자세히보기

클라우드 107

구글의 IOT 솔루션

구글의 IOT 솔루션 조대협 (http://bcho.tistory.com) 오늘 샌프란시스코 구글 NEXT 행사에서 IOT 솔루션에 대한 소개가 있었는데, 내용이 괜찮아서 정리를 해놓는다. 구글의 특징은 안드로이드 플랫폼, 클라우드 , 분석 플랫폼, 개발자 에코 시스템 등 End to End 에 걸쳐서 상당히 다양한 포트폴리오를 가지고 있다는 것이 장점인데 이를 잘 녹여낸 아키텍쳐 구성이다.디바이스 OSIOT는 라즈베리파이와 같은 임베디드 디바이스를 사용하는 것이 일반적인데, 이런 임베디드 시스템 운용에 어려운 점중의 하나가 보안이다.장비에 따라서 보안적인 문제가 없는지 체크를 해야 하고, 주기적으로 기능 및 보안에 대한 업데이트를 해줘야 하는데, 구글의 Android IOT (https://develo..

딥러닝을 이용한 숫자 이미지 인식 #1/2-학습

딥러닝을 이용한 숫자 이미지 인식 #1/2 조대협 (http://bcho.tistory.com) 지난 글(http://bcho.tistory.com/1154 ) 을 통해서 소프트맥스 회귀를 통해서, 숫자를 인식하는 모델을 만들어서 학습 시켜 봤다.이번글에서는 소프트맥스보다 정확성이 높은 컨볼루셔널 네트워크를 이용해서 숫자 이미지를 인식하는 모델을 만들어 보겠다. 이 글의 목적은 CNN 자체의 설명이나, 수학적 이론에 대한 이해가 목적이 아니다. 최소한의 수학적 지식만 가지고, CNN 네트워크 모델을 텐서플로우로 구현하는데에 그 목적을 둔다. CNN을 이해하기 위해서는 Softmax 등의 함수를 이해하는게 좋기 때문에 가급적이면 http://bcho.tistory.com/1154 예제를 먼저 보고 이 문서..

구글 빅쿼리 사용시 count(distinct)의 값이 정확하지 않은 문제

구글 빅쿼리 사용시 count(distinct)의 값이 정확하지 않은 문제 조대협 (http://bcho.tistory.com) 빅쿼리에서 count(distinct) 문을 사용하면, 종종 값이 부 정확하게 나오는 경우가 있다.예를 들어서 아래의 두 쿼리는 같은 결과가 나와야 하는데, 아래 count(distinct id)를 쓴 쿼리는 다른 값을 리턴한다.select count(*)where id="mykey"from mytable select count(distinct id)where id="mykey"from mytable 빅쿼리에는 쿼리가 빅쿼리에 최적화된 SQL과 유사한 Legacy SQL 쿼리가 있고, ANSI SQL을 따르는 스탠다드 쿼리가 있다. Legacy SQL 쿼리의 경우 확인해보니, ..

Docker Kubernetes의 UI

Docker Kubernetes UI 조대협 (http://bcho.tistory.com) 오늘 도커 밋업에서 Kubernetes 발표가 있어서, 발표전에 데모를 준비하다 보니, 구글 클라우드의 Kubernetes 서비스인 GKE (Google Container Engine)에서 Kubernetes UI를 지원하는 것을 확인했다. Google Container Service (GKE) GKE는 구글 클라우드의 도커 클라우드 서비스이다. 도커 컨테이너를 관리해주는 서비스로는 Apache mesos, Docker Swarm 그리고 구글의 Kuberenetes 가 있는데, GKE는 이 Kuberentes 기반의 클라우드 컨테이너 서비스이다. 대부분의 이런 컨테이너 관리 서비스는 아직 개발중으로 운영에 적용하기..

파이어베이스를 이용한 유니티 게임 로그 분석

파이어베이스를 이용한 유니티 게임 로그 분석 조대협 (http://bcho.tistory.com)모바일 로그 분석일반적으로 모바일 로그 분석은 클라우드 기반의 무료 솔루션을 이용하다가 자체 구축으로 가는 경우가 많다.클라우드 기반의 무료 로그 분석 솔루션으로는 구글 애널러틱스, 야후의 플러리, 트위터의 패브릭 그리고 구글의 파이어베이스 등이 있다.이런 무료 로그 분석 솔루션들을 사용이 매우 간편하고, 핵심 지표를 쉽게 뽑아 줄 수 있으며, 별도의 운영이 필요 없다는 장점을 가지고 있다.그러나 이런 클라우드 기반의 무료 솔루션의 경우에는 요약된 정보들만 볼 수 있고 또한 내가 원하는 지표를 마음대로 지정을 할 수 없기 때문에, 어느정도 서비스가 성장하고 팀의 여력이 되면 별도의 로그 수집 및 분석 솔루션을..

수학포기자를 위한 딥러닝-#1 머신러닝과 딥러닝 개요

수포자를 위한 딥러닝#1 - 머신러닝의 개요조대협(http://bcho.tistory.com)들어가기에 앞서서 몇년전부터 빅데이타와 머신러닝이 유행하면서 이분야를 공부해야겠다고 생각을 하고 코세라의 Andrew.NG 교수님의 강의도 듣고, 통계학 책도 보고, 수학적인 지식이 부족해서 고등학교 수학 참고서도 봤지만, 도저히 답이 나오지 않는다. 머신 러닝에 사용되는 알고리즘은 복잡도가 높고 일반적인 수학 지식으로 이해조차 어려운데, 실제 운영 시스템에 적용할 수 있는 수준의 알고리즘은 석박사급의 전문가적인 지식이 아니면 쉽게 만들 수 없는 것으로 보였다. 예를 들어 인공지능망(뉴럴네트워크:Neural Network) 알고리즘에 대한 원리는 이해할 수 있지만, 실제로 서비스에 사용되는 알고르즘을 보니 보통 ..

파이어베이스 애널러틱스를 이용한 모바일 데이타 분석- #3 빅쿼리에 연동하여 모든 데이타를 분석하기

파이어베이스 애널러틱스를 이용한 모바일 데이타 분석#3 빅쿼리에 연동하여 모든 데이타를 분석하기 조대협 (http://bcho.tistory.com) 파이어베이스 애널러틱스의 대단한 기능중의 하나가, 모바일에서 올라온 모든 원본 로그를 빅쿼리에 저장하고, 이를 빅쿼리를 통해서 분석할 수 있는 기능이다. 대부분의 매니지드 서비스 형태의 모바일 애널리틱스 서비스는 서비스에서 제공하는 지표만, 서비스에서 제공하는 화면을 통해서만 볼 수 있기 때문에, 상세한 데이타 분석이 불가능하다. 파이어베이스의 경우에는 빅쿼리에 모든 원본 데이타를 저장함으로써 상세 분석을 가능하게 해준다. 아울러, 모바일 서비스 분석에 있어서, 상세 로그 분석을 위해서 로그 수집 및 분석 시스템을 별도로 만드는 경우가 많은데, 이 경우 모..

세번째 책이 나왔습니다.

빠르게 훑어보는 구글 클라우드 플랫폼 오늘 세번째 책이 나왔습니다. 이번에 출간된 책은 구글 클라우드에 대해서 간략한 사용 방법을 소개한 "빠르게 훑어보는 구글 클라우드 플랫폼" 이라는 책입니다.구글에 입사한지도 이제 3개월이 막 지났는데, 막상 사람들 이야기를 들어보니, 한글 자료가 없고, 기초적인 (SSH설정)에서 부터 막히는 분들이 많아서, 구글 한국 사용자 그룹분들과 함께 간략한 소개 서적을 만들었습니다. 한빛 미디어에서 보정 및 조판 작업을 도와주셨구요. (엔지니어 출신이신 이복연님이 꼼꼼하게 봐주신 덕분에 원고 품질이 많이 올라갔습니다.) 이책은 정보 공유 차원에서 무료 EBOOK 형태로 배포됩니다.http://www.hanbit.co.kr/realtime/books/book_view.html..

사는 이야기 2016.08.29

실시간 데이타 분석 플랫폼 Dataflow - #5 데이타 플로우 프로그래밍 모델

데이타 플로우 프로그래밍 모델의 이해 조대협 (http://bcho.tistory.com) 앞의 글에서 스트리밍 프로세스의 개념과, 데이타 플로우의 스트리밍 처리 개념에 대해서 알아보았다. 그렇다면 실제로 이를 데이타 플로우를 이용해서 구현을 하기 위해서는 어떤 컴포넌트와 프로그래밍 모델을 사용하는지에 대해서 알아보자. 구글 데이타 플로우 프로그래밍 모델은 앞에서 설명한 바와 같이, 전체 데이타 파이프라인을 정의하는 Pipeline, 데이타를 저장하는 PCollections, 데이타를 외부 저장소에서 부터 읽거나 쓰는 Pipeline I/O, 그리고, 입력 데이타를 가공해서 출력해주는 Transforms , 총 4가지 컴포넌트로 구성이 되어 있다. 이번 글에서는 그 중에서 데이타를 가공하는 Transfo..

실시간 데이타 분석 플랫폼 Dataflow - #4 개발환경 설정하기

데이타 플로우 개발환경 설정하기 조대협 (http://bcho.tistory.com) 데이타 플로우에 대한 이해가 끝났으면 이제 직접 코딩을 해보자. 데이타 플로우에 대한 개념등은 http://bcho.tistory.com/search/dataflow 를 참고하기 바란다.데이타 플로우에서 지원하는 프로그래밍 언어는 자바와 파이썬이다. 파이썬은 아직 알파버전으로, 이 글에서는 자바를 이용해서 설명한다. 자바를 이용한 개발환경 설정은 이클립스 개발환경과 maven을 이용한 개발 환경 두가지가 있는데, 여기서는 조금 더 손 쉬운 이클립스 환경을 기준으로 설명한다.메이븐 기반의 개발 환경 설정은 https://cloud.google.com/dataflow/docs/quickstarts/quickstart-jav..