Machine Learning 48

Tensorflow Object Detection API를 이용한 물체 인식 #1-설치와 사용하기

Tensorflow Object Detection API 조대협 ( http://bcho.tistory.com) Tensorflow Object Detection API는, Tensorflow 를 이용하여 이미지를 인식할 수 있도록 개발된 모델로, 라이브러리 형태로 제공되며, 각기 다른 정확도와 속도를 가지고 있는 5개의 모델을 제공한다. 머신러닝이나 텐서플로우에 대한 개념이 거의 없더라도 라이브러리 형태로 손쉽게 사용할 수 있으며, 직접 사용자 데이타를 업로드해서 학습을 하여, 내 시나리오에 맞는 Object Detection System을 손쉽게 만들 수 있다. Object Detection API를 설치하기 위해서는 텐서플로우 1.x 와 파이썬 2.7x 버전이 사전 설치되어 있어야 한다. 이 글에서..

빅데이타/머신러닝 2017.08.16 (1)

텐서플로우 트레이닝 데이타 포맷인 *.tfrecord 파일 읽고 쓰기

TFRecord 조대협 (http://bcho.tistory.com) 텐서플로우를 접하게 다 보면 필히 만나는 부분이 텐서플로우 학습 데이타 포맷인 TFRecord라는 파일 포맷이다. 마침 얼굴 인식 모델을 이번에는 텐서플로우에서 미리 개발되어 제공되는 물체 인식 API인 Tensorflow Object Detection API를 사용해서 얼굴을 학습시켜보려고 하니 데이타 포맷을 TFRecord 포맷으로 변경해야 한다. 그래서, TFRecord 파일을 만들어보고, 테스트를 위해서 데이타 내용도 직접 읽는 코드를 작성해보았다. (전체 코드는 https://github.com/bwcho75/objectdetection/tree/master/tfrecord 에 다.)TFRecord 파일 포맷이란TFRecord..

빅데이타/머신러닝 2017.08.10 (2)

Wide and deep network 모델 활용하기

Wide & deep model 알아보기 조대협 (http://bcho.tistory.com)Wide & deep model 이글에 설명된 예제는 https://www.tensorflow.org/tutorials/wide_and_deep 문서에 있는 코드를 활용하였습니다. 음식 검색 키워드와 검색 결과를 학습 시킨 후에 이 결과를 기반으로 사용자에게 음식을 추천해주는 서비스가 있다고 하자.Monetization and Wide model (기억과 와이드 모델)로지스틱 회귀 모델을 이용하여 추천 알고리즘을 작성하여 학습을 시킨 경우, 학습 데이타를 기반으로 상세화된 예측 결과를 리턴해준다. 예를 들어 검색 키워드 (프라이드 치킨)으로 검색한 사용자가 (치킨과 와플)을 주문한 기록이 많았다면, 이 모델은 (..

얼굴 인식 모델을 만들어보자 #3 - 학습된 모델로 예측하기

얼굴 인식 모델을 만들어보자 #3 - 학습된 모델로 예측하기 조대협 (http://bcho.tistory.com) 앞글에 걸쳐서 얼굴 인식을 위한 데이타를 수집 및 정재하고, 이를 기반으로 얼굴 인식 모델을 학습 시켰다. http://bcho.tistory.com/1178 얼굴인식 모델 개발 및 학습 시키기http://bcho.tistory.com/1176 학습 데이타 준비하고 이번글에서는 학습이 된 데이타를 가지고, 사진을 넣어서 실제로 인식하는 코드를 만들어보자전체 소스 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb 와 같다.모델 로딩 하기 모델 학습에 ..

빅데이타/머신러닝 2017.06.19 (2)

연예인 얼굴 인식 모델을 만들어보자 - #2. CNN 모델을 만들고 학습시켜 보자

연예인 얼굴 인식 모델을 만들어보자 #2 CNN 모델을 만들고 학습 시켜보기 조대협 (http://bcho.tistroy.com)선행 학습 자료 이 글은 딥러닝 컨볼루셔널 네트워크 (이하 CNN)을 이용하여 사람의 얼굴을 인식하는 모델을 만드는 튜토리얼이다. 이 글을 이해하기 위해서는 머신러닝과 컨볼루셔널 네트워크등에 대한 사전 지식이 필요한데, 사전 지식이 부족한 사람은 아래 글을 먼저 읽어보기를 추천한다. 머신러닝의 개요 http://bcho.tistory.com/1140 머신러닝의 기본 원리는 http://bcho.tistory.com/1139 이산 분류의 원리에 대해서는 http://bcho.tistory.com/1142 인공 신경망에 대한 개념은 http://bcho.tistory.com/114..

빅데이타/머신러닝 2017.06.15 (15)

머신러닝 시스템 프로세스와 아키텍쳐

Machine Learning Pipeline 조대협 (http://bcho.tistory.com)대부분 모델 개발과 알고리즘에 집중머신러닝을 공부하고 나서는 주로 통계학이나, 모델 자체에 많은 공부를 하는 노력을 드렸었다. 선형대수나 미적분 그리고 방정식에 까지 기본으로 돌아가려고 노력을 했었고, 그 중간에 많은 한계에도 부딪혔지만, 김성훈 교수님의 모두를 위한 딥러닝 강의를 접하고 나서, 수학적인 지식도 중요하지만 수학적인 깊은 지식이 없어도 모델 자체를 이해하고 근래에 발전된 머신러닝 개발 프레임웍을 이용하면 모델 개발이 가능하다는 것을 깨달았다. 계속해서 모델을 공부하고, 머신러닝을 공부하는 분들을 관심있게 지켜보고 실제 머신러닝을 사용하는 업무들을 살펴보니 재미있는 점이 모두 모델 자체 개발에만..

빅데이타/머신러닝 2017.06.10 (7)

연예인 얼굴 인식 모델을 만들어보자 - #1. 학습 데이타 준비하기

연예인 얼굴 인식 서비스를 만들어보자 #1 - 데이타 준비하기 CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다. 이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face ) 얼굴 데이타를 구할 수 있는곳먼저 얼굴 인식 모델을 만들려면, 학습을 시킬 충분한 데이타가 있어야 한다. 사람 얼..

빅데이타/머신러닝 2017.05.16 (6)

머신러닝 모델 개발 삽질기

머신러닝 모델 개발 삽질 경험기 조대협 (http://bcho.tistory.com) 딥러닝을 공부하고 CNN 모델을 기반으로 무언가를 만들어보겠다는 생각에, 해외 유명 연예인 얼굴 사진을 가져다가 분류하는 얼굴 인식 모델을 만들어 보기로 하였다.아직도 진행중이지만, 많은 시행 착오를 겪었는데 같은 시행 착오를 겪지 않고 경험을 공유하기 위해서 겪었던 시행 착오들을 정리해 본다.학습 데이타 확보 및 분류먼저 학습용 데이타를 수집 하는 것이 가장 문제 였다. 인터넷에서 사진을 모아서 학습 데이타로 사용해도 되겠지만, 아무래도 저작권 및 초상권 문제가 있고, 일일이 사진을 하나씩 받아서 수집하거나 또는 별도의 수집기를 만드는 것도 부담이 되었다.그래서 찾은 것이 pubfig라는 셀럽 얼굴 데이타인데 http..

머신러닝 라벨 데이타 타입에 대해서

머신러닝 라벨 데이타 타입에 대해서 조대협 (http://bcho.tistory.com) 샘플로 만들고 있는 얼굴 인식 모델에서, 가독성을 높이기 위해서 학습데이타 라벨을 문자열을 썼다.예를 들어서 이미지가 있으면 그에 대한 라벨을 안젤리나졸리 와 같은 문자열을 사용했는데, CNN의 가장 마지막 레이어에서 Softmax 적용하고 나오는 결과가 숫자이기 때문에 문자열을 사용할 수 없다는 것은 알았지만, 그래도 가독성을 높이고, 나중에 문자열을 --> 숫자로 (파이썬 리스트를 사용할 요량으로) 코딩했었는데, 텐서플로우 코딩에서는 텐서 문자열을 가지고, 파이썬 리스트에서 index를 얻어올 수 없다. 예를 들어 label_index = ["안젤리아졸리","브레드 피트"] 라는 파이쎤 리스트형이 있을때 labe..

텐서플로우-배치 처리에 대해서 이해하자

텐서플로우 배치 처리 조대협 (http://bcho.tistory.com) 텐서플로우에서 파일에서 데이타를 읽은 후에, 배치처리로 placeholder에서 읽는 예제를 설명한다.텐서의 shape 의 차원과 세션의 실행 시점등이 헷갈려서 시행착오가 많았기 때문에 글로 정리해놓는다.큐와 파일처리에 대한 기본적인 내용은 아래글http://bcho.tistory.com/1163http://bcho.tistory.com/1165를 참고하기 바란다.데이타 포맷읽어 드릴 데이타 포맷은 다음과 같다. 비행기 노선 정보에 대한 데이타로 “년도,항공사 코드, 편명"을 기록한 CSV 파일이다.2014,VX,1212014,WN,18732014,WN,2787배치 처리 코드이 데이타를 텐서 플로우에서 읽어서 배치로 place h..

빅데이타/머신러닝 2017.04.03 (2)