ReLu 3

딥러닝을 이용한 숫자 이미지 인식 #1/2-학습

딥러닝을 이용한 숫자 이미지 인식 #1/2 조대협 (http://bcho.tistory.com) 지난 글(http://bcho.tistory.com/1154 ) 을 통해서 소프트맥스 회귀를 통해서, 숫자를 인식하는 모델을 만들어서 학습 시켜 봤다.이번글에서는 소프트맥스보다 정확성이 높은 컨볼루셔널 네트워크를 이용해서 숫자 이미지를 인식하는 모델을 만들어 보겠다. 이 글의 목적은 CNN 자체의 설명이나, 수학적 이론에 대한 이해가 목적이 아니다. 최소한의 수학적 지식만 가지고, CNN 네트워크 모델을 텐서플로우로 구현하는데에 그 목적을 둔다. CNN을 이해하기 위해서는 Softmax 등의 함수를 이해하는게 좋기 때문에 가급적이면 http://bcho.tistory.com/1154 예제를 먼저 보고 이 문서..

딥러닝 - 초보자를 위한 컨볼루셔널 네트워크를 이용한 이미지 인식의 이해

딥러닝 - 컨볼루셔널 네트워크를 이용한 이미지 인식의 개념 조대협 (http://bcho.tistory.com) 이번 글에서는 딥러닝 중에서 이미지 인식에 많이 사용되는 컨볼루셔널 뉴럴 네트워크 (Convolutional neural network) 이하 CNN에 대해서 알아보도록 하자. 이 글을 읽기에 앞서서 머신러닝에 대한 기본 개념이 없는 경우는 다음 글들을 참고하기 바란다. 머신러닝의 개요 http://bcho.tistory.com/1140머신러닝의 기본 원리는 http://bcho.tistory.com/1139 이산 분류의 원리에 대해서는 http://bcho.tistory.com/1142인공 신경망에 대한 개념은 http://bcho.tistory.com/1147 CNN은 전통적인 뉴럴 네트워..

딥러닝의 개념과 유례

딥러닝의 역사와 기본 개념조대협 (http://bcho.tistory.com)인경 신경망 알고리즘의 기본 개념 알파고나 머신러닝에서 많이 언급되는 알고리즘은 단연 딥러닝이다.이 딥러닝은 머신러닝의 하나의 종류로 인공 신경망 알고리즘의 새로운 이름이다. 인공 신경망은 사람의 두뇌가 여러개의 뉴론으로 연결되서 복잡한 연산을 수행한다는데서 영감을 받아서, 머신러닝의 연산을 여러개의 간단한 노드를 뉴론 처럼 상호 연결해서 복잡한 연산을 하겠다는 아이디어이다. 이 뉴런의 구조를 조금 더 단순하게 표현해보면 다음과 같은 모양이 된다. 뉴런은 돌기를 통해서 여러 신경 자극 (예를 들어 피부에서 촉각)을 입력 받고, 이를 세포체가 인지하여 신호로 변환해준다. 즉 신경 자극을 입력 받아서 신호라는 결과로 변환해주는 과정..