel과 subscription 이라는 개념인데, Channel을 메시지를 저장 후에, Channel에 저장된 메시지는 메시지를 수신하는 Subscription을 통해서 다른 Channel로 포워딩 되거나 또는 Service로 전달 될 수 있다.



<그림. Channel과 Subscription 개념도>


앞에서 Channel에서는 메시지를 저장한다고 했는데, 그러면 저장할 장소가 필요하다. 저장할 장소는 설정으로 다양한 메시지 저장소를 사용할 수 있는데, 현재 메모리, Apache Kafka 또는 NATS Streaming을 지원한다.


간단한 예제를 살펴보자 예제는 이 문서를 참고하였다

먼저 아래 설정을 보자


apiVersion: sources.eventing.knative.dev/v1alpha1

kind: GcpPubSubSource

metadata:

 name: testing-source

spec:

 gcpCredsSecret:  # A secret in the knative-sources namespace

   name: google-cloud-key

   key: key.json

 googleCloudProject: knative-atamel  # Replace this

 topic: testing

 sink:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Channel

   name: pubsub-test



< 그림. GCPPubSub Event Source 정의한 코드>


위 설정은 GCP Pub/Sub을 Event source로 등록하는 부분이다. 이벤트 소스로 등록 한후에, 이벤트를 sink 부분에서 pubsub-test라는 Channel로 전달하도록 하였다.

다음 아래는 Channel을 정의한 부분인데, pubsub-test 라는 이름으로 Channel을 정의하고 "provisioner” 부분에, 메시지 저장소를 "in-memory-channel” 로 지정해서 메모리에 메시지를 저장하도록 하였다.

apiVersion: eventing.knative.dev/v1alpha1

kind: Channel

metadata:

 name: pubsub-test

spec:

 provisioner:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: ClusterChannelProvisioner

   name: in-memory-channel

< 그림. Channel 정의한 코드>



apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: message-dumper-csharp

spec:

 runLatest:

   configuration:

     revisionTemplate:

       spec:

         container:

           # Replace {username} with your actual DockerHub

           image: docker.io/{username}/message-dumper-csharp:v1

---

apiVersion: eventing.knative.dev/v1alpha1

kind: Subscription

metadata:

 name: gcppubsub-source-sample-csharp

spec:

 channel:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Channel

   name: pubsub-test

 subscriber:

   ref:

     apiVersion: serving.knative.dev/v1alpha1

     kind: Service

     name: message-dumper-csharp

< 그림. Serving과 subscription을 정의 코드>


Channel에 저장된 메시지를 다른 Channel로 보내거나 또는 Service로 보내려면 Subscription을 거쳐야 한다. 위에서 gcppubsub-source-sample-charp이라는 subscription을 정의하였고, 이 subscription이 연결되는 Channel은 spec > channel 부분에 아래와 같이 정의 하였다.


aspec:

 channel:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Channel

   name: pubsub-test

< 그림. 위의 Subscription 정의에서 Channel 정의 부분>


그리고 그 채널에서 받은 메시지를 subscriber > ref 부분에서 아래와 같이 message-dumper-charp이라는 서비스로 포워딩 하도록 하였다.

 subscriber:

   ref:

     apiVersion: serving.knative.dev/v1alpha1

     kind: Service

     name: message-dumper-csharp

< 그림.위의 Subscription 정의에서 Service 정의 부분>


전체적으로 Eventing 모듈을 이해하는데 시간이 많이 걸렸는데, Eventing 모듈은 Serving 모듈에 비해서 예제가 적고, 공식 문서에 아직 설명이 부족하다. 예를 들어서 소스 → 서빙으로 메시지를 보낼때 스케일링할 경우 문제가 없는지. Channel → subscription 으로 메시지를 보낼때 Trigger를 사용할 수 있는지 등 정보가 아직 부족해서 자세한 분석이 어려웠다. Knative는 현재 0.5 버전으로 버전이고, Event Source 들도 아직 개발 단계가 아니라 PoC (Proof Of Concept : 기술적으로 가능한지 테스트를 하는 단계) 단계 이기 때문에 제대로 사용하기에는 시간이 더 걸릴 듯 하다.

본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Serveless를 위한 오픈소스 KNative

조대협(http://bcho.tistory.com)

배경

근래에 들어서 컨테이너를 사용한 워크로드 관리는 쿠버네티스 de-facto 표준이 되어가고 있는데, 쿠버네티스 자체가 안정되어가고 있지만, 이를 현업에 적용하기 위해서는 아직까지 여러가지 챌린지가 있다.

컨테이너 기반의 쿠버네티스 서비스가 지향하는 바는, 셀프서비스 기반의 데브옵스 모델로 인프라와 이를 자동화하는 플랫폼을 인프라엔지니어가 개발하여 개발팀에 제공하고, 개발팀은 개발과 배포/운영을 스스로 하는 모델이다.

그런데 예를 들어 간단한 무상태(stateless) 웹서비스를 하나 구축한다 하더라도 Deployment,Ingress,Service 등의 쿠버네티스 리소스를 정의해서 배포해야 하고, 여기에 오토 스케일링이나, 리소스 (CPU,메모리)등의 설정을 따로 해줘야 한다. 그런데 이런 설정을 일일이 다 하기에는 일반 개발자들에게 부담이 된다. 또한 A/B 테스팅이나 카날리 배포등은 쿠버네티스 자체로 지원이 되지 않고 스피니커(spinnaker)등의 다른 솔루션을 부가해서 써야 하는데, 이런 모델은 컨테이너 기반의 셀프 서비스와는 거리가 멀어진다.

서버쪽에 복잡한 설정 없이 무상태 웹서비스나 간단한 이벤트 컨슈밍 서비스등을 구축하는 방법으로는 서버리스 서비스들이 있는다. 아마존 클라우드의 람다(Lambda)나, 구글 클라우드의 펑션(Function)등이 이에 해당한다. 그런데 이러한 서버리스 서비스들은 특정 클라우드 플랫폼에 의존성을 가지고 있는데, 이러한 문제를 해결하기 위해서 나온 오픈소스 서버리스 솔루션이 Knative 이다.

Knative

Knative는 구글의 주도하는 오픈소스 기반의 서버리스 솔루션으로 쿠버네티스 위에서 기동이 된다. 그래서 특정 클라우드 종속성이 없을뿐만 아니라 On-Prem에서도 설치가 가능하다. 지원되는 인프라 목록은 여기에 있는데, 레드헷 오픈 시프트, 피보탈, IBM 과 같은 On-Prem 쿠버네티스뿐만 아니라, 구글, Azure, IBM 클라우드등 다양한 클라우드를 지원한다.


Knative는 스테이트리스 웹서비스뿐만 아니라, 큐에서 이벤트를 받아서 처리하는 이벤트 핸들링을 위한 서버리스 모델을 지원하고, 거기에 더불어 컨테이너를 빌딩할 수 있는 빌드 기능을 제공한다. 그러면 각각을 살펴보자

Serving

서빙은 무상태 웹서비스를 구축하기 위한 프레임웍으로 간단하게 웹서비스 컨테이너만 배포하면, 로드밸런서의 배치, 오토 스케일링, 복잡한 배포 (롤링/카날리)등을 지원하고, 서비스 매쉬 솔루션인 istio와 통합을 통해서 다양한 모니터링을 제공한다.

Hello Serving

일단 간단한 예제를 보자. 아래는 미리 빌드된 간단한 웹서비스 컨테이너를 배포하는 YAML 스크립트이다.


apiVersion: serving.knative.dev/v1alpha1 # Current version of Knative

kind: Service

metadata:

 name: helloworld-go # The name of the app

 namespace: default # The namespace the app will use

spec:

 runLatest:

   configuration:

     revisionTemplate:

       spec:

         container:

           image: gcr.io/knative-samples/helloworld-go # The URL to the image of the app

           env:

             - name: TARGET # The environment variable printed out by the sample app

               value: "Go Sample v1"

<그림. service.yaml>


kind에 Service로 정의되었고, 서빙을 하는 컨테이너는 container>image에 container image URL이 정의되어 있다. 이 이미지를 이용해서 서빙을 하게 되며, 환경 변수를 컨테이너로 넘길 필요가 있을 경우에는 env에 name/value 식으로 정의하면 된다.


$kubectl apply -f service.yaml

<그림. 서비스 배포>

이렇게 정의된 서비스 yaml 파일은 다른 쿠버네티스의 yaml 파일과 같게 kubectl apply -f {파일명}을 이용하면 배포할 수 있게 된다.

쿠버네티스와 마찬가지로 yaml 파일을 정의해서 컨테이너를 정의하고 서비스를 정의해서 배포하는데, 그렇다면 쿠버네티스로 배포하는 것과 무슨 차이가 있을 것인가? 위의 설정 파일을 보면, 로드밸런서,Ingress 등의 추가 설정없이 간단하게 서비스 컨테이너 이름만 정의하고, 컨테이너만 정의하면 바로 배포가 된다. 서비스를 하는데 필요한 기타 설정을 추상화 시켜서 개발자가 꼭 필요한 최소한의 설정만으로 서비스를 제공할 수 있도록 해서, 복잡도를 줄여주는 장점이 있다.

그러면 배포된 서비스를 호출해보자


서비스를 호출하기 위해서는 먼저 서비스의 IP를 알아야 하는데, Knative serving 은 서비스 매쉬 솔루션인 istio 또는 apigateway인 Gloo 상에서 작동한다. 이 예제는 istio 위에 knative를 설치한것을 가정으로 설명한다.  istio에 대한 설명은 이링크와 이 링크 를 참고하기 바란다.

istio를 사용한 경우에는 istio의 gateway를 통해서 서비스가 되고,하나의 istio gateway가 몇개의 knative 서비스를 라우팅을 통해서 서비스한다. 이때 는 단일 IP이기 때문에 여러 knative 서비스를 서빙하기 위해서는 knative 서비스를 분류할 수 있어야 하는데 URI를 이용해서 구별을 하거나 또는 hostname 으로 구별을 한다. 이 예제에서는 hostname으로 구별하는 방법을 사용하였다.


그러면 실제로 서비스를 호출해보자. 먼저 istio gateway의 ip를 알아야한다.

Istio gateway ip는 다음 명령어를 이용하면 ip를 조회할 수 있다.


$kubectl get svc istio-ingressgateway --namespace istio-system

<그림. Istio gateway IP 조회>


다음으로 해야할일은 서비스의 domain 명을 알아야 하는데, 여기서 배포한 서비스는 helloworld-go 라는 서비스이다. 이 서비스가 배포되면 서비스에 대한 라우팅 정보가 정의되는데, kubectl get route 명령을 이용하면 라우팅 정보를 조회할 수 있고 그 중에서 domain 명을 조회하면 된다.


$kubectl get route helloworld-go  --output=custom-columns=NAME:.metadata.name,DOMAIN:.status.domain

<그림. Istio gateway IP 조회>


호스트명을 조회하면 아래와 같이 해당 서비스의 호스트명을 알 수 있다.

Domain 명은 {route name}.{kubernetes name space}.도메인명 으로 되어 있고, 도메인명은 디폴트로 example.com을 사용한다. helloworld-go 애플리케이션의 route 명은 helloworld-go이고, 쿠버네티스 네임 스페이스는 default 네임 스페이스를 사용하였기 때문에, helloworld-go.default.example.com 이 전체 서비스 호스트명이 된다.


그러면 조회한 호스트명과 ingress gateway의 IP 주소를 이용해서, curl 명령으로 테스트 호출을 실행해보자.

$curl -H "Host: helloworld-go.default.example.com" http://${IP_ADDRESS}

<그림. Istio gateway IP 조회>

 

IP_ADDRESS는 앞에서 조회한 ingress의  gateway 주소를 이용하면 된다.

실행을하고 나면 다음과 같은 결과를 얻을 수 있다.

Serving detail

간단하게, Serving 을 테스트 해봤다. 그럼 Serving이 어떻게 구성되어 있는지 조금 더 자세하게 살펴보도록 하자. Serving 은 쿠버네티스 CRD (Custom Resource Definition)으로 정의된 4개의 컴포넌트로 구성되어 있다.


  • Configuration
    Configuration은 knative serving으로 배포되는 서비스를 정의한다. 컨테이너의 경로, 환경 변수, 오토스케일링 설정, hearbeat 설정등을 정의한다. 재미있는것은 단순히 컨테이너 경로를 정의할 수 도 있지만, 컨테이너 빌드 설정을 정의할 수 있다. 즉 코드가 변경되었을때 Configuration에 있는 빌드 설정을 통해서 새로운 컨테이너를 빌드해서 자동으로 배포하고 새롭게 배포된 컨테이너를 이용해서 서비스를 할 수 있도록 한다.

  • Revision
    Configuration의 히스토리라고 보면 되는데, Configuration을 생성할때 마다 새로운 revision이 생성된다.(Revision은 현재 Configuration의 스냅샷이다.) 그래서, 이전 revision으로 롤백을 하거나 저장된 각각의 다른 버전으로 트래픽을 분할해서 서빙할 수 있다.

  • Route
    Route는 서비스로 들어오는 트래픽을 Revision으로 라우팅 하는 역할을 한다. 단순하게 최신 버전의 revision으로 라우팅할 수 도 있지만, 카날리 테스트와 같이 여러 revision으로 라우팅 하는 역할은 Route에서 정의된다.

  • Service
    Service는 Configuration과 Route를 추상화하여, 하나의 웹서비스를 대표하는 개념이라고 보면 된다. 쿠버네티스에서 Deployment가 ReplicaSet 등을 추상화 하는 개념으로 생각하면 된다.


Serving 컴포넌트의 내용을 추상화하여 그림으로 표현하면 아래 그림과 같다.


<그림. Knative serving의 개념도>


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Istio #4 - 설치 및 BookInfo 예제

조대협 (http://bcho.tistory.com)

Istio 설치

그러면 직접 Istio 를 설치해보자, 설치 환경은 구글 클라우드의 쿠버네티스 환경을 사용한다. (쿠버네티스는 오픈소스이고, 대부분의 클라우드에서 지원하기 때문에 설치 방법은 크게 다르지 않다.)

쿠버네티스 클러스터 생성

콘솔에서 아래 그림과 같이 istio 라는 이름으로 쿠버네티스 클러스터를 생성한다. 테스트용이기 때문에, 한존에 클러스터를 생성하고, 전체 노드는 3개 각 노드는 4 CPU/15G 메모리로 생성하였다.



다음 작업은 구글 클라우드 콘솔에서 Cloud Shell내에서 진행한다.

커맨드 라인에서 작업을 할것이기 때문에, gCloud SDK를 설치(https://cloud.google.com/sdk/gcloud/) 한후에,

%gcloud auth login

gcloud 명령어에 사용자 로그인을 한다.


그리고 작업을 편리하게 하기 위해서 아래와 같이 환경 변수를 설정한다. 쿠버네티스 클러스터를 생성한 리전과 존을 환경 변수에 아래와 같이 설정한다. 예제에서는 asia-southeast1 리전에 asia-southeast1-c 존에 생성하였다. 그리고 마지막으로 생성한 쿠버네티스 이름을 환경 변수로 설정한다. 예제에서 생성한 클러스터명은 istio이다.

export GCP_REGION=asia-southeast1
export GCP_ZONE=asia-southeast1-c
export GCP_PROJECT_ID=$(gcloud info --format='value(config.project)')
export K8S_CLUSTER_NAME=istio

다음 kubectl 명령어를 사용하기 위해서, 아래과 같이 gcloud 명령어를 이용하여 Credential을 세팅한다

% gcloud container clusters get-credentials $K8S_CLUSTER_NAME \
   --zone $GCP_ZONE \
   --project $GCP_PROJECT_ID

Credential 설정이 제대로 되었는지

% kubectl get pod -n kube-system

명령어를 실행하여, 쿠버네티스 시스템 관련 Pod 목록이 잘 나오는지 확인한다.

Istio 설치

쿠버네티스 클러스터가 준비되었으면, 이제 Istio를 설치한다.

Helm 설치

Istio는 Helm 패키지 매니져를 통해서 설치 한다.

% curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get > get_helm.sh
% chmod 700 get_helm.sh
% ./get_helm.sh

Istio 다운로드

Istio 를 다운로드 받는다. 아래는 1.0.4 버전을 다운 받는 스크립트이다.

% cd ~

% curl -L https://git.io/getLatestIstio | sh -

% cd istio-1.0.4

% export PATH=$PWD/bin:$PATH

Helm 초기화

Istio를 설치하기 위해서 Helm용 서비스 어카운트를 생성하고, Helm을 초기화 한다.

% kubectl create -f install/kubernetes/helm/helm-service-account.yaml

% helm init --service-account tiller

Istio 설치

다음 명령어를 이용하여 Istio를 설치한다. 설치시 모니터링을 위해서 모니터링 도구인 kiali,servicegraph 그리고 grafana 설치 옵션을 설정하여 아래와 같이 추가 설치 한다.

% helm install install/kubernetes/helm/istio \

--name istio \

--namespace istio-system \

--set tracing.enabled=true \

--set global.mtls.enabled=true \

--set grafana.enabled=true \

--set kiali.enabled=true \

--set servicegraph.enabled=true


설치가 제대로 되었는지 kubectl get pod명령을 이용하여, istio 네임스페이스의 Pod 목록을 확인해보자

% kubectl get pod -n istio-system




BookInfo 샘플 애플리케이션 설치

Istio 설치가 끝났으면, 사용법을 알아보기 위해서 간단한 예제 애플리케이션을 설치해보자, Istio에는 BookInfo (https://istio.io/docs/examples/bookinfo/)  라는 샘플 애플리케이션이 있다.

BookInfo 애플리케이션의 구조

아래 그림과 같이 productpage 서비스 안에, 책의 상세 정보를 보여주는 details 서비스와 책에 대한 리뷰를 보여주는 reviews 서비스로 구성이 되어 있다.  


시스템의 구조는 아래와 같은데, 파이썬으로 개발된 productpage 서비스가, 자바로 개발된 review 서비스과 루비로 개발된 details 서비스를 호출하는 구조이며, review 서비스는 v1~v3 버전까지 배포가 되어 있다. Review 서비스 v2~v3는 책의 평가 (별점)를 보여주는  Rating 서비스를 호출하는 구조이다



< 그림 Book Info 마이크로 서비스 구조 >

출처 : https://istio.io/docs/examples/bookinfo/

BookInfo 서비스 설치

Istio의 sidecar injection 활성화

Bookinfo 서비스를 설치하기 전에, Istio의 sidecar injection 기능을 활성화 시켜야 한다.

앞에서도 설명하였듯이 Istio는 Pod에 envoy 를 sidecar 패턴으로 삽입하여, 트래픽을 컨트롤 하는 구조이 다. Istio는 이 sidecar를 Pod 생성시 자동으로 주입 (inject)하는 기능이 있는데, 이 기능을 활성화 하기 위해서는 쿠버네티스의 해당 네임스페이스에 istio-injection=enabled 라는 라벨을 추가해야 한다.

다음 명령어를 이용해서 default 네임 스페이스에 istio-injection=enabled 라벨을 추가 한다.

% kubectl label namespace default istio-injection=enabled


라벨이 추가되었으면

% kubectl get ns --show-labels

를 이용하여 라벨이 제대로 적용이 되었는지 확인한다.


Bookinfo 애플리케이션 배포

Bookinfo 애플리케이션의 쿠버네티스 배포 스크립트는 samples/bookinfo 디렉토리에 들어있다. 아래 명령어를 실행해서 Bookinfo 앺ㄹ리케이션을 배포하자.

% kubectl apply -f samples/bookinfo/platform/kube/bookinfo.yaml


배포를 완료한 후 kubectl get pod 명령어를 실행해보면 다음과 같이 productpage, detail,rating 서비스가 배포되고, reviews 서비스는 v1~v3까지 배포된것을 확인할 수 있다.



Kubectl get svc 를 이용해서 배포되어 있는 서비스를 확인하자



Prodcutpcage,rating,reviews,details 서비스가 배포되어 있는데, 모두 ClusterIP 타입으로 배포가 되어 있기 때문에 외부에서는 접근이 불가능하다.


Istio gateway 설정

이 서비스를 외부로 노출 시키는데, 쿠버네티스의 Ingress나 Service는 사용하지 않고, Istio의 Gateway를 이용한다.

Istio의 Gateway는 쿠버네티스의 커스텀 리소스 타입으로, Istio로 들어오는 트래픽을 받아주는 엔드포인트 역할을 한다. 여러 방법으로 구현할 수 있으나, Istio에서는 디폴트로 배포되는 Gateway는 Pod 형식으로 배포되어 Load Balancer 타입의 서비스로 서비스 된다.


먼저 Istio Gateway를 등록한후에, Gateway를 통해 서비스할 호스트를 Virtual Service로 등록한다.


아래는 bookinfo에 대한 Gateway를 등록하는 Yaml 파일이다.


apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: bookinfo-gateway

spec:

 selector:

   istio: ingressgateway # use istio default controller

 servers:

 - port:

     number: 80

     name: http

     protocol: HTTP

   hosts:

   - "*"


selector를 이용해서 gateway 타입을 istio에서 디폴트로 제공하는 Gateway를 사용하였다. 그리고, HTTP프로토콜을 80 포트에서 받도록 하였다.

다음에는 이 Gateway를 통해서 트래픽을 받을 서비스를 Virtual Service로 등록해야 하는데, 그 구조는 다음과 같다.


apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: bookinfo

spec:

 hosts:

 - "*"

 gateways:

 - bookinfo-gateway

 http:

 - match:

   - uri:

       exact: /productpage

   - uri:

       exact: /login

   - uri:

       exact: /logout

   - uri:

       prefix: /api/v1/products

   route:

   - destination:

       host: productpage

       port:

         number: 9080


spec에서 gateways 부분에 앞에서 정의한 bookinfo-gateway를 사용하도록 한다. 이렇게 하면 앞에서 만든 Gateway로 들어오는 트래픽은 이 Virtual Servivce로 들어와서 서비스 디는데, 여기서 라우팅 룰을 정의 한다 라우팅룰은 URL에 때해서 어느 서비스로 라우팅할 지를 정하는데 /productpage,/login,/lougout,/api/v1/products URL은 productpage:9080 으로 포워딩해서 서비스를 제공한다.


Gateway와 Virtual service 배포에 앞서서, Istio에 미리 설치되어 있는 gateway를 살펴보면, Istio default gateway는 pod로 배포되어 있는데, istio=ingressgateway 라는 라벨이 적용되어 있다. 확인을 위해서 kubectl get 명령을 이용해서 확인해보면 다음과 같다.

%kubectl get pod -n istio-system -l istio=ingressgateway



이 pod들은 istio-ingressgateway라는 이름으로 istio-system 네임스페이스에 배포되어 있다. kubectl get svc로 확인해보면 다음과 같다.

%kubectl get svc istio-ingressgateway -n istio-system --show-labels



그러면 bookinfo를 istio gateway에 등록해서 외부로 서비스를 제공해보자

% istioctl create -f samples/bookinfo/networking/bookinfo-gateway.yaml


게이트 웨이 배포가 끝나면, 앞에서 조회한 Istio gateway service의 IP (여기서는 35.197.159.13)에 접속해서 확인해보자

브라우져를 열고 http://35.197.159.13/productpage 로 접속해보면 아래와 같이 정상적으로 서비스에 접속할 수 있다.



모니터링 툴

서비스 설치가 끝났으면 간단한 테스트와 함께 모니터링 툴을 이용하여 서비스를 살펴보자

Istio를 설치하면 Prometheus, Grafana, Kiali,Jaeger 등의 모니터링 도구가 기본적으로 인스톨 되어 있다. 각각의 도구를 이용해서 지표들을 모니터링 해보자

Grafana를 이용한 서비스별 지표 모니터링

Grafana를 이용해서는 각 서비스들의 지표를 상세하게 모니터링할 수 있다.

먼저 아래 스크립트를 사용해서 간단하게 부하를 주자. 아래 스크립트는 curl 명령을 반복적으로 호출하여 http://35.197.159.13/productpage 페이지를 불러서 부하를 주는 스크립이다.


for i in {1..100}; do

curl -o /dev/null -s -w "%{http_code}" http://35.197.159.13/productpage

done


다음 Grafana 웹 콘솔에 접근해야 하는데, Grafana는 외부 서비스로 노출이 안되도록 설정이 되어 있기 때문에 kubectl을 이용해서 Grafana 콘솔에 트래픽을 포워딩 하도록 하자. Grafana는 3000번 포트에서 돌고 있기 때문에, localhost:3000 → Grafana Pod의 3000 번 포트로 트래픽을 포워딩 하도록 설정하자


kubectl -n istio-system port-forward $(kubectl -n istio-system get pod -l app=grafana -o jsonpath='{.items[0].metadata.name}') 3000:3000 &


다음 localhost:3000 번으로 접속해보면 다음과 같은 화면을 볼 수 있다.

각 서비스 productpage,review,rating,detail 페이지의 응답시간과 OPS (Operation Per Sec : 초당 처리량)을 볼 수 있다.




각 서비스를 눌러보면 다음과 같이 서비스별로 상세한 내용을 볼 수 있다. 응답 시간이나 처리량에 대한 트렌드나, Request의 사이즈등 다양한 정보를 볼 수 있다.



Jaeger를 이용한 분산 트렌젝션 모니터링

다음은 Jaeger 를 이용해 개별 분산 트렌젝션에 대해서 각 구간별 응답 시간을 모니터링 할 수 있다.

Istio는 각 서비스별로 소요 시간을 수집하는데, 이를 Jaeger 오픈소스를 쓰면 손쉽게 모니터링이 가능하다.

마찬가지로 Jaeger 역시 외부 서비스로 노출이 되지 않았기 때문에, kubectl 명령을 이용해서 로컬 PC에서 jaeger pod로 포트를 포워딩하도록 한다. Jaerger는 16686 포트에서 돌고 있기 localhost:16686 → Jaeger pod:16686으로 포워딩한다.


kubectl port-forward -n istio-system $(kubectl get pod -n istio-system -l app=jaeger -o jsonpath='{.items[0].metadata.name}') 16686:16686 &


Jaeger UI에 접속해서, 아래는 productpage의 호출 기록을 보는 화면이다. 화면 상단에는 각 호출별로 응답시간 분포가 나오고 아래는 개별 트렉젝션에 대한 히스토리가 나온다.



그중 하나를 선택해보면 다음과 같은 그림을 볼 수 있다.



호출이 istio-ingressgateway로 들어와서 Productpage를 호출하였다.

productpage는 순차적으로 productpage → detail 서비스를 호출하였고, 다음 productpage→ reviews → ratings 서비스를 호출한것을 볼 수 있고, 많은 시간이 reviews 호출에 소요된것을 확인할 수 있다.


Servicegraph를 이용한 서비스 토폴로지 모니터링

마이크로 서비스는 서비스간의 호출 관계가 복잡해서, 각 서비스의 관계를 시각화 해주는 툴이 있으면 유용한데, 대표적인 도구로는 service graph라는 툴과 kiali 라는 툴이 있다. BookInfo 예제를 위한 Istio 설정에는 servicegraph가 디폴트로 설치되어 있다.


마찬가지로 외부 서비스로 노출 되서 서비스 되지 않고 클러스터 주소의 8088 포트를 통해서 서비스 되고 있기 때문에, 아래와 같이 kubectl 명령을 이용해서 localhost:8088 → service graph pod의 8088포트로 포워딩하도록 한다.


kubectl -n istio-system port-forward $(kubectl -n istio-system get pod -l app=servicegraph -o jsonpath='{.items[0].metadata.name}') 8088:8088 &


그 후에, 웹 브루우져에서 http://localhost:8088/dotviz 를 접속해보면 서비스들의 관계를 볼 수 있다.



다음 글에서는 예제를 통해서 Istio에서 네트워크 경로 설정하는 부분에 대해서 더 자세히 알아보도록 하겠다.


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

  1. 2018.12.05 14:07  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

  2. cjshms@gmail.com 2018.12.05 14:08  댓글주소  수정/삭제  댓글쓰기

    항상 큰 도움이 되십니다. 화이팅!!!!!


구글 클라우드 해커톤 세션으로 진행한 강의 내용입니다

50분 정도 인데, 짧게 쿠버네티스에 대한 설명과, 마이크로서비스에 대한 설명

그리고 쿠버네티스 에코 시스템인 Spinnaker, Istio, KNative 등에 대해서 설명합니다



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

  1. DansoJ 2018.10.01 13:58  댓글주소  수정/삭제  댓글쓰기

    좋은 강의 감사 합니다. 말씀 하신대로 고난의 길을 걷고 있는데 도움이 많이 됩니다.
    한가지 궁금한게 있습니다.
    (request) -> Sevice -> (loadbalanced)pod -> [다른 Service] -> 여러 pod중 특정 pod
    이런 구조가 가능 할까요?

    첫번째 서비스에 묶여 있는 pod들 간에는 상관 없는데
    두번째 pod는 사용자 인증등의 이유로
    같은 사용자에 한해서는 두번째,세번째 요청도 같은 pod에서 서비스를 해야 하는 경우가 있어서요.
    istio 등을 사용하면 될런지... 궁금 하네요.

  2. 조대협 2018.10.01 14:25 신고  댓글주소  수정/삭제  댓글쓰기

    (request) -> Sevice -> (loadbalanced)pod -> [다른 Service]

    이것까지는 가능할거 같구요.
    두번째는 다른 서비스를 쓸것이 아니라 L7 계층의 로드밸런서가 별도로 필요할것 같습니다. HTTP Header에 user ID등을 넣고 이 ID에 따라서 Session Affinity를 주는 방법인데, 이 경우는 Envoy(또는 Istio)를 사용하시는 방법이 좋겠습니다.

    • DansoJ 2018.10.04 16:12  댓글주소  수정/삭제

      빠르게 덧글 달아 주셨는데 확인을 이제야 했습니다 ^^;; 감사드리구요.

      [다른 Service]라고 표시한게.. 저도 두번째 서비스를 생략하고
      첫번째 pod에서 (프로그램 적으로 판단하는 로직을 넣어서) 두번째 pod 호출하도록 생각하고 있었습니다.

      envoy / Istio 를 이 게시글에서 처음 봐서 혹시나 했는데 공부해보겠습니다.

      매우매우 감사합니다. ^^


쿠버네티스 #15

모니터링 3/3 구글 스택드라이버를 이용한 모니터링

조대협 (http://bcho.tistory.com)



구글 클라우드 쿠버네티스 스택드라이버 모니터링

쿠버네티스 모니터링 시스템을 구축하는 다른 방법으로는 클라우드 서비스를 사용하는 방법이 있다. 그중에서 구글 클라우드에서 제공하는 스택 드라이버 쿠버네티스 모니터링에 대해서 소개하고자한다.

https://cloud.google.com/monitoring/kubernetes-engine/


현재는 베타 상태로, 구글 클라우드 쿠버네티스 서비스 (GKE)에서만 지원이 되며, 쿠버네티스 버전 1.10.2 와 1.11.0 (또는 그 상위버전)에서만 지원이 되고, 모니터링 뿐 아니라, 쿠버네티스 서비스에 대한 로깅을 스택드라이버 로깅 서비스를 이용해서 함께 제공한다.


스택드라이버 쿠버네티스 모니터링을 설정하는 방법은 간단하다. 쿠버네티스 클러스터를 설정할때, 아래 그림과 같이 Additional features 항목에서 “Try the new Stackdriver beta monitoring and Logging experience” 항목을 체크하면 된다.



클러스터를 생성한 후에, 구글 클라우드 콘솔에서 Monitoring 메뉴를 선택한 후에



스택드라이버 메뉴에서 Resources 메뉴에서 아래 그림과 같이 Kubernetes 메뉴를 선택하면 쿠버네티스 모니터링 내용을 볼 수 있다.



모니터링 구조

스택드라이버 쿠버네티스 모니터링의 가장 큰 장점 중의 하나는 단순한 단일 뷰를 통해서 대부분의 리소스 모니터링 과 이벤트에 대한 모니터링이 가능하다는 것이다.

아래 그림이 스택드라이버 모니터링 화면인데, “2”라고 표시된 부분이 시간에 따른 이벤트이다. 장애등이 발생하였을 경우 아래 그림과 같이 붉은 색으로 표현되고, 3 부분을 보면, 여러가지 뷰 (계층 구조)로 각 자원들을 모니터링할 수 있다. 장애가 난 부분이 붉은 색으로 표시되는 것을 확인할 수 있다.



<출처 : https://cloud.google.com/monitoring/kubernetes-engine/observing >


Timeline에 Incident가 붉은 색으로 표시된 경우 상세 정보를 볼 수 있는데, Timeline에서 붉은 색으로 표시된 부분을 누르면 아래 그림과 같이 디테일 이벤트 카드가 나온다. 이 카드를 통해서 메모리,CPU 등 이벤트에 대한 상세 내용을 확인할 수 있다.



<출처 : https://cloud.google.com/monitoring/kubernetes-engine/observing >


반대로 정상적인 경우에는 아래 그림과 같이 이벤트 부분에 아무것도 나타나지 않고, 모든 자원이 녹색 동그라미로 표시되어 있는 것을 확인할 수 있다.


개념 구조

쿠버네티스 모니터링중에 어려운 점중의 하나는 어떤 계층 구조로 자원을 모니터링 하는가 인데, 이런점을 해결하기 위해서 구글 스택드라이버 쿠버네티스 모니터링은 3가지 계층 구조에 따른 모니터링을 지원한다. 모니터링 화면을 보면 아래와 같이 Infrastructure, Workloads, Services 와 같이 세가지 탭이 나오는 것을 볼 수 있다.



어떤 관점에서 클러스터링을 모니터링할것인가인데,

  • Infrastructure : 하드웨어 자원 즉, node를 기준으로 하는 뷰로,  Cluster > Node > Pod > Container 의 계층 구조로 모니터링을 제공한다.

  • Workloads : 워크로드, 즉 Deployment를 중심으로 하는 뷰로 Cluster > Namespace > Workload (Deployment) > Pod > Container 순서의 계층 구조로 모니터링을 제공한다.

  • Services : 애플리케이션 즉 Service 를 중심으로 하는 뷰로 Cluster > Namespace > Service > Pod > Container 계층 순서로 뷰를 제공한다.

Alert 에 대한 상세 정보

각 계층 뷰에서 리소스가 문제가 있을 경우에는 앞의 동그라미가 붉은색으로 표시가 되는데,  해당 버튼을 누르게 되면, Alert 에 대한 상세 정보 카드가 떠서, 아래 그림과 같이 이벤트에 대한 상세 정보를 확인할 수 있다.


<출처 : https://cloud.google.com/monitoring/kubernetes-engine/observing >

결론

지금까지 간단하게 쿠버네티스에 대한 모니터링과 로깅에 대해서 알아보았다. 프로메테우스나 그라파나와 같은 최신 기술을 써서 멋진 대쉬 보드를 만드는 것도 중요하지만 모니터링과 로깅은 시스템을 안정적으로 운영하고 장애전에 그 전조를 파악해서 대응하고, 장애 발생시에는 해결과 향후 예방을 위한 분석 및 개선 활동이 일어나야 한다. 이를 위해서 모니터링과 로깅은 어디까지나 도구일 뿐이고, 어떤 지표를 모니터링 할것인지 (SLI : Service Level Indicator), 지표의 어느값까지를 시스템 운영의 목표로 삼을 것인지 (SLO : Service Level Object)를 정하는 프렉틱스 관점이 더 중요하다.  이를 구글에서는 SRE (Site Reliability Engineering)이라고 하는데, 이에 대한 자세한 내용은 https://landing.google.com/sre/book.html 를 참고하기 바란다.

이런 프렉틱스를 구축하는데 목적을 두고, 모니터링을 위한 툴링등은 직접 구축하는 것보다는 클라우드에서 제공하는 스택 드라이버와 같은 솔루션이나 데이타독(Datadog)와 같은 전문화된 모니터링 툴로 구축을 해서 시간을 줄이고, 프렉틱스 자체에 시간과 인력을 더 투자하는 것을 권장한다.



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요


쿠버네티스 #13

모니터링 1/2


조대협 (http://bcho.tistory.com)


시스템을 운영하는데 있어서 운영 관점에 있어서 가장 중요한 기능중의 하나는 시스템에 대한 모니터링이다. 시스템 자원의 사용량이나 에러등에 대한 모니터링을 통해서, 시스템을 안정적으로 운영하고 문제 발생시 원인 파악과 대응을 할 수 있다.

이번 글에서는 쿠버네티스 모니터링 시스템에 대한 개념과, 아키텍쳐 그리고 구축 방법에 대해서 소개하고자 한다.

쿠버네티스 모니터링 컨셉

쿠버네티스에 대한 모니터링을 보면 많은 툴과 지표들이 있어서 혼돈하기 쉬운데, 먼저 모니터링 컨셉에 대한 이해를 할 필요가 있다.

쿠버네티스 기반의 시스템을 모니터링하기 위해서는 크게 아래와 같이 4가지 계층을 모니터링해야 한다.



1. 호스트 (노드)

먼저 쿠버네티스 컨테이너를 실행하는 하드웨어 호스트 즉 노드에 대한 지표 모니터링이 필요하다. 노드의 CPU,메모리, 디스크, 네트워크 사용량과, 노드 OS와 커널에 대한 모니터링이 이에 해당한다.

2. 컨테이너

다음은 노드에서 기동되는 각각의 컨테이너에 대한 정보이다. 컨테이너의 CPU,메모리, 디스크, 네트워크 사용량등을 모니터링 한다.

3. 애플리케이션

컨테이너안에서 구동되는 개별 애플리케이션의 지표를 모니터링 한다. 예를 들어, 컨테이너에서 기동되는 node.js 기반의 애플리케이션의 응답시간, HTTP 에러 빈도등을 모니터링한다.

4. 쿠버네티스

마지막으로, 컨테이너를 컨트롤 하는 쿠버네티스 자체에 대한 모니터링을한다. 쿠버네티스의 자원인 서비스나 POD, 계정 정보등이 이에 해당한다.

쿠버네티스 기반의 시스템 모니터링에 대해서 혼돈이 오는 부분중의 하나가 모니터링이라는 개념이 포괄적이기 때문이다. 우리가 여기서 다루는 모니터링은 자원에 대한 지표 대한 모니터링이다. 포괄적인 의미의 모니터링은 로그와, 에러 모니터링등 다양한 내용을 포괄한다.  

쿠버네티스 로깅

지표 모니터링과 함께 중요한 모니터링 기능중 하나는 로그 수집 및 로그 모니터링이다.

로그 수집 및 로그 모니터링 방법은 여러가지 방법이 있지만, 오픈소스 로그 수집 및 모니터링 조합인 EFK (Elastic search + FluentD + Kibina) 스택을 이용하는 경우가 대표적이다.

Fluentd 에이전트를 이용하여, 각종 로그를 수집하여, Elastic search에 저장하고, 저장된 지표를 Kibana 대쉬 보들르 이용하여 시작화 해서 나타내는 방법이 있다.

이에 대한 자세한 설명을 생략한다.

쿠버네티스 모니터링 시스템 구축

그러면 이러한 모니터링 시스템을 어떻게 구축할 것인가?

쿠버네티스 모니터링은 버전업 과정에서 많은 변화를 겪고 있다. 기존 모니터링 시스템의 아키텍쳐는 cAdvisor,Heapster를 이용하는 구조였으나, 이 아키텍쳐는 곧 deprecated 될 예정이고, Prometheus등 다양한 모니터링 아키텍쳐가 후보로 고려 되고 있다.

아래 그래프를 보면 재미있는 통계 결과가 있는데, cAdvisor,Heapster,Promethus 를 이용하는 방법도 있지만, 클라우드의 경우에는 클라우드 벤더에서 제공하는 쿠버네티스 모니터링 솔루션을 그대로 사용하거나 (18%) 또는 데이타독이나 뉴렐릭 (Datadog, newRelic)과 같이 전문화된 모니터링 클라우드을 사용하는 비율 (26%) 도 꽤 높다.



<그림. 쿠버네티스 모니터링 솔루션 분포 >

출처 :  https://thenewstack.io/5-tools-monitoring-kubernetes-scale-production/


개인적인 의견으로는 직접 모니터링 솔루션을 구축해서 사용하는 것보다는 비용은 약간 들지만 클라우드 벤더에서 제공되는 모니터링 도구나 또는 데이타독과 같은 전문 모니터링 솔루션을 이용하는 것을 추천한다.


직접 모니터링 솔루션을 구축할 경우 구축과 운영에 드는 노력도 꽤 크고, 또한 어떠한 지표를 모니터링해야할지 등에 대한 추가적인 노하우가 필요하다. 또한 cAdvisor,Heapster,Promethues 조합은 호스트와 컨테이너 그리고 쿠버네티스에 대한 모니터링은 제공하지만 애플리케이션 지표에 대한 모니터링과 로깅 기능은 제공하지 않기 때문에 별도의 구축이 필요하다. 이런 노력을 들이는 것 보다는 모든 기능이 한번에 제공되고 운영을 대행해주는 데이타독이나 클라우드에서 제공해주는 모니터링 솔루션을 사용하는 것을 추천한다.

Heapster 기반 모니터링 아키텍처

이러한 모니터링 요건을 지원하기 위해서, 쿠버네티스는 자체적인 모니터링 컴포넌트를 가지고 있는데, 그 구조는 다음과 같다.



<그림. 쿠버네티스 모니터링 시스템 아키텍쳐>

출처 Source : https://www.datadoghq.com/blog/how-to-collect-and-graph-kubernetes-metrics/


cAdvisor

cAdvisor는 모니터링 에이전트로, 각 노드마다 설치되서 노드에 대한 정보와 컨테이너 (Pod)에 대한 지표를 수집하여, Kubelet으로 전달한다.

Heapster

cAdvisor에 의해 수집된 지표는 Heapster 라는 중앙 집중화된 지표 수집 시스템에 모이게 되고, Heapster는 수집된 지표를 스토리지 백앤드에 저장한다.

Storage backend

Heapster가 지표를 저장하는 데이타베이스를 스토리지 백앤드라고 하는데, Heapster는 확장성을 위해서 다양한 스토리지 백앤드를 플러그인 구조를 선택하여 연결할 수 있다.

현재 제공되는 대표적인 스토리지 백앤드는 구글 클라우드의 모니터링 시스템인 스택드라이버 (stackdriver), 오픈 소스 시계열 데이타베이스인 인플럭스 디비 (InfluxDB) 등을 지원한다.

그래프 대쉬 보드

이렇게 저장된 모니터링 지표는 그래프와 같은 형태로 시각화 될필요가 있는데, 스토리지 백앤드를 지원하는 다양한 시각화 도구를 사용할 수 있다. 구글의 모니터링 시스템인 스택드라이버의 경우에는 자체적인 대쉬보드 및 그래프 인터페이스가 있고, 인플럭스 디비나 프로메테우스의 경우에는 오픈소스 시각화 도구인 그라파나(Grafana)를 사용할 수 있다.


<그림. 그라파나와 프로메테우스를 연결하여, 지표 모니터링을 시각화 한 예제>


그러나 이 아키텍쳐는 deprecation 계획이 시작되서 1.13 버전 부터는 완전히 제거될 예정이다.

https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md


쿠버네티스 대시보드

다른 방법으로는 쿠버네티스를 모니터링 하고 관리할 수 있는 쉬운 방법이 하나 있는데, 쿠버네티스 대시보드를 사용하는 방법이다. 쿠버네티스는 기본적으로 kubectl이라는 커맨드 라인 인터페이스 (이하 CLI : Command Line Interface)를 사용하지만, 추가적으로 웹 기반의 관리 콘솔을 제공한다. 이를 쿠버네티스 대시보드라고 한다. (https://github.com/kubernetes/dashboard)

대시 보드 설치

쿠버네티스 대시 보드 설치 방법은 간단하다. 아래와 같이 대시보드 설정 yaml 파일을 이용하면 간단하게 대시 보드를 쿠버네티스 클러스터에 설치할 수 있다.


% kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml


일반적인 경우에는 위의 스크립트로 설치가 가능하지만, 구글 클라우드 쿠버네티스 엔진의의 경우에는 설치 중에 권한 관련 에러가 나올 수 있는데, 구글 클라우드 쿠버네티스 엔진의 경우에는 보안을 이유로 일반적인 쿠버네티스보다 권한 설정 레벨이 높게 설정되어 있기 때문이다. 구글 클라우드 쿠버네티스 엔진에서 대시보드를 설치하고자할때에는 위의 스크립트를 실행하기 전에 먼저 아래 명령어를 이용해서, 현재 사용자 계정에 대해서 cluster-admin 롤을 부여해줘야 한다.  


%kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole cluster-admin --user $(gcloud config get-value account)

대시 보드 접속

대시보드 설치가 끝났으면, 대시보드를 접속해보자

대시보드는 외부 서비스로 제공되지 않고, 내부 IP로만 접속이 가능한데, 클러스터 외부에서 접근하려면 kubectl proxy를 이용하면, 간단하게 접근이 가능하다.

kubectl proxy는 로컬 머신 (예를 들어 노트북)과 쿠버네티스 클러스터간의 통신을 프록싱해줘서, 로컬 머신에서 쿠버네티스 클러스터내의 HTTP 서비스를 접근할 수 있도록 해준다.

사용 방법은 로컬 머신에서 간단하게

%kubectl proxy

명령을 실행해주면 localhost:8001 포트를 통해서 쿠버네티스 클러스터로 트래픽을 프록시 해준다.

위와 같이 proxy를 실행한후에,  아래 URL로 접근을 하면, 대시보드 콘솔에 접근할 수 있다.

http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/


URL에 접근하면 아래와 같이 로그인 창이 나타난다.



사용자 계정 및 토큰등에 대해서는 보안 부분에서 별도로 다루기로 하겠다.

대쉬보드를 사용하기 위해서는 사용자 인증이 필요한데, 간단하게 인증을 위한 토큰을 사용하는 방법을 이용하도록 하겠다.

토큰은 쿠버네티스 API 인증 메커니즘중의 하나로, 여기서는 admin-user라는 계정을 하나 만든후에, 그 계정에, 클러스터 관리자롤을 부여한 후에, 그 사용자의 토큰을 사용하는 방법을 사용하겠다.


먼저 아래 스크립트를 이용해서 admin-user 라는 사용자를 생성한다.

admin-user.yaml 파일

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kube-system


다음 아래 스크립트를 이용해서 cluster-admin 롤을 앞에서 생성한 admin-user에 부여한다.

admin-rolebinding.yaml 파일

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: admin-user

 namespace: kube-system


다음 아래 명령어를 이용하면 admin-user의 토큰 값을 알 수 있다.

% kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')


명령을 실행하면 아래와 같이 토큰이 출력된다.


이 토큰 값을 앞의 로그인 창에 입력하면, 대시보드에 로그인할 수 있다.

대시 보드에 로그인하면 아래와 같이 노드나, Pod, 서비스등 쿠버네티스의 자원의 대부분의 정보에 대한 모니터링이 가능하다.




또한 kubectl CLI 명령을 사용하지 않고도 손쉽게 Deployment 등 각종 자원을 생성할 수 있다.


로그 부분에 들어가면 아래와 같이 로그 정보를 볼 수 있다



재미있는 기능중 하나는 아래 그림과 같이 특정 Pod의 컨테이너를 선택하면, 웹콘솔상에서 해당 컨테이너로 SSH 로그인이 가능하다.



여기서 다룬 쿠버네티스 대시보드 설정 및 로그인 부분은 프록시 사용, 로그인을 토큰을 사용하는 등, 운영환경에는 적절하지 않은 방법이다. 개발환경이나 테스트 용도로만 사용하도록 하고, 운영 환경에서는 사용자 계정 시스템 생성과 적절한 권한 배정을 한 후에, 적절한 보안 인증 시스템을 마련한 후에 적용하도록 하자.



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

쿠버네티스 #4

Volume (디스크)

조대협 (http://bcho.tistory.com)


이번 글에서는 쿠버네티스의 디스크 서비스인 볼륨에 대해서 알아보도록 하겠다.

쿠버네티스에서 볼륨이란 Pod에 종속되는 디스크이다. (컨테이너 단위가 아님). Pod 단위이기 때문에, 그 Pod에 속해 있는 여러개의 컨테이너가 공유해서 사용될 수 있다.

볼륨 종류

쿠버네티스의 볼륨은 여러가지 종류가 있는데,  로컬 디스크 뿐 아니라, NFS, iSCSI, Fiber Channel과 같은 일반적인 외장 디스크 인터페이스는 물론, GlusterFS나, Ceph와 같은 오픈 소스 파일 시스템, AWS EBS, GCP Persistent 디스크와 같은 퍼블릭 클라우드에서 제공되는 디스크, VsphereVolume과 같이 프라이비트 클라우드 솔루션에서 제공하는 디스크 볼륨까지 다양한 볼륨을 지원한다.

자세한 볼륨 리스트는 https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes 를 참고하기 바란다.


이 볼륨 타입을 구별해보면 크게 임시 디스크, 로컬 디스크 그리고 네트워크 디스크 등으로 분류할 수 있다.


Temp

Local

Network

emptyDir

hostPath

GlusterFS

gitRepo

NFS

iSCSI

gcePersistentDisk

AWS EBS

azureDisk

Fiber Channel

Secret

VshereVolume


그럼 각각에 대해서 알아보도록 하자

emptyDir

emptyDir은 Pod가 생성될때 생성되고, Pod가 삭제 될때 같이 삭제되는 임시 볼륨이다.

단 Pod 내의 컨테이너 크래쉬되어 삭제되거나 재시작 되더라도 emptyDir의 생명주기는 컨테이너 단위가 아니라, Pod 단위이기 때문에, emptyDir은 삭제 되지 않고 계속해서 사용이 가능하다.

생성 당시에는 디스크에 아무 내용이 없기 때문에, emptyDir  이라고 한다.

emptyDir의 물리적으로 노드에서 할당해주는 디스크에 저장이 되는데, (각 환경에 따라 다르다. 노드의 로컬 디스크가 될 수 도 있고, 네트워크 디스크등이 될 수 도 있다.) emptyDir.medium 필드에 “Memory”라고 지정해주면, emptyDir의 내용은 물리 디스크 대신 메모리에 저장이 된다.


다음은 하나의 Pod에 nginx와 redis 컨테이너를 기동 시키고, emptyDir 볼륨을 생성하여 이를 공유하는 설정이다.


apiVersion: v1

kind: Pod

metadata:

 name: shared-volumes

spec:

 containers:

 - name: redis

   image: redis

   volumeMounts:

   - name: shared-storage

     mountPath: /data/shared

 - name: nginx

   image: nginx

   volumeMounts:

   - name: shared-storage

     mountPath: /data/shared

 volumes:

 - name : shared-storage

   emptyDir: {}


shared-storage라는 이름으로 emptyDir 기반의 볼륨을 만든 후에, nginx와 redis 컨테이너의 /data/shared 디렉토리에 마운트를 하였다.


Pod를 기동 시킨후에, redis 컨테이너의 /data/shared 디렉토리에 들어가 보면 당연히 아무 파일도 없는 것을 확인할 수 있다.

이 상태에서 아래와 같이 file.txt 파일을 생성하였다.



다음 nginx 컨테이너로 들어가서 /data/shared 디렉토리를 살펴보면 file.txt 파일이 있는 것을 확인할 수 있다.



이 파일은 redis 컨테이너에서 생성이 되어 있지만, 같은 Pod 내이기 때문에, nginx 컨테이너에서도 접근이 가능하게 된다.

hostPath

다음은 hostPath 라는 볼륨 타입인데, hostPath는 노드의 로컬 디스크의 경로를 Pod에서 마운트해서 사용한다. 같은 hostPath에 있는 볼륨은 여러 Pod 사이에서 공유되어 사용된다.

또한  Pod가 삭제 되더라도 hostPath에 있는 파일들은 삭제되지 않고 다른 Pod가 같은 hostPath를 마운트하게 되면, 남아 있는 파일을 액세스할 수 있다.


주의할점 중의 하나는 Pod가 재시작되서 다른 노드에서 기동될 경우, 그 노드의 hostPath를 사용하기 때문에, 이전에 다른 노드에서 사용한 hostPath의 파일 내용은 액세스가 불가능하다.


hostPath는 노드의 파일 시스템을 접근하는데 유용한데, 예를 들어 노드의 로그 파일을 읽어서 수집하는 로그 에이전트를 Pod로 배포하였을 경우, 이 Pod에서 노드의 파일 시스템을 접근해야 한다. 이러한 경우에 유용하게 사용할 수 있다.


아래는 노드의 /tmp 디렉토리를 hostPath를 이용하여 /data/shared 디렉토리에 마운트 하여 사용하는 예제이다.


apiVersion: v1

kind: Pod

metadata:

 name: hostpath

spec:

 containers:

 - name: redis

   image: redis

   volumeMounts:

   - name: terrypath

     mountPath: /data/shared

 volumes:

 - name : terrypath

   hostPath:

     path: /tmp

     type: Directory



이 Pod를 배포해서 Pod를 Id를 얻어보았다.


Pod Id를 통해서 VM을 아래와 같이 확인하였다.


VM에 SSH로 접속해서 /tmp/에 hello.txt 파일을 생성하였다.




다음, Pod의 컨테이너에서 마운트된 /data/shared 디렉토리를 확인해보면 아래와 같이 노드의 /tmp 디렉토리의 내용이 그대로 보이는 것을 볼 수 있다.


gitRepo

볼륨 타입중에 gitRepo라는 유용한 볼륨 타입이 하나 있어서 소개한다.

이 볼륨은 생성시에 지정된 git 리파지토리의 특정 리비전의 내용을 clone을 이용해서 내려 받은후에 디스크 볼륨을 생성하는 방식이다. 물리적으로는 emptyDir이 생성되고, git 레파지토리 내용을 clone으로 다운 받는다.




HTML과 같은 정적 파일이나 Ruby on rails, PHP, node.js 와 같은 스크립트 언어 기반의 코드들은 gitRepo 볼륨을 이용하여 손쉽게 배포할 수 있다.


apiVersion: v1

kind: Pod

metadata:

name: gitrepo-volume-pod

spec:

containers:

- image: nginx:alpine

  name: web-server

  volumeMounts:

  - name: html

    mountPath: /usr/share/nginx/html

    readOnly: true

  ports:

  - containerPort: 80

    protocol: TCP

volumes:

- name: html

  gitRepo:

       repository: https://github.com/luksa/kubia-website-example.git

       revision: master

       directory: .


이 설정은 https://github.com/luksa/kubia-website-example.git 의 master 리비전을 클론으로 다운받아서 /usr/share/nginx/html에 마운트 시키는 설정이다.


PersistentVolume and PersistentVolumeClaim

일반적으로 디스크 볼륨을 설정하려면 물리적 디스크를 생성해야 하고, 이러한 물리적 디스크에 대한 설정을 자세하게 이해할 필요가 있다.

쿠버네티스는 인프라에 대한 복잡성을 추상화를 통해서 간단하게 하고, 개발자들이 손쉽게 필요한 인프라 (컨테이너,디스크, 네트워크)를 설정할 수 있도록 하는 개념을 가지고 있다

그래서 인프라에 종속적인 부분은 시스템 관리자가 설정하도록 하고, 개발자는 이에 대한 이해 없이 간단하게 사용할 수 있도록 디스크 볼륨 부분에 PersistentVolumeClaim (이하 PVC)와 PersistentVolume (이하 PV)라는 개념을 도입하였다.


시스템 관리자가 실제 물리 디스크를 생성한 후에, 이 디스크를 PersistentVolume이라는 이름으로 쿠버네티스에 등록한다.

개발자는 Pod를 생성할때, 볼륨을 정의하고, 이 볼륨 정의 부분에 물리적 디스크에 대한 특성을 정의하는 것이 아니라 PVC를 지정하여, 관리자가 생성한 PV와 연결한다.


그림으로 정리해보면 다음과 같다.


시스템 관리자가 생성한 물리 디스크를 쿠버네티스 클러스터에 표현한것이 PV이고, Pod의 볼륨과 이 PV를 연결하는 관계가 PVC가 된다.


이때 주의할점은 볼륨은 생성된후에, 직접 삭제하지 않으면 삭제되지 않는다. PV의 생명 주기는 쿠버네티스 클러스터에 의해서 관리되면 Pod의 생성 또는 삭제에 상관없이 별도로 관리 된다. (Pod와 상관없이 직접 생성하고 삭제해야 한다.)

PersistentVolume

PV는 물리 디스크를 쿠버네티스에 정의한 예제로, NFS 파일 시스템 5G를 pv0003이라는 이름으로 정의하였다.




PV를 설정하는데 여러가지 설정 옵션이 있는데, 간략하게 그 내용을 살펴보면 다음과 같다.

  • Capacity
    볼륨의 용량을 정의한다. 현재는 storage 항목을 통해서 용량만을 지정하는데 향후에는 필요한 IOPS나 Throughput등을 지원할 예정이다.

  • VolumeMode
    VolumeMode는 Filesystem (default)또는 raw를 설정할 수 있는데, 볼륨이 일반 파일 시스템인데, raw 볼륨인지를 정의한다.

  • Reclaim Policy
    PV는 연결된 PVC가 삭제된 후 다시 다른 PVC에 의해서 재 사용이 가능한데, 재 사용시에 디스크의 내용을 지울지 유지할지에 대한 정책을 Reclaim Policy를 이용하여 설정이 가능하다.

    • Retain : 삭제하지 않고 PV의 내용을 유지한다.

    • Recycle : 재 사용이 가능하며, 재 사용시에는 데이타의 내용을 자동으로 rm -rf 로 삭제한 후 재사용이 된다.

    • Delete : 볼륨의 사용이 끝나면, 해당 볼륨은 삭제 된다. AWS EBS, GCE PD,Azure Disk등이 이에 해당한다.

Reclaim Policy은 모든 디스크에 적용이 가능한것이 아니라, 디스크의 특성에 따라서 적용이 가능한 Policy가 있고, 적용이 불가능한 Policy 가 있다.

  • AccessMode
    AccessMode는 PV에 대한 동시에 Pod에서 접근할 수 있는 정책을 정의한다.

    • ReadWriteOnce (RWO)
      해당 PV는 하나의 Pod에만 마운트되고 하나의 Pod에서만 읽고 쓰기가 가능하다.

    • ReadOnlyMany(ROX)
      여러개의 Pod에 마운트가 가능하며, 여러개의 Pod에서 동시에 읽기가 가능하다. 쓰기는 불가능하다.

    • ReadWriteMany(RWX)
      여러개의 Pod에 마운트가 가능하고, 동시에 여러개의 Pod에서 읽기와 쓰기가 가능하다.

위와 같이 여러개의 모드가 있지만, 모든 디스크에 사용이 가능한것은 아니고 디스크의 특성에 따라서 선택적으로 지원된다.


PV의 라이프싸이클

PV는 생성이 되면, Available 상태가 된다. 이 상태에서 PVC에 바인딩이 되면 Bound 상태로 바뀌고 사용이 되며, 바인딩된 PVC가 삭제 되면, PV가 삭제되는 것이 아니라  Released 상태가 된다. (Available이 아니면 사용은 불가능하고 보관 상태가 된다.)

PV 생성 (Provisioning)

PV의 생성은 앞에서 봤던것 처럼 yaml 파일등을 이용하여, 수동으로 생성을 할 수 도 있지만, 설정에 따라서 필요시마다 자동으로 생성할 수 있게 할 수 있다. 이를 Dynamic Provisioning (동적 생성)이라고 하는데, 이에 대해서는 PVC를 설명하면서 같이 설명하도록 하겠다.

PersistentVolumeClaim

PVC는 Pod의 볼륨과 PVC를 연결(바인딩/Bind)하는 관계 선언이다.

아래 예제를 보자 아래 예제는 PVC의 예제이다.



(출처 : https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims)


  • accessMode, VolumeMode는 PV와 동일하다.

  • resources는 PV와 같이, 필요한 볼륨의 사이즈를 정의한다.

  • selector를 통해서 볼륨을 선택할 수 있는데, label selector 방식으로 이미 생성되어 있는 PV 중에, label이 매칭되는 볼륨을 찾아서 연결하게 된다.


PV/PVC 예제

그러면 예제를 통해서 PV를 생성하고, 이 PV를 PVC에 연결한후에, PVC를 Pod에 할당하여 사용하는 방법을 살펴보도록 하자. 예제는 구글 클라우드 환경을 사용하였다.

1.물리 디스크 생성

먼저 구글 클라우드 콘솔에서 Compute Engine 부분에서 아래와 같이 Disks 부분에서 물리 디스크를 생성한다.


디스크를 pv-demo-disk라는 이름으로 생성하였다.

이때 주의할점은 디스크의 region과 zone이 쿠베네티스 클러스터가 배포된 region과 zone에 동일해야 한다.


2.생성된 디스크로 PV를 선언

생성된 디스크를 이용하여 PV를 생성한다. 아래는 PV를 생성하기 위한 yaml 파일이다.


existing-pd.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-demo

spec:

 storageClassName:

 capacity:

   storage: 20G

 accessModes:

   - ReadWriteOnce

 gcePersistentDisk:

   pdName: pv-demo-disk

   fsType: ext4


PV의이름은 pv-demo이고, gcePersistentDisk에서 앞에서 생성한 pv-demo-disk 를 사용하도록 정의하였다.

파일을 실행하면, 아래와 같이 pv-demo로 PV가 생성된것을 확인할 수 있다.

3. 다음 PVC를 생성한다.

아래는 앞에서 생성한 pv-demo PV를 사용하는 PVC를 생성하는 yaml 파일이다. 하나의 Pod에서만 액세스가 가능하도록 accessMode를 ReadWriteOnce로 설정하였다.


existing-pvc.yaml

apiVersion: v1

kind : PersistentVolumeClaim

metadata:

 name: pv-claim-demo

spec:

 storageClassName: ""

 volumeName: pv-demo

 accessModes:

   - ReadWriteOnce

 resources:

   requests:

     storage: 20G


4. Pod를 생성하여, PVC를 바인딩

그러면 앞에서 생성한 PV와 PVC를 Pod에 생성해서 연결하자


existing-pod-redis.yaml

apiVersion: v1

kind: Pod

metadata:

 name: redis

spec:

 containers:

 - name: redis

   image: redis

   volumeMounts:

   - name: terrypath

     mountPath: /data

 volumes:

 - name : terrypath

   persistentVolumeClaim:

     claimName: pv-claim-demo


앞에서 생성한 PVC pv-claim-demo를 Volume에 연결한후, 이 볼륨을 /data 디렉토리에 마운트 하였다.

Pod를 생성한후에, 생성된 Pod에 df -k 로 디스크 연결 상태를 확인해 보면 다음과 같다.



/dev/sdb 가 20G로 생성되어 /data 디렉토리에 마운트 된것을 확인할 수 있다.

Dynamic Provisioning

앞에서 본것과 같이 PV를 수동으로 생성한후 PVC에 바인딩 한 후에, Pod에서 사용할 수 있지만, 쿠버네티스 1.6에서 부터 Dynamic Provisioning (동적 생성) 기능을 지원한다. 이 동적 생성 기능은 시스템 관리자가 별도로 디스크를 생성하고 PV를 생성할 필요 없이 PVC만 정의하면 이에 맞는 물리 디스크 생성 및 PV 생성을 자동화해주는 기능이다.




PVC를 정의하면, PVC의 내용에 따라서 쿠버네티스 클러스터가 물리 Disk를 생성하고, 이에 연결된 PV를 생성한다.

실 환경에서는 성능에 따라 다양한 디스크(nVME, SSD, HDD, NFS 등)를 사용할 수 있다. 그래서 디스크를 생성할때, 필요한 디스크의 타입을 정의할 수 있는데, 이를 storageClass 라고 하고, PVC에서 storage class를 지정하면, 이에 맞는 디스크를 생성하도록 한다.

Storage class를 지정하지 않으면, 디폴트로 설정된 storage class 값을 사용하게 된다.


동적 생성 방법은 어렵지 않다. PVC에 필요한 디스크 용량을 지정해놓으면, 자동으로 이에 해당하는 물리 디스크 및 PV가 생성이 된다. 아래는 동적으로 PV를 생성하는 PVC 예제이다.


dynamic-pvc.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mydisk

spec:

 accessModes:

   - ReadWriteOnce

 resources:

   requests:

     storage: 30Gi


다음 Pod를 생성한다.

apiVersion: v1

kind: Pod

metadata:

 name: redis

spec:

 containers:

 - name: redis

   image: redis

   volumeMounts:

   - name: terrypath

     mountPath: /data/shared

 volumes:

 - name : terrypath

   persistentVolumeClaim:

     claimName: mydisk


Pod를 생성한후에, kubectl get pvc 명령어를 이용하여, 생성된 PVC와 PV를 확인할 수 있다.

PVC는 위에서 정의한것과 같이 mydisk라는 이름으로 생성되었고, Volume (PV)는 pvc-4a…. 식으로 새롭게 생성되었다.

Storage class

스토리지 클래스를 살펴보자,

아래는  AWS EBS 디스크에 대한 스토리지 클래스를 지정한 예로, slow 라는 이름으로 스토리지 클래스를 지정하였다. EBS 타입은 io1을 사용하고, GB당 IOPS는 10을 할당하도록 하였고, 존은 us-east-1d와 us-east-1c에 디스크를 생성하도록 하였다.



아래는 구글 클라우드의 Persistent Disk (pd)의 예로, slow라는 이름으로 스토리지 클래스를 지정하고, pd-standard (HDD)타입으로 디스크를 생성하되 us-central1-a와 us-central1-b 존에 디스크를 생성하도록 하였다.



이렇게 정의한 스토리지 클래스는  PVC 정의시에, storageClassName에 적으면 PVC에 연결이 되고, 스토리지 클래스에 정해진 스펙에 따라서 물리 디스크와 PV를 생성하게 된다.

본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

  1. 늦둥이해커 2018.06.11 16:22  댓글주소  수정/삭제  댓글쓰기

    좋은 내용 감사드립니다~~

  2. 민재's아빠 2019.01.09 08:21  댓글주소  수정/삭제  댓글쓰기

    좋은 내용 감사합니다

  3. 초보 2019.01.09 23:29  댓글주소  수정/삭제  댓글쓰기

    gitRepo 볼륨이 없어져 어떻게 구현할지 막막하네요.. 레퍼런스 찾기가 너무 어렵습니다 ㅠㅠ

  4. ㅠㅠ 2019.03.18 00:13  댓글주소  수정/삭제  댓글쓰기

    감사합니다! 정말 감사합니다!

쿠버네티스 #3

개념이해 (2/2) : 고급 컨트롤러


조대협 (http://bcho.tistory.com)



고급 컨트롤러

RC,RS,Deployment는 웹서버와 같은 일반적인 워크로드에 대해 Pod를 관리하기 위한 컨트롤러이다. 실제 운영환경에서는 웹서버와 같은 일반적인 워크로드 이외에,  데이타베이스,배치 작업, 데몬 서버와 같이 다양한 형태의 워크로드 모델이 존재하는데 이를 지원하기 위해서 쿠버네티스는 다양한 컨트롤러를 제공함으로써, Pod의 운영을 다양한 시나리오에 맞게 지원하고 있다.

DaemonSet

DaemonSet (이하 DS) 은 Pod가 각각의 노드에서 하나씩만 돌게 하는 형태로 Pod를 관리하는 컨트롤러이다. 아래 그림을 보자


RC나 RS에 의해서 관리되는 Pod 는 여러 노드의 상황에 따라서 일반적으로 비균등적으로 배포가 되지만,  DS에 의해 관리되는 Pod는 모든 노드에 균등하게 하나씩만 배포 된다.

이런 형태의 워크로드는 서버의 모니터링이나 로그 수집 용도로 많이 사용되는데, DS의 다른 특징중 하나는, 특정 Node들에만 Pod가 하나씩만 배포 되도록 설정이 가능하다.

앞에서 언급한 로그나 모니터링 시나리오에서 특정 장비에 대한 모니터링을 하고자 할 때 이런 시나리오가 유효하다. 예를 들어 특정 장비(노드)에만 Nvme SSD를 사용하거나 GPU를 사용할 경우에는 그 장비가 설치된 노드만을 모니터링하면 된다.



DS는 특정 노드에만 Pod를 배포할 수 있도록 , Pod의 “node selector”를 이용해서 라벨을 이용하여 특정 노드만을 선택할 수 있게 지원한다.

Job

워크로드 모델중에서 배치나 한번 실행되고 끝나는 형태의 작업이 있을 수 있다.

예를 들어 원타임으로 파일 변환 작업을 하거나, 또는 주기적으로 ETL 배치 작업을 하는 경우에는 웹서버 처럼 계속 Pod가 떠 있을 필요없이 작업을 할때만 Pod 를 띄우면 된다.

이러한 형태의 워크로드 모델을 지원하는 컨트롤러를 Job이라고 한다.


Job에 의해서 관리되는 Pod는 Job이 종료되면, Pod 를 같이 종료한다.

Job을 정의할때는 보통 아래와 같이 컨테이너 스펙 부분에 image 뿐만 아니라, 컨테이너에서 Job을 수행하기 위한 커맨드(command) 를 같이 입력한다.


apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 template:
   spec:
     containers:
     - name: pi
       image: perl
       command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
     restartPolicy: Never
 backoffLimit: 4



Job 컨트롤러에 의해서 실행된 Pod 는 이 command의 실행 결과에 따라서 Job이 실패한지 성공한지를 판단한다. (프로세스의 exit 코드로 판단한다.)  Job이 종료되었는데, 결과가 실패라면,이 Job을 재 실행할지 또는 그냥 끝낼지를 설정에 따라서 결정한다.


Job이 끝나기 전에 만약에 비정상적으로 종료된다면 어떻게 될것인가?

아래 그림을 보자 쿠버네티스 클러스터에서 특정 노드가 장애가 났다고 가정하자, RC/RS에 의해서 관리되고 있는 Pod 는 자동으로 다른 노드에서 다시 자동으로 생성되서 시작될것이고, 컨트롤러에 의해 관리되고 있지 않은 Pod 는 다시 다른 노드에서 기동되지 않고 사라질것이다.

그렇다면 Job 에 의해서 관리되는 Pod는 어떻게 될것인가?



두가지 방법으로 설정할 수 있는데, 장애시 다시 시작하게 하거나 또는 장애시 다시 시작하지 않게 할 수 있다.

다시 시작의 개념은 작업의 상태가 보장되는것이 아니라, 다시 처음부터 작업이 재 시작되는 것이기 때문에 resume이 아닌 restart의 개념임을 잘 알아야하고, 다시 시작 처음부터 작업을 시작하더라도 데이타가 겹치거나 문제가 없는 형태라야 한다.


배치 작업의 경우 작업을 한번만 실행할 수 도 있지만, 같은 작업을 연속해서 여러번 수행하는 경우가 있다. (데이타가 클 경우 범위를 나눠서 작업하는 경우) 이런 경우를 위해서 Job 컨트롤러는 같은 Pod를 순차적으로, 여러번 실행할 수 있도록 설정이 가능하다. Job 설정에서 completion에 횟수를 주면, 같은 작업을 completion 횟수만큼 순차적으로 반복한다.


만약에 여러 작업을 처리해야 하지만 순차성이 필요없고 병렬로 처리를 하고 싶다면, Job설정에서 parallelism 에 동시 실행할 수 있는 Pod의 수를 주면, 지정된 수 만큼 Pod를 실행하여 completion 횟수를 병렬로 처리한다. 아래 그림은 completion이 5, parallelism이 2일때, 하나의 노드에서 모든 Pod가 실행된다고 가정했을때, 실행 순서를 보여주는 그림이다.



Cron jobs

Job 컨트롤러에 의해서 실행되는 배치성 작업들에 대해서 고려할 점중 하나는 이런 배치성 작업을 메뉴얼로 실행하는 것이 아니라, 주기적으로 자동화해서 실행할 필요가 있는데, 이렇게 주기적으로 정해진 스케쥴에 따라 Job 컨트롤러에 의해 작업을 실행해주는 컨트롤러로 cron jobs 컨트롤러가 있다.

cron jobs 컨트롤러는 Unix cron 명령어처럼, 시간에 따른 실행조건을 정의해놓을 수 있고, 이에 따라 Job 컨트롤러를 실행하여, 정의된 Pod를 실행할 수 있게 한다.


아래는 cron jobs 컨트롤러의 예제인데, job 컨트롤러와 설정이 다르지 않다.


apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: hello
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
   spec:
     template:
       spec:
         containers:
         - name: hello
           image: busybox
           args:
           - /bin/sh
           - -c
           - date; echo Hello from the Kubernetes cluster
         restartPolicy: OnFailure



다른 점은 CronJob 스펙 설정 부분에 “schedule”이라는 항목이 있고 반복 조건을 unix cron과 같이 설정하면 된다.

StatefulSet

마지막으로, 1.9에 정식으로 릴리즈된 StatefulSet이 있다.

RS/RC나 다른 컨트롤러로는 데이타베이스와 같이 상태를 가지는 애플리케이션을 관리하기가 어렵다.

그래서 이렇게 데이타 베이스등과 같이 상태를 가지고 있는 Pod를 지원하기 위해서 StatefulSet 이라는 것이 새로 소개되었는데, 이를 이해하기 위해서는 쿠버네티스의 디스크 볼륨에 대한 이해가 필요하기 때문에 다음에 볼륨과 함께 다시 설명하도록 한다.


2회에 걸쳐서 쿠버네티스의 컴포넌트 개념들에 대해서 살펴보았고, 다음글에서는 쿠버네티스의 아키텍쳐에 대해서 간략하게 살펴보도록 하겠다.

본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

쿠버네티스 #2

개념 이해 (1/2)


조대협 (http://bcho.tistory.com)


쿠버네티스를 공부하면서 가장 헷갈리는 부분이 용어와 컨셉이다. 이 컨셉만 잘 이해하면 쿠버네티스를 쉽게 이해하고 사용할 수 있지만, 적어도 내 기준에서는 문서들의 용어나 개념 설명이 다소 어려웠다.

쿠버네티스의 개념은 크게 오브젝트 두개의 개념에서 출발한다. 각각을 살펴보도록 하자

마스터와 노드

쿠버네티스를 이해하기 위해서는 먼저 클러스터의 구조를 이해할 필요가 있는데, 구조는 매우 간단하다. 클러스터 전체를 관리하는 컨트롤러로써 마스터가 존재하고, 컨테이너가 배포되는 머신 (가상머신이나 물리적인 서버머신)인 노드가 존재한다.


오브젝트

쿠버네티스를 이해하기 위해서 가장 중요한 부분이 오브젝트이다. 가장 기본적인 구성단위가 되는 기본 오브젝트(Basic object)와, 이 기본 오브젝트(Basic object) 를 생성하고 관리하는 추가적인 기능을 가진 컨트롤러(Controller) 로 이루어진다. 그리고 이러한 오브젝트의 스펙(설정)이외에 추가정보인 메타 정보들로 구성이 된다고 보면 된다.

오브젝트 스펙 (Object Spec)

오브젝트들은 모두 오브젝트의 특성 (설정정보)을 기술한 오브젝트 스펙 (Object Spec)으로 정의가 되고, 커맨드 라인을 통해서 오브젝트 생성시 인자로 전달하여 정의를 하거나 또는 yaml이나 json 파일로 스펙을 정의할 수 있다.

기본 오브젝트 (Basic Object)

쿠버네티스에 의해서 배포 및 관리되는 가장 기본적인 오브젝트는 컨테이너화되어 배포되는 애플리케이션의 워크로드를 기술하는 오브젝트로 Pod,Service,Volume,Namespace 4가지가 있다.


간단하게 설명 하자면 Pod는 컨테이너화된 애플리케이션, Volume은 디스크, Service는 로드밸런서 그리고 Namespace는 패키지명 정도로 생각하면 된다. 그러면 각각을 자세하게 살펴보도록 하자.

Pod

Pod 는 쿠버네티스에서 가장 기본적인 배포 단위로, 컨테이너를 포함하는 단위이다.

쿠버네티스의 특징중의 하나는 컨테이너를 개별적으로 하나씩 배포하는 것이 아니라 Pod 라는 단위로 배포하는데, Pod는 하나 이상의 컨테이너를 포함한다.


아래는 간단한 Pod를 정의한 오브젝트 스펙이다. 하나하나 살펴보면


apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

   image: nginx:1.7.9

   ports:

   - containerPort: 8090


  • apiVersion은 이 스크립트를 실행하기 위한 쿠버네티스 API 버전이다 보통 v1을 사용한다.

  • kind 에는 리소스의 종류를 정의하는데, Pod를 정의하려고 하기 때문에, Pod라고 넣는다.

  • metadata에는 이 리소스의 각종 메타 데이타를 넣는데, 라벨(뒤에서 설명할)이나 리소스의 이름등 각종 메타데이타를 넣는다

  • spec 부분에 리소스에 대한 상세한 스펙을 정의한다.

    • Pod는 컨테이너를 가지고 있기 때문에, container 를 정의한다. 이름은 nginx로 하고 도커 이미지 nginx:1.7.9 를 사용하고, 컨테이너 포트 8090을 오픈한다.


Pod 안에 한개 이상의 컨테이너를 가지고 있을 수 있다고 했는데 왜 개별적으로 하나씩 컨테이너를 배포하지 않고 여러개의 컨테이너를 Pod 단위로 묶어서 배포하는 것인가?


Pod는 다음과 같이 매우 재미있는 특징을 갖는다.


  • Pod 내의 컨테이너는 IP와 Port를 공유한다.
    두 개의 컨테이너가 하나의 Pod를 통해서 배포되었을때, localhost를 통해서 통신이 가능하다.
    예를 들어 컨테이너 A가 8080, 컨테이너 B가 7001로 배포가 되었을 때, B에서 A를 호출할때는 localhost:8080 으로 호출하면 되고, 반대로 A에서 B를 호출할때에넌 localhost:7001로 호출하면 된다.

  • Pod 내에 배포된 컨테이너간에는 디스크 볼륨을 공유할 수 있다.
    근래 애플리케이션들은 실행할때 애플리케이션만 올라가는것이 아니라 Reverse proxy, 로그 수집기등 다양한 주변 솔루션이 같이 배포 되는 경우가 많고, 특히 로그 수집기의 경우에는 애플리케이션 로그 파일을 읽어서 수집한다. 애플리케이션 (Tomcat, node.js)와 로그 수집기를 다른 컨테이너로 배포할 경우, 일반적인 경우에는 컨테이너에 의해서 파일 시스템이 분리되기 때문에, 로그 수집기가 애플리케이션이 배포된 컨테이너의 로그파일을 읽는 것이 불가능 하지만, 쿠버네티스의 경우 하나의 Pod 내에서는 컨테이너들끼리 볼륨을 공유할 수 있기 때문에 다른 컨테이너의 파일을 읽어올 수 있다.


위와 같이 애플리케이션과 애플리케이션에서 사용하는 주변 프로그램을 같이 배포하는 패턴을 마이크로 서비스 아키텍쳐에서 사이드카 패턴(Side car pattern)이라고 하는데, 이 외에도 Ambassador, Adapter Container 등 다양한 패턴이 있는데, 이는 나중에 다른 글에서 상세하게 설명하도록 한다.

Volume

Pod가 기동할때 디폴트로, 컨테이너마다 로컬 디스크를 생성해서 기동되는데, 이 로컬 디스크의 경우에는 영구적이지 못하다. 즉 컨테이너가 리스타트 되거나 새로 배포될때 마다 로컬 디스크는 Pod 설정에 따라서 새롭게 정의되서 배포되기 때문에, 디스크에 기록된 내용이 유실된다.

데이타 베이스와 같이 영구적으로 파일을 저장해야 하는 경우에는 컨테이너 리스타트에 상관 없이 파일을 영속적으로 저장애햐 하는데, 이러한 형태의 스토리지를 볼륨이라고 한다.

볼륨은 컨테이너의 외장 디스크로 생각하면 된다. Pod가 기동할때 컨테이너에 마운트해서 사용한다.


앞에서 언급한것과 같이 쿠버네티스의 볼륨은 Pod내의 컨테이너간의 공유가 가능하다.


웹 서버를 배포하는 Pod가 있을때, 웹서비스를 서비스하는 Web server 컨테이너, 그리고 컨텐츠의 내용 (/htdocs)를 업데이트하고 관리하는 Content mgmt 컨테이너, 그리고 로그 메세지를 관리하는 Logger라는 컨테이너이가 있다고 하자

  • WebServer 컨테이너는 htdocs 디렉토리의 컨테이너를 서비스하고, /logs 디렉토리에 웹 억세스 기록을 기록한다.

  • Content 컨테이너는 htdocs 디렉토리의 컨텐트를 업데이트하고 관리한다.

  • Logger 컨테이너는 logs 디렉토리의 로그를 수집한다.

이 경우 htdocs 컨텐츠 디렉토리는 WebServer와 Content 컨테이너가 공유해야 하고 logs 디렉토리는 Webserver 와 Logger 컨테이너가 공유해야 한다. 이러한 시나리오에서 볼륨을 사용할 수 있다.


아래와 같이 htdocs와 logs 볼륨을 각각 생성한 후에, htdocs는 WebServer와, Contents management 컨테이너에 마운트 해서 공유하고, logs볼륨은 Logger와 WebServer 컨테이너에서 공유하도록 하면된다.  



쿠버네티스는 다양한 외장 디스크를 추상화된 형태로 제공한다. iSCSI나 NFS와 같은 온프렘 기반의 일반적인 외장 스토리지 이외에도, 클라우드의 외장 스토리지인 AWS EBS, Google PD,에서 부터  github, glusterfs와 같은 다양한 오픈소스 기반의 외장 스토리지나 스토리지 서비스를 지원하여, 스토리지 아키텍처 설계에 다양한 옵션을 제공한다.

Service

Pod와 볼륨을 이용하여, 컨테이너들을 정의한 후에, Pod 를 서비스로 제공할때, 일반적인 분산환경에서는 하나의 Pod로 서비스 하는 경우는 드물고, 여러개의 Pod를 서비스하면서, 이를 로드밸런서를 이용해서 하나의 IP와 포트로 묶어서 서비스를 제공한다.


Pod의 경우에는 동적으로 생성이 되고, 장애가 생기면 자동으로 리스타트 되면서 그 IP가 바뀌기 때문에, 로드밸런서에서 Pod의 목록을 지정할 때는 IP주소를 이용하는 것은 어렵다. 또한 오토 스케일링으로 인하여 Pod 가 동적으로 추가 또는 삭제되기 때문에, 이렇게 추가/삭제된 Pod 목록을 로드밸런서가 유연하게 선택해 줘야 한다.

그래서 사용하는 것이 라벨(label)과 라벨 셀렉터(label selector) 라는 개념이다.


서비스를 정의할때, 어떤 Pod를 서비스로 묶을 것인지를 정의하는데, 이를 라벨 셀렉터라고 한다. 각 Pod를 생성할때 메타데이타 정보 부분에 라벨을 정의할 수 있다. 서비스는 라벨 셀렉터에서 특정 라벨을 가지고 있는 Pod만 선택하여 서비스에 묶게 된다.

아래 그림은 서비스가 라벨이 “myapp”인 서비스만 골라내서 서비스에 넣고, 그 Pod간에만 로드밸런싱을 통하여 외부로 서비스를 제공하는 형태이다.



이를 스펙으로 정의해보면 대략 다음과 같다.


kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
   app: myapp
 ports:
 - protocol: TCP
   port: 80
   targetPort: 9376


  • 리소스 종류가 Service 이기 때문에, kind는 Service로 지정하고,

  • 스크립트를 실행할 api 버전은 v1으로 apiVersion에 정의했다.

  • 메타데이타에 서비스의 이름을 my-service로 지정하고

  • spec 부분에 서비스에 대한 스펙을 정의한다.

    • selector에서 라벨이 app:myapp인 Pod 만을 선택해서 서비스에서 서비스를 제공하게 하고

    • 포트는 TCP를 이용하되, 서비스는 80 포트로 서비스를 하되, 서비스의 80 포트의 요청을 컨테이너의 9376 포트로 연결해서 서비스를 제공한다.


Name space

네임스페이스는 한 쿠버네티스 클러스터내의 논리적인 분리단위라고 보면 된다.

Pod,Service 등은 네임 스페이스 별로 생성이나 관리가 될 수 있고, 사용자의 권한 역시 이 네임 스페이스 별로 나눠서 부여할 수 있다.

즉 하나의 클러스터 내에, 개발/운영/테스트 환경이 있을때, 클러스터를 개발/운영/테스트 3개의 네임 스페이스로 나눠서 운영할 수 있다. 네임스페이스로 할 수 있는 것은

  • 사용자별로 네임스페이스별 접근 권한을 다르게 운영할 수 있다.

  • 네임스페이스별로 리소스의 쿼타 (할당량)을 지정할 수 있다. 개발계에는 CPU 100, 운영계에는 CPU 400과 GPU 100개 식으로, 사용 가능한 리소스의 수를 지정할 수 있다.

  • 네임 스페이스별로 리소스를 나눠서 관리할 수 있다. (Pod, Service 등)


주의할점은 네임 스페이스는 논리적인 분리 단위이지 물리적이나 기타 장치를 통해서 환경을 분리(Isolation)한것이 아니다. 다른 네임 스페이스간의 pod 라도 통신은 가능하다.

물론 네트워크 정책을 이용하여, 네임 스페이스간의 통신을 막을 수 있지만 높은 수준의 분리 정책을 원하는 경우에는 쿠버네티스 클러스터 자체를 분리하는 것을 권장한다.


참고 자료 네임 스페이스에 대한 베스트 프랙틱스 : https://cloudplatform.googleblog.com/2018/04/Kubernetes-best-practices-Organizing-with-Namespaces.html

https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/

라벨

앞에서 잠깐 언급했던 것 중의 하나가 label 인데, 라벨은 쿠버네티스의 리소스를 선택하는데 사용이 된다. 각 리소스는 라벨을 가질 수 있고, 라벨 검색 조건에 따라서 특정 라벨을 가지고 있는 리소스만을 선택할 수 있다.

이렇게 라벨을 선택하여 특정 리소스만 배포하거나 업데이트할 수 있고 또는 라벨로 선택된 리소스만 Service에 연결하거나 특정 라벨로 선택된 리소스에만 네트워크 접근 권한을 부여하는 등의 행위를 할 수 있다.

라벨은 metadata 섹션에 키/값 쌍으로 정의가 가능하며, 하나의 리소스에는 하나의 라벨이 아니라 여러 라벨을 동시에 적용할 수 있다.


"metadata": {
 "labels": {
   "key1" : "value1",
   "key2" : "value2"
 }
}


셀렉터를 사용하는 방법은 오브젝트 스펙에서 selector 라고 정의하고 라벨 조건을 적어 놓으면 된다.

쿠버네티스에서는 두 가지 셀렉터를 제공하는데, 기본적으로 Equaility based selector와, Set based selector 가 있다.

Equality based selector는 같냐, 다르냐와 같은 조건을 이용하여, 리소스를 선택하는 방법으로

  • environment = dev

  • tier != frontend

식으로, 등가 조건에 따라서 리소스를 선택한다.

이보다 향상된 셀렉터는 set based selector로, 집합의 개념을 사용한다.

  • environment in (production,qa) 는 environment가 production 또는 qa 인 경우이고,

  • tier notin (frontend,backend)는 environment가 frontend도 아니고 backend도 아닌 리소스를 선택하는 방법이다.

다음 예제는 my-service 라는 이름의 서비스를 정의한것으로 셀렉터에서 app: myapp 정의해서 Pod의 라벨 app이 myapp 것만 골라서 이 서비스에 바인딩해서 9376 포트로 서비스 하는 예제이다.


kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
   app: myapp
 ports:
 - protocol: TCP
   port: 80
   targetPort: 9376



컨트롤러

앞에서 소개한 4개의 기본 오브젝트로, 애플리케이션을 설정하고 배포하는 것이 가능한데 이를 조금 더 편리하게 관리하기 위해서 쿠버네티스는 컨트롤러라는 개념을 사용한다.

컨트롤러는 기본 오브젝트들을 생성하고 이를 관리하는 역할을 해준다. 컨트롤러는 Replication Controller (aka RC), Replication Set, DaemonSet, Job, StatefulSet, Deployment 들이 있다. 각자의 개념에 대해서 살펴보도록 하자.

Replication Controller

Replication Controller는  Pod를 관리해주는 역할을 하는데, 지정된 숫자로 Pod를 기동 시키고, 관리하는 역할을 한다.

Replication Controller (이하 RC)는 크게 3가지 파트로 구성되는데, Replica의 수, Pod Selector, Pod Template 3가지로 구성된다.

  • Selector : 먼저 Pod selector는 라벨을 기반으로 하여,  RC가 관리한 Pod를 가지고 오는데 사용한다.

  • Replica 수 :  RC에 의해서 관리되는 Pod의 수인데, 그 숫자만큼 Pod 의 수를 유지하도록 한다.예를 들어 replica 수가 3이면, 3개의 Pod만 띄우도록 하고, 이보다 Pod가 모자르면 새로운 Pod를 띄우고, 이보다 숫자가 많으면 남는 Pod를 삭제한다.

  • Pod를 추가로 기동할 때 그러면 어떻게 Pod를 만들지 Pod에 대한 정보 (도커 이미지, 포트,라벨등)에 대한 정보가 필요한데, 이는 Pod template이라는 부분에 정의 한다.




주의할점은 이미 돌고 있는 Pod가 있는 상태에서 RC 리소스를 생성하면 그 Pod의 라벨이 RC의 라벨과 일치하면 새롭게 생성된 RC의 컨트롤을 받는다. 만약 해당 Pod들이 RC에서 정의한 replica 수 보다 많으면, replica 수에 맞게 추가분의 pod를 삭제하고, 모자르면 template에 정의된 Pod 정보에 따라서 새로운 Pod를 생성하는데, 기존에 생성되어 있는 Pod가 template에 정의된 스펙과 다를지라도 그 Pod를 삭제하지 않는다. 예를 들어 기존에 아파치 웹서버로 기동중인 Pod가 있고, RC의 template은 nginx로 Pod를 실행하게 되어 있다하더라도 기존에 돌고 있는 아파치 웹서버 기반의 Pod를 삭제하지 않는다.


아래 예를 보자.


이 예제는 ngnix라는 이름의 RC를 정의한 것으로, label이 “app:ngnix”인 Pod들을 관리하고 3개의 Pod가 항상 운영되도록 설정한다.

Pod는 app:ngix 라는 라벨을 가지면서 이름이 ngnix이고 nginx 이미지를 사용해서 생성하고 컨테이너의 포트는 80 번 포트를 이용해서 서비스를 제공한다.

ReplicaSet

ReplicaSet은 Replication Controller 의 새버전으로 생각하면 된다.

큰 차이는 없고 Replication Controller 는 Equality 기반 Selector를 이용하는데 반해, Replica Set은 Set 기반의 Selector를 이용한다.

Deployment

Deployment (이하 디플로이먼트) Replication controller와 Replica Set의 좀더 상위 추상화 개념이다. 실제 운영에서는 ReplicaSet 이나 Replication Controller를 바로 사용하는 것보다, 좀 더 추상화된 Deployment를 사용하게 된다.

쿠버네티스 배포에 대한 이해

쿠버네티스의 Deployment 리소스를 이해하기 위해서는 쿠버네티스에서 Deployment 없이 어떻게 배포를 하는지에 대해서 이해를 하면 Deployment 를 이해할 수 있다.


다음과 같은 Pod와 RC가 있다고 하자


애플리케이션이 업데이트되서 새로운 버전으로 컨테이너를 굽고 이 컨테이너를 배포하는 시나리오에 대해서 알아보자. 여러가지 배포 전략이 있겠지만, 많이 사용하는 블루/그린 배포와 롤링 업데이트 방식 두가지 방법에 대해서 설명한다.

블루/그린 배포

블루/그린 배포 방식은 블루(예전)버전으로 서비스 하고 있던 시스템을 그린(새로운)버전을 배포한 후, 트래픽을 블루에서 그린으로 한번에 돌리는 방식이다.

여러가지 방법이 있지만 가장 손쉬운 방법으로는 새로운 RC을 만들어서 새로운 템플릿으로 Pod를 생성한 후에, Pod 생성이 끝나면, 서비스를 새로운 Pod로 옮기는 방식이다.


후에, 배포가 완료되고 문제가 없으면 예전 버전의 RC 와 Pod를 지워준다.

롤링 업그레이드

롤링 업그레이드 방식은 Pod를 하나씩 업그레이드 해가는 방식이다.

이렇게 배포를 하려면 먼저 새로운 RC를 만든후에, 기존 RC에서 replica 수를 하나 줄이고, 새로운 RC에는 replica 수를 하나만 준다.


라벨을 같은 이름으로 해주면 서비스는 자연히 새로운 RC에 의해 생성된 Pod를 서비스에 포함 시킨다.

다음으로 기존 RC의 replica를 하나 더 줄이고, 새로운 RC의  replica를 하나 더 늘린다.


그러면 기존 버전의 Pod가 하나더 서비스에서 빠지게 되고 새로운 버전의 Pod가 서비스에 추가된다.

마찬가지 작업을 반복하게 되면, 아래 그림과 같이 예전 버전의 Pod가 모두 빠지고 새 버전의 Pod만 서비스 되게 된다.


만약에 배포가 잘못되었을 경우에는 기존 RC의 replica 수를 원래대로 올리고, 새버전의 replicat 수를 0으로 만들어서 예전 버전의 Pod로 롤백이 가능하다.

이 과정은 kubectl rolling-update라는 명령으로 RC 단위로 컨트롤이 가능하지만, 그래도 여전히 작업이 필요하고, 배포 과정을 모니터링 해야 한다. 그리고 가장 문제는 kubectl rolling-update 명령은 클라이언트에서 실행 하는 명령으로, 명령어 실행중에 클라이언트의 연결이 끊어 지면 배포작업이 비정상적으로 끊어질 수 있는 문제가 있다.

그리고 마지막으로, 롤백과정 역시 수동 컨트롤이 필요할 수 있다.

그래서 이러한 과정을 자동화하고 추상화한 개념을 Deployment라고 보면 된다.

Deployment는 Pod 배포를 위해서 RC를 생성하고 관리하는 역할을 하며, 특히 롤백을 위한 기존 버전의 RC 관리등 여러가지 기능을 포괄적으로 포함하고 있다.



Deployment 에 대해서는 뒤에 다른 글에서 조금 더 자세하게 설명하도록 한다.


이글에서는 쿠버네티스를 이루는 기본적인 오브젝트와 이를 생성 제어하기 위한 기본적인 컨트롤러에 대해서 알아보았다.

다음 글에서는 조금 더 발전된 형태의 컨트롤러에 대해서 알아보기로 한다.




본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

  1. ㅇㅇ 2018.10.04 15:29  댓글주소  수정/삭제  댓글쓰기

    좋은글 감사합니다. 물어볼게 있습니다. 기본오브젝트는 어떤 상황일때 생성을 하나요? 글읽는 중에 컨트롤러도 오브젝트 생성과 관리를 한다고 하는대 그렇다면 기본오브젝트는 안쓰이는건가요?

  2. 가그린민트 2019.01.26 23:40  댓글주소  수정/삭제  댓글쓰기

    아 정말 감사합니다! :)

  3. Greenllama 2019.05.13 16:47 신고  댓글주소  수정/삭제  댓글쓰기

    감사합니다! 스크랩 해도 될까요?

  4. 우미 2019.07.15 17:05  댓글주소  수정/삭제  댓글쓰기

    이번 학기에 배웠던 내용이 일목요연하게 정리되어있네요.
    잘 복습하고 갑니다.

Circuit breaker 패턴을 이용한 장애에 강한 MSA 서비스 구현하기 #2

Spring을 이용한 Circuit breaker 구현


조대협 (http://bcho.tistory.com)


앞의 글에서는 넷플릭스 Hystrix를 이용하여 Circuit break를 구현해보았다.

실제 개발에서 Hystix로 개발도 가능하지만, 보통 자바의 경우에는 Spring framework을 많이 사용하기 때문에 이번 글에서는 Spring framework을 이용한 Circuit breaker를 구현하는 방법을 알아보도록 한다.


다행이도 근래에 Spring은 넷플릭스의 MSA 패턴들을 구현화한 오픈 소스들을 Spring 오픈 소스 프레임웍안으로 활발하게 합치는 작업을 진행하고 있어서 어렵지 않게 구현이 가능하다.


구현하고자 하는 시나리오는 앞의 글에서 예제로 사용한 User service에서 Item Service를 호출하는 구조를 구현하고, User service에 circuit breaker를 붙여보도록 하겠다.

User service 코드 전체는 https://github.com/bwcho75/msa_pattern_sample/tree/master/user-spring-hystrix 에 그리고 Item Service 코드 전체는 https://github.com/bwcho75/msa_pattern_sample/tree/master/item-spring-hystrix 에 있다


Spring Circuit breaker 구현

User service pom.xml 정의

Hystrix circuit breaker를 사용하기 위해서는 pom.xml에 다음과 같이 hystrix 관련 라이브러리에 대한 의존성을 정의해줘야 한다.

<dependency>

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter-hystrix</artifactId>

<version>1.4.4.RELEASE</version>

</dependency>

<dependency>

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>

<version>1.4.4.RELEASE</version>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-actuator</artifactId>

<version>1.5.11.RELEASE</version>

</dependency>


spring-cloud-starter-hystrix 는 Hystrix circuit breaker를 이용한 의존성이고 hystrix-dashboard와 actuator 는 hystix dash 보드를 띄우기 위한 의존성이다.



User service 구현

UserApplication

Circuit breaker를 이용하기 위해서는 User Service의 메인 함수인 UserApplication 에 Annotation으로 선언을 해준다.



package com.terry.circuitbreak.User;




import org.springframework.boot.SpringApplication;


import org.springframework.boot.autoconfigure.SpringBootApplication;


import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;


import org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashboard;




@SpringBootApplication


@EnableCircuitBreaker


@EnableHystrixDashboard


public class UserApplication {





public static void main(String[] args) {


SpringApplication.run(UserApplication.class, args);


}


}


위의 코드와 같이 @EnableCircuitBreaker Annotation을 추가해주면 Circuit breaker를 사용할 수 있고, 그리고 추가적으로 Hystrix 대쉬 보드를 사용할것이기 때문에, @EnableHystrixDashboard Annotation을 추가한다.

Item Service를 호출

그러면 UserSerivce에서 ItemService를 호출하는 부분을 구현해보도록 하자. Hystrix와 마찬가지로 Spring Hystrix에서도 타 서비스 호출은 Command로 구현한다.  아래는 Item Service에서 Item 목록을 가지고 오는 GetItemCommand 코드이다.

GetItemCommand

Hystrix Command와 거의 유사하지만 Command를  상속 받아서 사용하지 않고, Circuit breaker를 적용한 메서드에 간단하게  @HystrixCommand Annotation만을 추가하면 된다.


아래 코드를 자세하게 보자. 주의할점은 Item Service 호출을 RestTemplate API를 통해서하는데, RestTemplate 객체인 resetTemplate는 Autowrire로 생성한다.



@Service


public class GetItemCommand {



@Autowired


RestTemplate restTemplate;



  @Bean


  public RestTemplate restTemplate() {


      return new RestTemplate();


  }





// GetItem command


@HystrixCommand(fallbackMethod = "getFallback")


public List<User> getItem(String name)  {


List<User> usersList = new ArrayList<User>();



List<Item> itemList = (List<Item>)restTemplate.exchange("http://localhost:8082/users/"+name+"/items"


,HttpMethod.GET,null


,new ParameterizedTypeReference<List<Item>>() {}).getBody();


usersList.add(new User(name,"myemail@mygoogle.com",itemList));



return usersList;


}



// fall back method


// it returns default result


@SuppressWarnings("unused")


public List<User> getFallback(String name){


List<User> usersList = new ArrayList<User>();


usersList.add(new User(name,"myemail@mygoogle.com"));



return usersList;


}


}


Item Service를 호출하는 코드는 getItem(String name) 메서드이다. 여기에 Circuit breaker를 적용하기 때문에, 메서드 앞에  @HystrixCommand(fallbackMethod = "getFallback") Annotation을 정의하였다. 그리고 Item Service 장애시 호출한 fallback 메서드는 getFallback 메서드로 지정하였다.

getItem안에서는 ItemService를 RestTemplate을 이용하여 호출하고 그 결과를 List<User> 타입으로 반환한다.


앞서 정의한 Fallback은 getFallback() 메서드로 Circuit breaker를 적용한 원래 함수와 입력 (String name)과 출력 (List<User>) 인자가 동일하다.

Circuit breaker 테스트


User service와 Item Service를 기동한 상태에서 user service를 호출하면 아래와 같이 itemList에 Item Service가 리턴한 내용이 같이 반환 되는 것을 확인할 수 있다.


terrycho-macbookpro:~ terrycho$ curl localhost:8081/users/terry

[  

  {  

     "name":"terry",

     "email":"myemail@mygoogle.com",

     "itemList":[  

        {

           "name":"computer",

           "quantity":1

        },

        {

           "name":"mouse",

           "quantity":2

        }

     ]

  }

]


Item Service를 내려놓고 테스트를 해보면 지연 응답 없이 User service로 부터 응답이 리턴되고, 앞서 정의한 fallback 메서드에 의해서 itemList에 아무 값이 없인할 수 있다.


terrycho-macbookpro:~ terrycho$ curl localhost:8081/users/terry

[  

  {  

     "name":"terry",

     "email":"myemail@mygoogle.com",

     "itemList":[]

  }

]


Hystrix Dashboard

User service에서 Hystrix Dash board를 사용하도록 설정하였기 때문에, User Service의 호출 상태를 실시간으로 확인할 수 있다.


User serivce 서버의 URL인 localhost:8081에서 localhost:8081/hystrix.stream을 호출 해보면

아래와 같이 Circuit Breaker가 적용된 메서드의 상태 현황 정보가 계속해서 업데이트 되면서 출력하는 것을 확인할 수 있다.




그러면 대쉬보드에 접속해보자 대쉬 보드 URL은 http://{user service}/hystrix 이다. User service url이 localhost:8081이기 때문에 http://localhost:8081/hystrix로 접속해보자


대쉬 보드에서는 모니터링 할 서비스의 스트림 URL을 넣어줘야 하는데 위에서 설명한 http://localhost:8081/hystrix.stream 을 입력한다.


URL을 입력하고 모니터링을 하면 아래와 같이 Circuit breaker가 등록된 서비스들이 모니터링 된다.

아래 그림은 부하가 없을때 상태이다.


실제로 부하를 주게 되면 아래와 같이 그래프가 커져가면서 정상적인 호출이 늘어가는 것을 확인할 수 있고, 응답 시간들도 모니터링이 가능하다.


아래는 Circuit breaker를 통해서 호출되는 Item service를 죽였을때인데, 그래프가 붉은색으로 표시되면서 붉은색 숫자가 증가하는 것을 볼 수 있고 Item service가 장애이기 때문에, Circuit 의 상태가 Close에서 Open을 변경된것을 확인할 수 있다.



운영 적용에 앞서서 고려할점

앞에서 예제로 사용한 Dashboard는 어디까지나 테스트 수준에서 사용할만한 수준이지 실제 운영환경에 적용할때는 여러가지 고려가 필요하다. 특히 /hystrix , /hystrix.stream이 외부에서 접근이 가능하기 때문에,, 이에 대해서 이 두 URL이 외부로 접근하는 것을 막아야 하며, circuit의 상태에 대한 정보를 하나의 서비스만 아니라 여러 서비스에서 대용량 서비스에 적용할시에는 중앙 집중화된 대쉬보드가 필요하고 또한 많은 로그를 동시에 수집해야 하기 때문에, 대용량 백앤드가 필요하다. 이를 지원하기 위해서 넷플릭스에서는 터빈 (Turbine)이라는 이름으로, 중앙 집중화된 Hystrix 대쉬 보드 툴을 지원하고 있다. (https://github.com/Netflix/turbine/wiki)


이번 글에서는 Spring 프레임웍을 이용하여 Circuit breaker 패턴을 Hystrix 프레임웍을 이용하여 적용하는 방법을 알아보았다.


Spring을 사용하면 편리는 하지만 자바 스택만을 지원한다는 한계점을 가지고 있다. Circuit breaker를 이처럼 소프트웨어로 지원할 수 도 있지만, 소프트웨어가 아닌 인프라 설정을 이용해서 적용이 가능한데, envoryproxy 를 이용하면 코드 변경 없이 모든 플랫폼에 적용이 가능하다. 다음 글에서는 envoy proxy를 이용하여, circuit breaker를 사용하는 방법에 대해서 알아보도록 한다.