sample 4

딥러닝을 이용한 숫자 이미지 인식 #2/2-예측

딥러닝을 이용한 숫자 이미지 인식 #2/2 앞서 MNIST 데이타를 이용한 필기체 숫자를 인식하는 모델을 컨볼루셔널 네트워크 (CNN)을 이용하여 만들었다. 이번에는 이 모델을 이용해서 필기체 숫자 이미지를 인식하는 코드를 만들어 보자 조금 더 테스트를 쉽게 하기 위해서, 파이썬 주피터 노트북내에서 HTML 을 이용하여 마우스로 숫자를 그릴 수 있도록 하고, 그려진 이미지를 어떤 숫자인지 인식하도록 만들어 보겠다. 모델 로딩 먼저 앞의 예제에서 학습을한 모델을 로딩해보도록 하자.이 코드는 주피터 노트북에서 작성할때, 모델을 학습 시키는 코드 (http://bcho.tistory.com/1156) 와 별도의 새노트북에서 구현을 하도록 한다. 코드import tensorflow as tfimport nump..

파이어베이스 애널러틱스를 이용한 모바일 데이타 분석- #3 빅쿼리에 연동하여 모든 데이타를 분석하기

파이어베이스 애널러틱스를 이용한 모바일 데이타 분석#3 빅쿼리에 연동하여 모든 데이타를 분석하기 조대협 (http://bcho.tistory.com) 파이어베이스 애널러틱스의 대단한 기능중의 하나가, 모바일에서 올라온 모든 원본 로그를 빅쿼리에 저장하고, 이를 빅쿼리를 통해서 분석할 수 있는 기능이다. 대부분의 매니지드 서비스 형태의 모바일 애널리틱스 서비스는 서비스에서 제공하는 지표만, 서비스에서 제공하는 화면을 통해서만 볼 수 있기 때문에, 상세한 데이타 분석이 불가능하다. 파이어베이스의 경우에는 빅쿼리에 모든 원본 데이타를 저장함으로써 상세 분석을 가능하게 해준다. 아울러, 모바일 서비스 분석에 있어서, 상세 로그 분석을 위해서 로그 수집 및 분석 시스템을 별도로 만드는 경우가 많은데, 이 경우 모..

빠르게 훝어 보는 node.js - redis 사용하기

node.js에서 Redis 사용하기 조대협 (http://bcho.tistory.com) Redis는 NoSQL 데이타 베이스의 한 종류로, mongoDB 처럼 전체 데이타를 영구히 저장하기 보다는 캐쉬처럼 휘발성이나 임시성 데이타를 저장하는데 많이 사용된다. 디스크에 데이타를 주기적으로 저장하기는 하지만, 이 기능은 백업이나 복구용으로 주로 사용할뿐 데이타는 모두 메모리에 저장되기 때문에, 빠른 접근 속도를 자랑한다. 이 이유 때문에 근래에는 memcached 다음의 캐쉬 솔루션으로 널리 사용되고 있는데, 간단하게 키-밸류 (Key-Value)형태의 데이타 저장뿐만 아니라, 다양한 데이타 타입을 지원하기 때문에 응용도가 높고, node.js 호환 모듈이 잘 지원되서 node.js와 궁합이 좋다. 여러..

빠르게 훝어 보는 node.js - monk 모듈을 이용한 mongoDB 연결

monk 모듈을 이용한 mongoDB 연결 조대협 (http://bcho.tistory.com) mongoDB 기반의 개발을 하기 위해서 mongoDB를 설치한다. https://www.mongodb.org/ 에서 OS에 맞는 설치 파일을 다운로드 받아서 설치한다.설치가 된 디렉토리에 들어가서 설치디렉토리 아래 ‘./data’ 라는 디렉토리를 만든다. 이 디렉토리는 mongoDB의 데이타가 저장될 디렉토리이다. mongoDB를 구동해보자. % ./bin/mongod --dbpath ./data Figure 1 mongoDB 구동화면 구동이 끝났으면 mongoDB에 접속할 클라이언트가 필요하다. DB에 접속해서 데이타를 보고 쿼리를 수행할 수 있는 클라이언트가 필요한데, 여러 도구가 있지만 많이 사용되는 ..