딥러닝 45

딥러닝 - 초보자를 위한 컨볼루셔널 네트워크를 이용한 이미지 인식의 이해

딥러닝 - 컨볼루셔널 네트워크를 이용한 이미지 인식의 개념 조대협 (http://bcho.tistory.com) 이번 글에서는 딥러닝 중에서 이미지 인식에 많이 사용되는 컨볼루셔널 뉴럴 네트워크 (Convolutional neural network) 이하 CNN에 대해서 알아보도록 하자. 이 글을 읽기에 앞서서 머신러닝에 대한 기본 개념이 없는 경우는 다음 글들을 참고하기 바란다. 머신러닝의 개요 http://bcho.tistory.com/1140머신러닝의 기본 원리는 http://bcho.tistory.com/1139 이산 분류의 원리에 대해서는 http://bcho.tistory.com/1142인공 신경망에 대한 개념은 http://bcho.tistory.com/1147 CNN은 전통적인 뉴럴 네트워..

빅데이타/머신러닝 2016.11.30 (20)

머신러닝의 과학습 / 오버피팅의 개념

머신러닝의 과학습 / 오버피팅의 개념 조대협 (http://bcho.tistory.com) 머신 러닝을 공부하다보면 자주 나오는 용어 중에 하나가 오버피팅 (Overfitting)이다. 과학습이라고도 하는데, 그렇다면 오버 피팅은 무엇일까? 머신 러닝을 보면 결과적으로 입력 받은 데이타를 놓고, 데이타를 분류 (Classification) 하거나 또는 데이타에 인접한 그래프를 그리는 (Regression) , “선을 그리는 작업이다.”그러면 선을 얼마나 잘 그리느냐가 머신 러닝 모델의 정확도와 연관이 되는데, 다음과 같이 붉은 선의 샘플 데이타를 받아서, 파란선을 만들어내는 모델을 만들었다면 잘 만들어진 모델이다. (기대하는) 언더 피팅 만약에 학습 데이타가 모자라거나 학습이 제대로 되지 않아서, 트레이..

빅데이타/머신러닝 2016.11.30 (1)

딥러닝의 개념과 유례

딥러닝의 역사와 기본 개념조대협 (http://bcho.tistory.com)인경 신경망 알고리즘의 기본 개념 알파고나 머신러닝에서 많이 언급되는 알고리즘은 단연 딥러닝이다.이 딥러닝은 머신러닝의 하나의 종류로 인공 신경망 알고리즘의 새로운 이름이다. 인공 신경망은 사람의 두뇌가 여러개의 뉴론으로 연결되서 복잡한 연산을 수행한다는데서 영감을 받아서, 머신러닝의 연산을 여러개의 간단한 노드를 뉴론 처럼 상호 연결해서 복잡한 연산을 하겠다는 아이디어이다. 이 뉴런의 구조를 조금 더 단순하게 표현해보면 다음과 같은 모양이 된다. 뉴런은 돌기를 통해서 여러 신경 자극 (예를 들어 피부에서 촉각)을 입력 받고, 이를 세포체가 인지하여 신호로 변환해준다. 즉 신경 자극을 입력 받아서 신호라는 결과로 변환해주는 과정..

빅데이타/머신러닝 2016.11.27 (3)

수학포기자를 위한 딥러닝-#4 로지스틱 회귀를 이용한 분류 모델

수포자를 위한 딥러닝#4 - 로지스틱 회귀를 이용한 이항 분류 문제의 해결조대협 (http://bcho.tistory.com) 1장에서 머신러닝의 종류는 결과값의 타입이 연속형인 Regression (회귀) 문제와, 몇가지 정해진 분류로 결과(이산형)가 나오는 Classification(분류) 문제가 있다고 하였다. 2,3장에 걸쳐서 회귀 문제에 대해서 알아보았고, 이번장에서는 로지스틱 회귀를 이용한 분류 문제에 대해서 알아보자. 이 글의 내용은 Sung.Kim 교수님의 “모두를 위한 딥러닝”(http://hunkim.github.io/ml/) 을 참고하였다. 여러 자료들을 찾아봤는데, 이 강의 처럼 쉽게 설명해놓은 강의는 없는것 같다. 분류 문제(Classification)의 정의분류 문제란 학습된 모..

빅데이타/머신러닝 2016.10.10 (4)

수학포기자를 위한 딥러닝-#1 머신러닝과 딥러닝 개요

수포자를 위한 딥러닝#1 - 머신러닝의 개요조대협(http://bcho.tistory.com)들어가기에 앞서서 몇년전부터 빅데이타와 머신러닝이 유행하면서 이분야를 공부해야겠다고 생각을 하고 코세라의 Andrew.NG 교수님의 강의도 듣고, 통계학 책도 보고, 수학적인 지식이 부족해서 고등학교 수학 참고서도 봤지만, 도저히 답이 나오지 않는다. 머신 러닝에 사용되는 알고리즘은 복잡도가 높고 일반적인 수학 지식으로 이해조차 어려운데, 실제 운영 시스템에 적용할 수 있는 수준의 알고리즘은 석박사급의 전문가적인 지식이 아니면 쉽게 만들 수 없는 것으로 보였다. 예를 들어 인공지능망(뉴럴네트워크:Neural Network) 알고리즘에 대한 원리는 이해할 수 있지만, 실제로 서비스에 사용되는 알고르즘을 보니 보통 ..

빅데이타/머신러닝 2016.10.04 (5)