빅데이타 47

분산형 데이터 분석 아키텍처-데이터 매쉬

Data mesh조대협 (http://bcho.tistory.com) Data mesh는 빅데이터 분석 시스템의 아키텍쳐 스타일로, 마이크로 서비스 아키텍처 (이하 MSA)컨셉과 유사하게 데이터 분석 시스템을 각각의 분산된 서비스 형태로 개발 관리하는 아키텍쳐 모델이다. 이번 글에서는 차세대 데이터 분석 시스템 아키텍처인 Data mesh에 대해서 알아본다. 데이터 분석 시스템의 역사Data mesh에 대해서 이해하려면 기존의 데이터 분석 시스템의 아키텍처와 그 역사에 대해서 이해하라 필요가 있다.데이터 분석 시스템은, DataWare house를 거쳐 현재는 Data Lake 형태가 주류를 이루고 있으며, 차세대로는 Data Mesh가 각광 받고 있다. 각각 아키텍처 스타일을 보면 다음과 같다.Data..

빅데이타 2021.01.04 (1)

빅쿼리 대쉬 보드를 위한 오픈소스 메타 베이스

빅쿼리 대쉬 보드를 위한 오픈소스 메타 베이스 조대협 (http://bcho.tistory.com) 빅쿼리 분석 결과를 시각화 하는 도구로 구글에서 제공되는 툴은 일반 비지니스 사용자나, 초보자를 위한 데이타 스튜디오, 그리고 데이타 사이언티스트를 위한 DataLab 등이 있다. 그러다 보니, 데이타 사이언티스트는 아니면서 고급 사용자를 위한 데이타 분석툴 영역에 다른 툴이 필요하게 되는데, 상용 도구로는 타블루와 같은 설치형 도구나 Looker 등의 클라우드 서비스를 사용할 수 있는데, 유료이기 때문에, 대안적인 툴을 찾는 경우가 많다. 오픈 소스 도구로는 Redash가 있는데, 이 외에, Metabase(메타 베이스) 라는 도구가 있어서 소개한다. 쿼리 및 분석 기능분석을 위해서 기본적인 화면상에서 ..

구글 스택드라이버를 이용한 애플리케이션 로그 모니터링

구글 스택드라이버를 이용한 애플리케이션 로그 모니터링조대협 (http://bcho.tistory.com)스택드라이버 소개스택드라이버는 구글 클라우드에서 서비스로 제공되는 시스템 로그 및 모니터링 시스템이다. CPU,메모리사용량과 같은 하드웨어에 대한 정보에서 부터 웹서버나 OS와 같은 미들웨어 및 애플리케이션 로그를 수집, 검색 및 분석할 수 있으며, 여러 오픈 소스 (MongoDB, CouchDB, Redis - https://cloud.google.com/monitoring/agent/plugins/ )등에 대한 모니터링도 가능하다. 구글 클라우드 뿐 아니라, AWS에 대한 모니터링을 통합으로 지원하는 등, 상당히 많은 기능을 가지고 있다.이 글에서는 스택드라이버를 이용하여 애플리케이션 로그를 수집하..

t-SNE를 이용한 차원 감소 (Dimension reduction)

t-SNE를 이용한 차원 감소 조대협 (http://bcho.tistory.com) PCA 기반 차원 감소의 문제점앞의 글에서 차원 감소에 대한 개념과, 차원 감소 알고리즘의 하나인 PCA 알고리즘에 대해서 살펴보았다.PCA의 경우 선형 분석 방식으로 값을 사상하기 때문에 차원이 감소되면서 군집화 되어 있는 데이타들이 뭉게져서 제대로 구별할 수 없는 문제를 가지고 있다. 아래 그림을 보자 출처 https://www.youtube.com/watch?v=NEaUSP4YerM 이 그림은 2차원에서 1차원으로 PCA 분석을 이용하여 차원을 줄인 예인데, 2차원에서는 파란색과 붉은색이 구별이 되는데, 1차원으로 줄면서 1차원상의 위치가 유사한 바람에, 두 군집의 변별력이 없어져 버렸다.t-SNE이런 문제를 해결하..

빅데이타/머신러닝 2017.11.15 (3)

파이썬을 이용한 데이타 시각화 #1 - Matplotlib 기본 그래프 그리기

파이썬을 이용한 데이타 시각화 #1 - Matplotlib 기본 그래프 그리기 조대협 (http://bcho.tistory.com) 백앤드 엔지니어와 백그라운드를 가진 경험상, 머신러닝을 공부하면서 헷갈렸던 부분중 하나가, 데이타에 대한 시각화이다. 머신러닝은 모델을 구현하는 것도 중요하지만, 학습할 데이타를 선별하고, 만들어진 모델을 검증하기 위해서는 데이타를 이해하는 것이 필수적이고 이를 위해서는 데이타를 시각화 해서 보는 것이 매우 중요하다. 그동안 그래프를 그리는 것을 스택오버플로우등에서 찾아서 복붙을 해서 사용하다가 matplotlib를 정리해야겠다고 해서 메뉴얼을 봤지만 도무지 이해가 되지 않아서, 결국 온라인 강좌를 들어서 정리해봤는데, 역시 강좌를 들으니까는 훨씬 빠르게 이해가 된다.참고한..

빅데이타 2017.09.23 (3)

오토인코더를 이용한 비정상 거래 검출 모델의 구현 #3 - 데이타 전처리

오토 인코더를 이용한 신용카드 비정상 거래 검출 #3 학습 데이타 전처리 조대협 (http://bcho.tistory.com) 앞의 글들 (http://bcho.tistory.com/1198 http://bcho.tistory.com/1197 ) 에서 신용카드 이상 검출을 하기 위한 데이타에 대한 분석과, 오토 인코더에 대한 기본 원리 그리고 오토 인코더에 대한 샘플 코드를 살펴보았다. 이제 실제 모델을 만들기에 앞서 신용카드 거래 데이타를 학습에 적절하도록 전처리를 하도록한다.데이타양이 그리 크지 않기 때문에, 데이타 전처리는 파이썬 데이타 라이브러리인 pandas dataframe을 사용하였다. 여기서 사용된 전처리 코드는 https://github.com/bwcho75/tensorflowML/blo..

빅데이타/머신러닝 2017.09.20 (1)

딥러닝을 이용한 숫자 이미지 인식 #1/2-학습

딥러닝을 이용한 숫자 이미지 인식 #1/2 조대협 (http://bcho.tistory.com) 지난 글(http://bcho.tistory.com/1154 ) 을 통해서 소프트맥스 회귀를 통해서, 숫자를 인식하는 모델을 만들어서 학습 시켜 봤다.이번글에서는 소프트맥스보다 정확성이 높은 컨볼루셔널 네트워크를 이용해서 숫자 이미지를 인식하는 모델을 만들어 보겠다. 이 글의 목적은 CNN 자체의 설명이나, 수학적 이론에 대한 이해가 목적이 아니다. 최소한의 수학적 지식만 가지고, CNN 네트워크 모델을 텐서플로우로 구현하는데에 그 목적을 둔다. CNN을 이해하기 위해서는 Softmax 등의 함수를 이해하는게 좋기 때문에 가급적이면 http://bcho.tistory.com/1154 예제를 먼저 보고 이 문서..

빅데이타/머신러닝 2017.01.09 (7)

파이어베이스를 이용한 유니티 게임 로그 분석

파이어베이스를 이용한 유니티 게임 로그 분석 조대협 (http://bcho.tistory.com)모바일 로그 분석일반적으로 모바일 로그 분석은 클라우드 기반의 무료 솔루션을 이용하다가 자체 구축으로 가는 경우가 많다.클라우드 기반의 무료 로그 분석 솔루션으로는 구글 애널러틱스, 야후의 플러리, 트위터의 패브릭 그리고 구글의 파이어베이스 등이 있다.이런 무료 로그 분석 솔루션들을 사용이 매우 간편하고, 핵심 지표를 쉽게 뽑아 줄 수 있으며, 별도의 운영이 필요 없다는 장점을 가지고 있다.그러나 이런 클라우드 기반의 무료 솔루션의 경우에는 요약된 정보들만 볼 수 있고 또한 내가 원하는 지표를 마음대로 지정을 할 수 없기 때문에, 어느정도 서비스가 성장하고 팀의 여력이 되면 별도의 로그 수집 및 분석 솔루션을..

수학포기자를 위한 딥러닝-#3 텐서플로우로 선형회귀 학습을 구현해보자

수포자를 위한 딥러닝 #3 - 텐서플로우로 선형회귀 학습을 구현해보자 조대협 (http://bcho.tistory.com) 앞에서 살펴본 선형 회귀(Linear regression) 머신 러닝 모델을 실제 프로그래밍 코드를 만들어서 학습을 시켜보자. 여러가지 언어를 사용할 수 있지만, 이 글에서는 텐서플로우를 기반으로 설명한다. 텐서플로우 개발 환경 셋업텐서 플로우 개발 환경을 설정하는 방법은 여러가지가 있지만, 구글 클라우드의 데이타랩 (datalab)환경을 사용하기로 한다. 텐서플로우 환경을 설정하려면 파이썬 설치 및 연관된 수학 라이브러리를 설치해야 하는 등 설치가 까다롭기 때문에, 구글 클라우드에서 제공하는 파이썬 노트북 (Jupyter 노트북 : http://jupyter.org/ ) 이 패키징..

빅데이타/머신러닝 2016.10.05 (8)

수학포기자를 위한 딥러닝-#1 머신러닝과 딥러닝 개요

수포자를 위한 딥러닝#1 - 머신러닝의 개요조대협(http://bcho.tistory.com)들어가기에 앞서서 몇년전부터 빅데이타와 머신러닝이 유행하면서 이분야를 공부해야겠다고 생각을 하고 코세라의 Andrew.NG 교수님의 강의도 듣고, 통계학 책도 보고, 수학적인 지식이 부족해서 고등학교 수학 참고서도 봤지만, 도저히 답이 나오지 않는다. 머신 러닝에 사용되는 알고리즘은 복잡도가 높고 일반적인 수학 지식으로 이해조차 어려운데, 실제 운영 시스템에 적용할 수 있는 수준의 알고리즘은 석박사급의 전문가적인 지식이 아니면 쉽게 만들 수 없는 것으로 보였다. 예를 들어 인공지능망(뉴럴네트워크:Neural Network) 알고리즘에 대한 원리는 이해할 수 있지만, 실제로 서비스에 사용되는 알고르즘을 보니 보통 ..

빅데이타/머신러닝 2016.10.04 (5)