Machine Learning 48

수학포기자를 위한 딥러닝-#2 머신러닝 개념 이해

수포자를 위한 딥러닝 #2 - 선형회귀분석을 통한 머신러닝의 기본 개념 이해 조대협 (http://bcho.tistory.com) Linear Regression을 통한 머신 러닝의 개념 이해거리에 따른 택시 요금 문제머신러닝이란 무엇일까? 개념 이해를 돕기 위해서 선형 회귀 (Linear Regression)이라는 머신러닝 모델을 보자. 먼저 선형 회귀 (Linear regression)이 무엇인지 부터 이해를 해야 하는데, 쉽게 설명하자면 결과값 (output value)이 있고 그 결과값을 결정할 것이라고 추정되는 입력값 (input value)과 결과 값의 연관관계를 찾는 것이고 이를 선형 관계를 통해 찾는 방법이 선형 회귀 (Linear regression)이다. 예를 들어서 설명해보자, 택시 ..

빅데이타/머신러닝 2016.10.04 (8)

수학포기자를 위한 딥러닝-#1 머신러닝과 딥러닝 개요

수포자를 위한 딥러닝#1 - 머신러닝의 개요조대협(http://bcho.tistory.com)들어가기에 앞서서 몇년전부터 빅데이타와 머신러닝이 유행하면서 이분야를 공부해야겠다고 생각을 하고 코세라의 Andrew.NG 교수님의 강의도 듣고, 통계학 책도 보고, 수학적인 지식이 부족해서 고등학교 수학 참고서도 봤지만, 도저히 답이 나오지 않는다. 머신 러닝에 사용되는 알고리즘은 복잡도가 높고 일반적인 수학 지식으로 이해조차 어려운데, 실제 운영 시스템에 적용할 수 있는 수준의 알고리즘은 석박사급의 전문가적인 지식이 아니면 쉽게 만들 수 없는 것으로 보였다. 예를 들어 인공지능망(뉴럴네트워크:Neural Network) 알고리즘에 대한 원리는 이해할 수 있지만, 실제로 서비스에 사용되는 알고르즘을 보니 보통 ..

빅데이타/머신러닝 2016.10.04 (5)

머신러닝 프레임웍에 대한 간단 메모

머신 러닝 프레임웍에 대한 간단 정리 머신 러닝을 다시 시작해서 보다 보니 어떤 언어로 개발을 해야 하는지 의문이 들어서 페이스북 Server Side architecture 그룹에 올렸더니, 좋은 정보가 많이 들어왔다.Matalab이나 R과 같은 언어는 수학 라이브러리가 풍부해서, 주로 모델을 만들어서 시뮬레이션 하는데 많이 사용되고Python이 수학 라이브러리가 풍부해서 그런지 ML 부분에서 많이 사용되는데, Production 까지 올라가는 경우는 잘 못본거 같고, 주로 Python으로 모델을 프로토타이핑 하는 수준으로 사용되는 것으로 보인다. 아직까지 자세히는 보지 못했지만, 자바의 Spark이나 Mahout과 같은 분산 환경 지원성이 약하고, 언어의 특성상 다른 언어보다 성능이 떨어져서, 실제 ..

빅데이타/머신러닝 2015.02.11 (1)

Numpy Install

NumPy 설치 하기 파이썬으로 머신 러닝을 구현하기 위해서는 수학 라이브러리인 numpy가 필요하다 설치는 http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 에서 *.whl 파일을 다운로드 받은후pip install numpy-1.9.2rc1+mkl-cp27-none-win_amd64.whl (64 비트 기준)으로 설치 하면 된다. 설치후 확인을 위해서는 위와 같이 from numpy import * 를 한후에, random.rand(4,4)가 제대로 실행되는지 확인하자 참고머신러닝이나 빅데이타 분석을 위해서는 NumPy 뿐만 아니라 matplot등 다양한 수학 모듈을 깔아야 하는데, 방화벽등이 있거나 하면 깔기가 매우 까다롭다. (의존성 관계도 복잡하고). 그래서..

빅데이타/머신러닝 2015.02.10 (1)

2015년 개발 트랜드-조대협

2015년 개발 트랜드 조대협입니다. 2015년 개발 트렌드에 대해서 간략하게 정리해봅니다. 여러 기술들을 보고 정리한 개인적인 생각이며, 앞으로 저도 집중하려고 하는 분야이기도 합니다. 애자일 및 협업 문화애자일 과 수평 조직 기반의 개발 문화에 대한 현상은 올해에도 쭈욱 지속될 듯 합니다. 기존의 워터폴이나 경직된 조직 문화와 방법론으로는 현대의 빠른 서비스 개발을 따라갈 수 가 없져애자일은 워낙 오래전 부터 언급되고 나온거라서 별도로 언급을 하지 않겠습니다만, 왜 이 부분을 2015년의 트랜드로 잡았느냐 하면, 국내 기업의 경우 애자일 프로세스만을 도입하는 것이 아니라, 조직의 구조나 문화 자체를 애자일 사상으로 옮겨가는 경우가 많이 보이기 때문입니다. 기존에 무늬만 애자일이었다면, 작년부터 올해까..

IT 이야기/트렌드 2015.01.12 (2)

맨땅에 해딩 머신러닝 #1-기본 개념 잡기

맨땅에 해딩 머신러닝 #1 어떻게 강의도 보고 이야기를 듣다 보니, 빅데이타 분석등에서 중요한 것은 데이타 저장/통계뿐만 아니라 데이타 분석을 기반으로 예측등과 같은 의미를 찾아내는 것이 중요하다는 것을 알게 되었는데, 후배가 DEVIEW 컨퍼런스에서 딥러닝 강의등을 듣고 대략적인 원리를 듣고 감명 받은 소감을 이야기 해줘서 관심을 가지고 있던 중, 아프리카 TV의 추천 시스템 등의 강의를 접하게 되었습니다.모든게 기본적으로 머신러닝이라는 것을 기본으로하고 있었는데, 이 분야를 공부하려고 봤더니, 수학(선형대수), 통계학 그리고 빅데이타 분석 시스템, 대용량 분산 처리 시스템등 여러가지 학문이 엮어 있더군요.지금까지 기술 흐름을 봤을때, 이 부분이 중요한 부분이 될것 같기도 해서 막상 공부를 시작하려고 ..

빅데이타/머신러닝 2014.10.30 (1)

머신러닝 관련 온라인 강좌 사이트

코넬 대학 강의 http://www.cs.cornell.edu/courses/cs4780/2013fa/스탠포드 Cousera https://www.coursera.org/course/ml머신 러닝에 대해서 잘 정리해놓은 자료 http://sanghyukchun.github.io/ 코세라 앤드류교수님 강의를 정리해놓은 노트가 있어서 같이 보면 좋음Naive Bayes classification 알고리즘에 대한 하호진님의 글 http://www.mimul.com/pebble/default/2012/04/03/1333431077222.html오픈소스 matlab Octave : https://www.gnu.org/software/octave/Octave 기본 사용법 : http://apmath.kku.ac.k..

빅데이타/머신러닝 2014.10.14 (4)