블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

로그 시스템 #3 - JSON 로그에 필드 추가하기

조대협 (http://bcho.tistory.com)

JSON 로그에 필드 추가

앞에 예제에서 로그를 Json 포맷으로 출력하였다. 그런데, 실제로 출력된 로그 메세지는 log.info(“문자열") 로 출력한 문자열 하나만 json log의 message 필드로 출력된것을 확인 할 수 있다.

그렇지만, 단순한 디버깅 용도의 로그가 아니라 데이터를 수집하는 용도등의 로깅의 message라는 하나의 필드만으로는 부족하다. 여러개의 필드를 추가하고자 할때는 어떻게 할까? Json Object를 log.info(jsonObject) 식으로 데이터 객체를 넘기면 좋겠지만 불행하게도 slf4j에서 logging에 남길 수 있는 인자는 String  타입만을 지원하고, 데이터 객체를 (json 객체나, Map 과 같은 데이타형) 넘길 수 가 없다.

slf4j + logback

slf4j + logback 의 경우에는 앞에서 언급한것과 같이 로그에 객체를 넘길 수 없고 문자열만 넘길 수 밖에 없기 때문에, json 로그에 여러개의 필드를 넘겨서 출력할 수 가 없다. 아래는 Map 객체를 만든 후에, Jackson json 라이브러리를 이용하여, Json 문자열로 변경하여 slf4j로 로깅한 코드이다.

package com.terry.logging.jsonlog;


import java.util.Map;

import java.util.TreeMap;


import org.slf4j.Logger;

import org.slf4j.LoggerFactory;


import com.fasterxml.jackson.core.JsonProcessingException;

import com.fasterxml.jackson.databind.ObjectMapper;


public class Slf4j

{

private static Logger log = LoggerFactory.getLogger(Slf4j.class);

   public static void main( String[] args ) throws JsonProcessingException

   {

       Map<String,String> map = new TreeMap();

    map.put("name", "terry");

    map.put("email","terry@mycompany.com");

    String msg = new ObjectMapper().writeValueAsString(map);

    System.out.println("MSG:"+msg);

    log.info(msg);

   }

}

실행을 하면 message 엘리먼트 안에 json 문자열로 출력이 되는 것이 아니라 “ 등을 escape 처리하여 json 문자열이 아닌 형태로 출력이 된다.

{

 "thread" : "main",

 "level" : "INFO",

 "loggerName" : "com.terry.logging.jsonlog.Slf4j",

 "message" : "{\"email\":\"terry@mycompany.com\",\"name\":\"terry\"}",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1553182988,

   "nanoOfSecond" : 747493000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

}


그래서 다른 방법을 사용해야 하는데, 로그를 남길때 문자열로 여러 필드를 넘기고 이를 로그로 출력할때 이를 파싱해서 json 형태로 출력하는 방법이 있다.

log.info("event:order,name:terry,address:terrycho@google.com");

와 같이 key:value, key:value, ..  식으로 로그를 남기고, Custom Layout에서 이를 파싱해서 json 으로

{

 “key”:”value”,

 “key”:”value”,

 “key”:”value”

}

형태로 출력하도록 하면 된다. 이렇게 하기 위해서는 log message로 들어온 문자열을 파싱해서 json으로 변환해서 출력할 용도로 Layout을 customization 하는 코드는 다음과 같다.


{package com.terry.logging.logbackCustom;


import ch.qos.logback.classic.spi.ILoggingEvent;

import ch.qos.logback.contrib.json.classic.JsonLayout;


import java.util.Map;

import java.util.StringTokenizer;

import java.util.TreeMap;


import com.fasterxml.jackson.core.JsonProcessingException;

import com.fasterxml.jackson.databind.ObjectMapper;


public class CustomLayout extends JsonLayout {

   @Override

   protected void addCustomDataToJsonMap(Map<String, Object> map, ILoggingEvent event) {

       long timestampMillis = event.getTimeStamp();

       map.put("timestampSeconds", timestampMillis / 1000);

       map.put("timestampNanos", (timestampMillis % 1000) * 1000000);

       map.put("severity", String.valueOf(event.getLevel()));

       map.put("original_message", event.getMessage());

       map.remove("message");

       

       StringTokenizer st = new StringTokenizer(event.getMessage(),",");

       Map<String,String> json = new TreeMap();


       while(st.hasMoreTokens()) {

       String elmStr = st.nextToken();

       StringTokenizer elmSt = new StringTokenizer(elmStr,":");

       String key = elmSt.nextToken();

       String value = elmSt.nextToken();

       json.put(key, value);

       }

       

    String msg;

try {

msg = new ObjectMapper().writeValueAsString(json);

} catch (JsonProcessingException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

    map.put("jsonpayload", json);

   

   }

}


먼저 JsonLayout을 상속받아서 CustomLayout 이라는 클래스를 만든다. 그리고 addCustomDataToJsonMap 이라는 메서드를 오버라이딩한다. 이 메서드는 로그로 출력할 메시지와 각종 메타 정보(쓰레드명, 시간등)을 로그로 최종 출력하기 전에, Map객체에 그 내용을 저장하여 넘기는 메서드이다.

이 메서드 안에서 앞에서 로그로 받은 문자열을 파싱해서 json 형태로 만든다. 아래 코드가 파싱을 해서 파싱된 내용을 Map에 key/value 형태로 저장하는 코드이고


       StringTokenizer st = new StringTokenizer(event.getMessage(),",");

       Map<String,String> json = new TreeMap();


       while(st.hasMoreTokens()) {

       String elmStr = st.nextToken();

       StringTokenizer elmSt = new StringTokenizer(elmStr,":");

       String key = elmSt.nextToken();

       String value = elmSt.nextToken();

       json.put(key, value);

       }

다음 코드는 이 Map을 json으로 변환한 후, 이를 다시 String으로 변환하는 코드이다.


msg = new ObjectMapper().writeValueAsString(json);


그 후에 이 json 문자열을 jsonpayload 라는 json element 이름으로 해서, json 내용을 json으로 집어 넣는 부분이다.


map.put("jsonpayload", json);

   

그리고, 이 CustomLayout을 사용하기 위해서 src/main/logback.xml에서 아래와 같이 CustomLayout 클래스의 경로를 지정한다.


<?xml version="1.0" encoding="UTF-8"?>

<configuration>

   <appender name="CONSOLE-JSON" class="ch.qos.logback.core.ConsoleAppender">

       <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">

           <layout class="com.terry.logging.logbackCustom.CustomLayout">

               <jsonFormatter class="ch.qos.logback.contrib.jackson.JacksonJsonFormatter">

                   <prettyPrint>true</prettyPrint>

               </jsonFormatter>

               <timestampFormat>yyyy-MM-dd'T'HH:mm:ss.SSSXXX</timestampFormat>

               <appendLineSeparator>true</appendLineSeparator>

           </layout>

       </encoder>

   </appender>


   <root level="info">

       <appender-ref ref="CONSOLE-JSON"/>

   </root>

</configuration>



설정이 끝난 후에, 로그를 출력해보면 다음과 같이 jsonpayload element 부분에 아래와 같이 json 형태로 로그가 출력된다.


{

 "timestamp" : "2019-03-22T17:48:56.434+09:00",

 "level" : "INFO",

 "thread" : "main",

 "logger" : "com.terry.logging.logbackCustom.App",

 "context" : "default",

 "timestampSeconds" : 1553244536,

 "timestampNanos" : 434000000,

 "severity" : "INFO",

 "original_message" : "event:order,name:terry,address:terrycho@google.com",

 "jsonpayload" : {

   "address" : "terrycho@google.com",

   "event" : "order",

   "name" : "terry"

 }

}


log4j2

log4j2의 경우 slf4+logback 조합보다 더 유연한데, log.info 와 같이 로깅 부분에 문자열뿐만 아니라 Object를 직접 넘길 수 있다. ( log4j2의 경우에는 2.11 버전부터 JSON 로깅을 지원 : https://issues.apache.org/jira/browse/log4j2-2190 )

즉 log.info 등에 json 을 직접 넘길 수 있다는 이야기다. 그렇지만 이 기능은 log4j2의 기능이지 slf4j의 인터페이스를 통해서 제공되는 기능이 아니기 때문에, slf4j + log4j2 조합으로는 사용이 불가능하고  log4j2만을 이용해야 한다.


log4j2를 이용해서 json 로그를 남기는 코드는 아래와 같다.


package com.terry.logging.jsonlog;


import java.util.Map;

import java.util.TreeMap;


import org.apache.logging.log4j.message.ObjectMessage;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;


public class App

{

  private static Logger log = LogManager.getLogger(App.class);


   public static void main( String[] args )

   {

    Map<String,String> map = new TreeMap();

    map.put("name", "terry");

    map.put("email","terry@mycompany.com");

    ObjectMessage msg = new ObjectMessage(map);

    log.info(msg);

   }

}



Map 객체를 만들어서 json 포맷처럼 key/value 식으로 데이타를 넣은 다음에 ObjectMessage 객체 타입으로 컨버트를 한다. 그리고 로깅에서 log.info(msg)로 ObjectMessage 객체를 넘기면 된다.

그리고 아래는 위의 코드를 실행하기 위한 pom.xml 에서 dependency 부분이다.


<dependency>

<groupId>org.apache.logging.log4j</groupId>

<artifactId>log4j-slf4j18-impl</artifactId>

<version>2.11.2</version>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-core</artifactId>

<version>2.7.4</version>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-databind</artifactId>

<version>2.7.4</version>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-annotations</artifactId>

<version>2.7.4</version>

</dependency>


실행을 해보면 아래와 같이 json 포맷으로 메세지가 출력된 결과이다. message element를 보면, 위에서 넣은 key/value 필드인 email과, name 항목이 출력된것을 확인할 수 있다.


{

 "thread" : "main",

 "level" : "INFO",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : {

   "email" : "terry@mycompany.com",

   "name" : "terry"

 },

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.log4j.spi.AbstractLogger",

 "instant" : {

   "epochSecond" : 1553245991,

   "nanoOfSecond" : 414157000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

}



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

로그 시스템 #2- 자바 로그 & JSON 로그 포맷

조대협 (http://bcho.tistory.com)


앞 글에서 간단하게 자바 로깅 프레임워크에 대해서 알아보았다. 그러면 앞에서 추천한 slf4j와 log4j2로 실제 로깅을 구현해보자

SLF4J + log4j2

메이븐 프로젝트를 열고 dependencies 부분에 아래 의존성을 추가한다. 버전은 최신 버전을 확인하도록 한다. artifactid가 log4j-slf4j-impl 이지만, log4j가 아니라 log4j2가 사용된다.


<dependency>

<groupId>org.apache.logging.log4j</groupId>

<artifactId>log4j-slf4j-impl</artifactId>

<version>2.11.2</version>

</dependency>


다음 log4j2의 설정 정보 파일인 log4j2.properties 파일을 src/main/resources 디렉토리 아래에 다음과 같이 생성한다. Appender나, Layout등 다양한 정보 설정이 있지만 그 내용은 나중에 자세하게 설명하도록 한다.


appenders=xyz


appender.xyz.type = Console

appender.xyz.name = myOutput

appender.xyz.layout.type = PatternLayout

appender.xyz.layout.pattern = [MYLOG %d{yy-MMM-dd HH:mm:ss:SSS}] [%p] [%c{1}:%L] - %m%n


rootLogger.level = info


rootLogger.appenderRefs = abc


rootLogger.appenderRef.abc.ref = myOutput


그리고 아래와 같이 코드를 만든다.

LoggerFactory를 이용해서 Logger를 가지고 온다. 현재 클래스 명에 대한 Logger 를 가지고 오는데, 위의 설정 파일을 보면 rootLogger만 설정하였기 때문에, rootLogger가 사용된다.

package com.terry.logging.helloworld;


import org.slf4j.Logger;

import org.slf4j.LoggerFactory;



public class App

{

   private static Logger log = LoggerFactory.getLogger(App.class);

   public static void main( String[] args )

   {

       System.out.println( "Hello World!" );

       

       log.info("Hello slf4j");

   }

}



가저온 logger를 이용해서 log.info로 로그를 출력한다.

콘솔로 출력된 로그는 아래와 같다.

[MYLOG 19-Mar-18 23:07:01:373] [INFO] [App:71] - Hello slf4j


JSON 포맷으로 로그 출력

근래에는 시스템이 분산 구조를 가지고 있기 때문에 텍스트 파일로 남겨서는 여러 분산된 서비스의 로그를 모아서 보기가 어렵다. 그래서, 이런 로그를 중앙 집중화된 서버로 수집 및 분석하는 구조를 가지는데, 수집 서버에서는 이 로그들을 구조화된 포맷으로 저장하는 경우가 일반적이다. 각 로그의 내용을 저장 구조의 개별 자료 구조(예를 들어 테이블의 컬럼)에 맵핑해서 저장하는데, 이를 위해서는 로그가 JSON,XML 또는 CSV와 같은 형태로 구조화가 되어 있어야 한다.

이런 구조화된 로그를 structured logging 이라고 한다. 로그 엔트리 하나를 JSON에 포함해서 출력하는 방법에 대해서 알아본다.

slf4j + logback

SLF4 + logback을 이용하여 레이아웃을 JSON으로 출력하는 코드이다.


package com.terry.logging.logback;


import java.util.Map;

import java.util.TreeMap;


import org.slf4j.Logger;

import org.slf4j.LoggerFactory;


import com.fasterxml.jackson.core.JsonProcessingException;

import com.fasterxml.jackson.databind.ObjectMapper;


public class App

{

   private static Logger log = LoggerFactory.getLogger(App.class);

   public static void main( String[] args ) throws JsonProcessingException

   {


       log.info("hello log4j");

   }

}


pom.xml에 아래와 같이 logback과 json 관련 dependency를 추가한다.


<dependencies>

<dependency>

<groupId>ch.qos.logback</groupId>

<artifactId>logback-classic</artifactId>

<version>1.1.7</version>

</dependency>


<dependency>

<groupId>ch.qos.logback.contrib</groupId>

<artifactId>logback-json-classic</artifactId>

<version>0.1.5</version>

</dependency>


<dependency>

<groupId>ch.qos.logback.contrib</groupId>

<artifactId>logback-jackson</artifactId>

<version>0.1.5</version>

</dependency>


<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-databind</artifactId>

<version>2.9.3</version>

</dependency>

</dependencies>



마지막으로 src/main/resources.xml 파일을 아래와 같이 작성한다.  

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

   <appender name="stdout" class="ch.qos.logback.core.ConsoleAppender">

       <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">

           <layout class="ch.qos.logback.contrib.json.classic.JsonLayout">

               <timestampFormat>yyyy-MM-dd'T'HH:mm:ss.SSSX</timestampFormat>

               <timestampFormatTimezoneId>Etc/UTC</timestampFormatTimezoneId>


               <jsonFormatter class="ch.qos.logback.contrib.jackson.JacksonJsonFormatter">

                   <prettyPrint>true</prettyPrint>

               </jsonFormatter>

           </layout>

       </encoder>

   </appender>


   <root level="debug">

       <appender-ref ref="stdout"/>

   </root>

</configuration>


아래는 출력 결과이다. message 필드에 로그가 출력 된것을 볼 수 있다.


{

 "timestamp" : "2019-03-19T07:24:31.906Z",

 "level" : "INFO",

 "thread" : "main",

 "logger" : "com.terry.logging.logback.App",

 "message" : "hello log4j",

 "context" : "default"

}


slf4j + log4j2

다음은 slft4+log4j2 를 이용한 예제이다.  logback과 크게 다르지는 않다.

아래와 같이 pom.xml 의 dependencies에 아래 내용을 추가하자. json layout은 jackson을 사용하기 때문에 아래와 같이 jackson에 대한 의존성도 함께 추가한다.


<dependency>

<groupId>org.apache.logging.log4j</groupId>

<artifactId>log4j-slf4j-impl</artifactId>

<version>2.11.2</version>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-core</artifactId>

<version>2.7.4</version>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-databind</artifactId>

<version>2.7.4</version>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-annotations</artifactId>

<version>2.7.4</version>

</dependency>


다음 아래와 같이 log4j2.properties 파일을 src/main/resources 폴더에 저장한다.


status = info


appender.ana_whitespace.type = Console

appender.ana_whitespace.name = ana_whitespace

appender.ana_whitespace.layout.type = JsonLayout

appender.ana_whitespace.layout.propertiesAsList = false

appender.ana_whitespace.layout.compact = false

appender.ana_whitespace.layout.eventEol = true

appender.ana_whitespace.layout.objectMessageAsJsonObject = true

appender.ana_whitespace.layout.complete= true

appender.ana_whitespace.layout.properties= true


rootLogger.level = info

rootLogger.appenderRef.ana_whitespace.ref = ana_whitespace


위에 보면 layout.type을 JsonLayout으로 지정하였다. 기타 다른 필드에 대한 정보는

정보는 https://logging.apache.org/log4j/2.0/manual/layouts.html 를 참고하기 바란다.


그리고 아래와 같이 코드를 이용해서 info 레벨의 로그를 출력해보자

package com.terry.logging.jsonlog;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;



public class App

{

private static Logger log = LoggerFactory.getLogger(App.class);

   public static void main( String[] args )

   {

       

       log.info("Hello json log");

       log.error("This is error");

       log.warn("this is warn");

   }

}


코드를 컴파일 하고 실행하면 아래와 같은 형태로 로그가 출력된다. 로그 출력 형태는 logback과는 많이 차이가 있다.


[

{

 "thread" : "main",

 "level" : "INFO",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : "Hello json log",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1552923302,

   "nanoOfSecond" : 38337000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

}

, {

 "thread" : "main",

 "level" : "ERROR",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : "This is error",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1552923302,

   "nanoOfSecond" : 109170000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

}

, {

 "thread" : "main",

 "level" : "WARN",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : "this is warn",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1552923302,

   "nanoOfSecond" : 109618000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

}


]


json을 여러가지 포맷으로 출력할 수 있다. 위의 로그를  잘보면 로그 시작과 끝에 json 포맷을 맞추기 위해서 “[“와 “]”를 추가하고, 로그 레코드 집합당 “,”로 레코드를 구별한것을 볼 수 있다. 만약에 “[“,”]”를 로그 처음과 마지막에서 제거하고, 로그 레코드 집합동 “,”를 제거하고 newline으로만 분류하고 싶다면 log4j2.properties 파일에서 appender.ana_whitespace.layout.complete = false로 하면 된다.

아래는 layout.complete를 false로 하고 출력한 결과 이다.


{ ←  이부분에 “[” 없음

 "thread" : "main",

 "level" : "INFO",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : "Hello json log",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1552923722,

   "nanoOfSecond" : 98574000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

} ←  이부분에 콤마가 없음

{

 "thread" : "main",

 "level" : "ERROR",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : "This is error",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1552923722,

   "nanoOfSecond" : 167047000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

}

{

 "thread" : "main",

 "level" : "WARN",

 "loggerName" : "com.terry.logging.jsonlog.App",

 "message" : "this is warn",

 "endOfBatch" : false,

 "loggerFqcn" : "org.apache.logging.slf4j.Log4jLogger",

 "instant" : {

   "epochSecond" : 1552923722,

   "nanoOfSecond" : 167351000

 },

 "contextMap" : { },

 "threadId" : 1,

 "threadPriority" : 5

} ←  이부분에 “]” 없음


그리고 로그파일을 보는데, JSON의 경우에는 위와 같이 각 element 마다 줄을 바꿔서 사람이 읽기 좋은 형태이기는 하지만, 대신 매번 줄을 바꾸기 때문에 검색이 어려운 경우가 있다. 그래서 로그 레코드 하나를 줄 바꿈 없이 한줄에 모두 출력할 수 있도록 할 수 있는데, appender.ana_whitespace.layout.compact = true로 주면 된다. 아래는 옵션을 적용한 결과 이다.

{"thread":"main","level":"INFO","loggerName":"com.terry.logging.jsonlog.App","message":"Hello json log","endOfBatch":false,"loggerFqcn":"org.apache.logging.slf4j.Log4jLogger","instant":{"epochSecond":1552923681,"nanoOfSecond":430798000},"contextMap":{},"threadId":1,"threadPriority":5}

{"thread":"main","level":"ERROR","loggerName":"com.terry.logging.jsonlog.App","message":"This is error","endOfBatch":false,"loggerFqcn":"org.apache.logging.slf4j.Log4jLogger","instant":{"epochSecond":1552923681,"nanoOfSecond":491757000},"contextMap":{},"threadId":1,"threadPriority":5}

{"thread":"main","level":"WARN","loggerName":"com.terry.logging.jsonlog.App","message":"this is warn","endOfBatch":false,"loggerFqcn":"org.apache.logging.slf4j.Log4jLogger","instant":{"epochSecond":1552923681,"nanoOfSecond":492095000},"contextMap":{},"threadId":1,"threadPriority":5}



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Apache Beam (Dataflow)를 이용하여, 이미지 파일을 tfrecord로 컨버팅 하기


조대협 (http://bcho.tistory.com)



개요

텐서플로우 학습에 있어서 데이타 포맷은 학습의 성능을 결정 짓는 중요한 요인중의 하나이다. 특히 이미지 파일의 경우 이미지 목록과 이미지 파일이 분리되어 있어서 텐서플로우에서 학습시 이미지 목록을 읽으면서, 거기에 있는 이미지 파일을 매번 읽어야 하기 때문에, 코딩이 다소 지저분해지고,IO 성능이 떨어질 수 있다

텐서플로우에서는 이러한 학습 데이타를 쉽게 읽을 수 있도록 tfrecord (http://bcho.tistory.com/1190)라는 파일 포맷을 지원한다.


이 글에서는 이미지 데이타를 읽어서 tfrecord 로 컨버팅하는 방법을 설명하며, 분산 데이타 처리 프레임웍인 오픈소스 Apache Beam을 기준으로 설명하나, tfrecord 변환 부분은 Apache Beam과 의존성이 없이 사용이 가능하기 때문에, 필요한 부분만 참고해도 된다. 이 Apache Beam을 구글의 Apache Beam 런타임 (매니지드 서비스)인 구글 클라우드의 Dataflow를 이용하여, 클러스터를 이용하여 빠르게 데이타를 처리하는 방법에 대해서 알아보도록 한다.


전체 코드는 https://github.com/bwcho75/cifar-10/blob/master/pre-processing/4.%20Convert%20Pickle%20file%20to%20TFRecord%20by%20using%20Apache%20Beam.ipynb 에 있다.


이 코드는 CIFAR-10 이미지 데이타를 Apache Beam 오픈 소스를 이용하여, 텐서플로우 학습용 데이타 포맷인  tfrecord 형태로 변환 해주는 코드이다.


Apache Beam은 데이타 처리를 위한 프레임웍으로, 구글 클라우드 상에서 실행하거나 또는 개인 PC나 Spark 클러스터상 여러 환경에서 실행이 가능하며, 구글 클라우드 상에서 실행할 경우 오토스케일링이나 그래프 최적화 기능등으로 최적화된 성능을 낼 수 있다.


CIFAR-10 데이타 셋은 32x32 PNG 이미지 60,000개로 구성된 데이타 셋으로 해당 코드 실행시 최적화가 되지 않은 상태에서 약 16분 정도의 처리 시간이 소요된다. 이 중 6분 정도는 Apache Beam 코드를 구글 클라우드로 업로드 하는데 소요되는 시간이고 실제 처리시간은 10분정도가 소요된다. 전처리 과정에 Apache Beam을 사용하기 전에 고려해야 할 요소는 다음과 같다.

  • 데이타가 아주 많아서 전처리 시간이 수시간 이상 소요될 경우 Apache Beam + Google Cloud를 고려하여 여러 머신에서 동시에 처리하여 빠른 시간내에 수행되도록 할 수 있다.

  • 데이타가 그다지 많지 않고 싱글 머신에서 멀티 쓰레드로 처리를 원할 경우에는 Apache Beam으로 멀티 쓰레드 기반의 병렬 처리를 하는 방안을 고려할 수 있다. 이 경우 클라우드에 대한 의존성을 줄일 수 있다.

  • 다른 대안으로는 Spark/Hadoop 등의 오픈소스를 사용하여, On Prem에서 여러 머신을 이용하여 전처리 하는 방안을 고려할 수 있다.

여기서는 아주 많은 대량의 이미지 데이타에 대한 처리를 하는 것을 시나리오로 가정하였다.

전처리 파이프라인

Apache Beam을 이용한 데이타 전처리 파이프라인의 구조는 다음과 같다.

이미지 파일 준비

CIFAR-10 데이타셋 원본은 이미지 파일 형태가 아니라 PICKLE이라는 파일 포맷으로 되어 있기 때문에,  실제 개발 환경에서는 원본데이타가 이미지인것으로 가정하기 위해서 https://github.com/bwcho75/cifar-10/tree/master/pre-processing 의 1~2번 코드를 통해서 Pickle 파일을 이미지 파일로 변경하고, *.csv 파일에 {파일명},{레이블} 형태로 인덱스 데이타를 생성하였다.

생성된 이미지 파일과 *.csv 파일은 gsutil 명령어를 이용하여 Google Cloud Storage (aka GCS)에 업로드 하였다. 업로드 명령은 https://github.com/bwcho75/cifar-10/blob/master/pre-processing/2.%20Convert%20CIFAR-10%20Pickle%20files%20to%20image%20file.ipynb 에 설명되어 있다.


전처리 파이프라인의 구조

Apache Beam으로 구현된 파이프라인의 구조는 다음과 같다.


1. TextIO의 ReadFromText로 CSV 파일에서 한 라인 단위로 문자열을 읽는다.

2. parseLine에서 라인을 ,로 구분하여 filename과 label을 추출한다.

3. readImage 에서 filename을 가지고, 이미지 파일을 읽어서, binary array 형태로 변환한다.

4. TFExampleFromImageDoFn에서 이미지 바이너리와 label을 가지고 TFRecord 데이타형인 TFExample 형태로 변환한다.

5. 마지막으로 TFRecordIOWriter를 통해서 TFExample을 *.tfrecord 파일에 쓴다.

코드 주요 부분 설명

환경 설정 부분

이 코드는 구글 클라우드와 로컬 환경 양쪽에서 모두 실행이 가능하도록 구현되었다.

SRC_DIR_DEV는 로컬환경에서 이미지와 CSV 파일이 위치한 위치이고, DES_DIR_DEV는 로컬환경에서 tfrecord 파일이 써지는 위치이다.

구글 클라우드에서 실행할 경우 파일 저장소를  GCS (Google Cloud Storage)를 사용한다. DES_BUCKET은 GCS 버킷 이름이다. 코드 실행전에 반드시 구글 클라우드 콘솔에서 GCS 버킷을 생성하기 바란다.  SRC_DIR_PRD와 DES_DIR_PRD는 GCS 버킷내의 각각 image,csv 파일의 경로와 tfrecord 파일이 써질 경로 이다. 이 경로에 맞춰서 구글 클라우드 콘솔에서 디렉토리를 먼저 생성해 놓기를 바란다.




PROJECT는 구글 클라우드 프로젝트 명이고, 마지막으로 DEV_MODE가 True이면 로컬에서 수행이되고 False이면 구글 클라우드에서 실행하도록 하는 환경 변수이다.

의존성 설정 부분

로컬에서 실행할 경우필요한  파이썬 라이브러리가 이미 설치되어야 있어야 한다.

만약에 구글 클라우드에서 실행할 경우 이 Apache Beam 코드가 사용하는 파이썬 모듈을 명시적으로 정의해놔야 한다. 클라우드에서 실행시에는 Apache Beam 코드만 업로드가 되기 때문에(의존성 라이브러리를 같이 업로드 하는 방법도 있는데, 이는 추후에 설명한다.), 의존성 라이브는 구글 클라우드에서 Dataflow 실행시 자동으로 설치할 수 있도록 할 수 있는데, 이를 위해서는 requirements.txt 파일에 사용하는 파이썬 모듈들을 정의해줘야 한다. 다음은 requirements.txt에 의존성이 있는 파이썬 모듈등을 정의하고 저장하는 부분이다.


Apache Beam 코드

Apache Beam의 코드 부분은 크게 복잡하지 않기 때문에 주요 부분만 설명하도록 한다.

Service account 설정

Apache Beam 코드를 구글 클라우드에서 실행하기 위해서는 코드 실행에 대한 권한을 줘야 한다. 구글 클라우드에서는 사용자가 아니라 애플리케이션에 권한을 부여하는 방법이 있는데, Service account라는 것을 사용한다. Service account는 json 파일로 실행 가능한 권한을 정의하고 있다.

Service account 파일을 생성하는 방법은 http://bcho.tistory.com/1166 를 참고하기 바란다.

Service account 파일이 생성되었으면, 이 파일을 적용해야 하는데 GOOGLE_APPLICATION_CREDENTIALS 환경 변수에 Service account  파일의 경로를 정의해주면 된다. 파이썬 환경에서 환경 변수를 설정하는 방법은 os.envorin[‘환경변수명']에 환경 변수 값을 지정해주면 된다.

Jobname 설정

구글 클라우드에서 Apache Beam 코드를 실행하면, 하나의 실행이 하나의 Job으로 생성되는데, 이 Job을 구별하기 위해서 Job 마다 ID 를 설정할 수 있다. 아래는 Job ID를 ‘cifar-10’+시간 형태로 지정하는 부분이다


환경 설정

Apache Beam 코드를 구글 클라우드에서 실행하기 위해서는 몇가지 환경을 지정해줘야 한다.


  • staging_location은 클라우드 상에서 실행시 Apache Beam 코드등이 저장되는 위치이다. GCS 버킷 아래 /staging이라는 디렉토리로 지정했는데, 실행 전에 반드시 버킷아래 디렉토리를 생성하기 바란다.

  • temp_location은 기타 실행중 필요한 파일이 저장되는 위치이다. 실행 전에 반드시 버킷아래 디렉토리를 생성하기 바란다.

  • zone은 dataflow worker가 실행되는 존으로 여기서는 asia-northeast1-c  (일본 리전의 c 존)으로 지정하였다.


DEV_MODE 에 따른 환경 설정

로컬 환경이나 클라우드 환경에서 실행이냐에 따라서 환경 변수 설정이 다소 달라져야 한다.


디렉토리 경로를 바꿔서 지정해야 하고, 중요한것은 RUNNER인데, 로컬에서 실행하기 위해서는 DirectRunner를 구글 클라우드 DataFlow 서비스를 사용하기 위해서는 DataflowRunner를 사용하면 된다.


readImage 부분

Read Image는 이미지 파일을 읽어서 byte[] 로 리턴하는 부분인데, 로컬 환경이냐, 클라우드 환경이냐에 따라서 동작 방식이 다소 다르다.

클라우드 환경에서는 이미지 파일이 GCS에 저장되어 있기 때문에 파이썬의 일반 파일 open 명령등을 사용할 수 없다.

그래서 클라우드 환경에서 동작할 경우에는 GCS에서 파일을 읽어서 Worker의 로컬 디스크에 복사를 해놓고 이미지를 읽어서 byte[]로 변환한 후에, 해당 파일을 지우는 방식을 사용한다.


아래 코드에서 보면 DEV_MODE가 False 인경우 GCS에서 파일을 읽어서 로컬에 저장하는 코드가 있다.


storageClient는 GCS 클라이언트이고 bucket 을 얻어온후, bucket에서 파일을 get_blob 명령어를 이용하여 경로를 저장하여 blob.download_to_file을 이용하여 로컬 파일에 저장하였다.

실행

코드 작성이 끝났으면 실행을 한다. 실행 상태는 구글 클라우드 콘솔의 Dataflow  메뉴에서 확인이 가능하다.

아래와 같이 실행중인 그리고 실행이 끝난 Job 리스트들이 출력된다.




코드 실행중에, 파이프라인 실행 상황 디테일을 Job 을 선택하면 볼 수 있다.


여기서 주목할만한 점은 우측 그래프인데, 우측 그래프는 Worker의 수를 나타낸다. 초기에 1대로 시작했다가 오토 스케일링에 의해서 9대 까지 증가한것을 볼 수 있다.

처음 실행이었기 때문에 적정한 인스턴스수를 몰랐기 때문에 디폴트로 1로 시작하고 오토스케일링을 하도록 했지만, 어느정도 테스트를 한후에 적정 인스턴수를 알면 오토 스케일링을 기다릴 필요없이 디폴트 인스턴스 수를 알면 처음부터 그 수만큼 인스턴스 수로 시작하도록 하면 실행 시간을 줄일 수 있다.

만약에 파이프라인 실행시 에러가 나면 우측 상단에 LOGS 버튼을 누르면 상세 로그를 볼 수 있다.


아래 그림은 파이프라인 실행이 실패한 예에서 STACK TRACES를 통해서 에러 내용을 확인하는 화면이다.



해당 로그를 클릭하면 Stack Driver (구글의 모니터링 툴)의 Error Reporting 시스템 화면으로 이동하게 된다.

여기서 디테일한 로그를 볼 수 있다.

아래 화면을 보면 ReadImage 단계에서 file_path라는 변수명을 찾을 수 없어서 나는 에러를 확인할 수 있다.


TFRecord 파일 검증

파이프라인 실행이 끝나면, GCS 버킷에 tfrecord 파일이 생성된것을 확인할 수 있다.


해당 파일을 클릭하면 다운로드 받을 수 있다.

노트북 아래 코드 부분이 TFRecord를 읽어서 확인하는 부분이다. 노트북에서 tfrecord 파일의 경로를 다운로드 받은 경로로 변경하고 실행을 하면 파일이 제대로 읽히는 지 확인할 수 있다.


파일 경로 부분은 코드상에서 다음과 같다.



정상적으로 실행이 된 경우, 다음과 같이 tfrecord에서 읽은 이미지와 라벨값이 출력됨을 확인할 수 있다.


라벨 값은 Label 줄에 values 부분에 출력된다. 위의 그림에서는 순서대로 라벨 값이 4와 2가 된다.



본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요