sklearn 5

NMF 알고리즘을 이용한 유사 문서 검색과 구현(2/2)

NMF 알고리즘을 이용한 유사 문서 검색과 구현(2/2)sklearn을 이용한 구현 조대협 (http://bcho.tistory.com) http://bcho.tistory.com/1216 를 통하여 tf-idf를 이용하여 문서를 벡터화 하고, nmf를 이용하여 문서의 특성을 추출한 다음, 코싸인 유사도를 이용하여 유사 문서를 검색하는 알고리즘에 대해서 알아보았다. 이번글에서는 이 알고리즘을 직접 sklearn을 이용해서 구현해보도록 하자. sklearn은 이용하면 분산 학습을 이용한 대규모 데이타 처리는 불가능하지만, 작은 수의 문서나 모델에는 사용이 가능하다. 무엇보다 sklearn의 경우 대부분의 모델을 라이브러리화 해놓았기 때문에, 복잡한 구현이 없이 쉽게 사용이 가능하다. 전체 소스 코드는 ht..

빅데이타/머신러닝 2017.12.29 (3)

t-SNE를 이용한 차원 감소 (Dimension reduction)

t-SNE를 이용한 차원 감소 조대협 (http://bcho.tistory.com) PCA 기반 차원 감소의 문제점앞의 글에서 차원 감소에 대한 개념과, 차원 감소 알고리즘의 하나인 PCA 알고리즘에 대해서 살펴보았다.PCA의 경우 선형 분석 방식으로 값을 사상하기 때문에 차원이 감소되면서 군집화 되어 있는 데이타들이 뭉게져서 제대로 구별할 수 없는 문제를 가지고 있다. 아래 그림을 보자 출처 https://www.youtube.com/watch?v=NEaUSP4YerM 이 그림은 2차원에서 1차원으로 PCA 분석을 이용하여 차원을 줄인 예인데, 2차원에서는 파란색과 붉은색이 구별이 되는데, 1차원으로 줄면서 1차원상의 위치가 유사한 바람에, 두 군집의 변별력이 없어져 버렸다.t-SNE이런 문제를 해결하..

빅데이타/머신러닝 2017.11.15 (3)

클러스터링 #3 - DBSCAN (밀도 기반 클러스터링)

DBSCAN (밀도 기반 클러스터링) 조대협(http://bcho.tistory.com)기본 개념이번에는 클러스터링 알고리즘중 밀도 방식의 클러스터링을 사용하는 DBSCAN(Density-based spatial clustering of applications with noise) 에 대해서 알아보도록 한다.앞에서 설명한 K Means나 Hierarchical 클러스터링의 경우 군집간의 거리를 이용하여 클러스터링을 하는 방법인데, 밀도 기반의 클러스터링은 점이 세밀하게 몰려 있어서 밀도가 높은 부분을 클러스터링 하는 방식이다. 쉽게 설명하면, 어느점을 기준으로 반경 x내에 점이 n개 이상 있으면 하나의 군집으로 인식하는 방식이다. 그러면 조금 더 구체적인 개념과 용어를 이해해보자먼저 점 p가 있다고 할때..

빅데이타/머신러닝 2017.10.13 (2)

클러스터링 #2 - Hierarchical clustering (계층 분석)

Hierarchical clustering을 이용한 데이타 군집화 조대협 (http://bcho.tistory.com) Hierarchical clustering (한글 : 계층적 군집 분석) 은 비슷한 군집끼리 묶어 가면서 최종 적으로는 하나의 케이스가 될때까지 군집을 묶는 클러스터링 알고리즘이다. 군집간의 거리를 기반으로 클러스터링을 하는 알고리즘이며, K Means와는 다르게 군집의 수를 미리 정해주지 않아도 된다. 참고로 이 글에서 사용된 예제 코드는 https://github.com/bwcho75/dataanalyticsandML/blob/master/Clustering/3.%20Hierarchical%20clustering-IRIS%204%20feature.ipynb 에 저장되어 있다. 예를 ..

빅데이타/머신러닝 2017.10.11 (2)

클러스터링 #1 - KMeans

클러스터링과 KMeans를 이용한 데이타의 군집화조대협 (http://bcho.tistory.com)클러스터링 문제클러스터링은 특성이 비슷한 데이타 끼리 묶어주는 머신러닝 기법이다. 비슷한 뉴스나 사용 패턴이 유사한 사용자를 묶어 주는것과 같은 패턴 인지나, 데이타 압축등에 널리 사용되는 학습 방법이다.클러스터링은 라벨링 되어 있지 않은 데이타를 묶는 경우가 일반적이기 때문에 비지도학습 (Unsupervised learning) 학습 방법이 사용된다. 클러스터링 알고리즘은 KMeans, DBSCAN, Hierarchical clustering, Spectral Clustering 등 여러가지 기법이 있으며, 알고르즘의 특성에 따라 속도나 클러스터링 성능에 차이가 있기 때문에, 데이타의 모양에 따라서 적절..

빅데이타/머신러닝 2017.10.09 (1)