빅데이타 & 머신러닝 170

Apache Spark 소개 - 스파크 스택 구조

Spark의 전체적인 스택 구조 조대협 (http://bcho.tistory.com) 스파크의 전체적인 스택 구조를 보면 다음과 같다. 인프라 계층 : 먼저 스파크가 기동하기 위한 인프라는 스파크가 독립적으로 기동할 수 있는 Standalone Scheudler가 있고 (그냥 스팍만 OS위에 깔아서 사용한다고 생각하면 된다). 또는 하둡 종합 플랫폼인 YARN 위에서 기동될 수 있고 또는 Docker 가상화 플랫폼인 Mesos 위에서 기동될 수 있다.스파크 코어 : 메모리 기반의 분산 클러스터 컴퓨팅 환경인 스팍 코어가 그 위에 올라간다. 스파크 라이브러리 : 다음으로는 이 스파크 코어를 이용하여 특정한 기능에 목적이 맞추어진 각각의 라이브러리가 돌아간다. 빅데이타를 SQL로 핸들링할 수 있게 해주는 S..

Apache Spark 클러스터 구조

Apache Spark Cluster 구조 스팍의 기본 구조는 다음과 같다. 스팍 프로그램은 일반적으로 “Driver Program”이라고 하는데, 이 Driver Program 은 여러개의 병렬적인 작업으로 나뉘어져사 Spark의 Worker Node(서버)에 있는 Executor(프로세스)에서 실행된다. 1. SparkContext가 SparkClusterManager에 접속한다. 이 클러스터 메니져는 스팍 자체의 클러스터 메니져가 될 수 도 있고 Mesos,YARN 등이 될 수 있다. 이 클러스터 메니저를 통해서 가용한 Excutor 들을 할당 받는다 2. Excutor를 할당 받으면, 각각의 Executor들에게 수행할 코드를 보낸다. 3. 다음으로 각 Excutor 안에서 Task에서 로직을 수..

Apache Spark 설치 하기

Apache Spark 설치 하기 조대협 (http://bcho.tistory.com) Spark 설치 하기 1. 스팍 홈페이지에서 다운로드. 다운로드시 Pre-built in Spark을 골라야 함. 여기서는 Hadoop 2.6용으로 빌드된 스팍을 선택한다. 2. 스팍 쉘을 실행 해보자 인스톨 디렉토리에서, %./bin/pyspark 을 실행하면, 위와 같이 파이썬 기반의 스팍 쉘이 실행됨을 확인할 수 있다. 3. 로깅 레벨 조정 및 간단한 스팍 예제 디폴트 로깅은 INFO 레벨로 되어 있기 때문에, 쉘에서 명령어를 하나라도 실행하면 INFO 메세지가 우루루 나온다. (몬가 할때 결과 값보다, 오히려 INFO 메세지가 많이 나온다.)그래서, conf/log4j.properties 파일을 conf/log..

Apache Spark이 왜 인기가 있을까?

스팍에 대한 간단한 개념과 장점 소개 조대협 (http://bcho.tistory.com) 스팍의 개념과 주요 기능 요즘 주변에서 아파치 스팍을 공부하는 사람도 많고, 스팍을 기반으로한 Zeppelin을 이용하여 데이타 분석을 하는 경우도 많아서, 오늘부터 다시 Spark을 들여다 보기 시작했습니다. 스팍은 예전에도 몇번 관심을 가진적이 있는데, Storm과 같은 데이타 스트리밍 프레임웍에서 Storm과 같이 언급 되기도 하고, 머신 러닝 프레임웍을 볼때도 스팍 ML 라이브러리 기능이 언급 되기도 하고, 예전 모 회사의 데이타 분석 아키텍쳐를 보니, 카산드라에 저장된 데이타를 스팍/Shark라는 프레임웍으로 분석을 하더군요. 또 누구는 메모리 기반의 하둡이라고도 합니다. 스팍의 정의를 내려보면 한마디로범..

Zepplin (제플린) 설치하기

제플린 설치하기 (맥북 기준 - Darwin 커널 기준) 1. 선행 설치 git 설치maven 3.3 설치JDK 설치 (1.8 설치) 2. 소스코드 다운로드% git clone https://github.com/NFLabs/zeppelin 위와 같이 코드가 다운로드됨을 확인할 수 있음 3. 컴파일코드가 다운되면 컴파일을 해야 하는데, 여기서는 간단한 테스트를 위해서 클러스터 모드가 아닌 로컬 모드로 설치를 진행한다.% mvn install -DskipTests 이때 주의할점은 맥에서는 mvn으로 설치할때, 몇몇 의존성 모듈 설치시 루트 권한을 필요로 하는 것이 있기 때문에 % sudo mvn install -DskipTests 를 이용하여 루트 권한으로 설치한다. 설치시 다음과 같은 에러가 나올 수 있다..

나이브 베이즈 분류 (Naive Bayesian classification) #1 - 소개

나이브 베이즈 분류 (Naive Bayesian classification) #1 - 소개조대협 (http://bcho.tistory.com) 지금 부터 소개할 알고리즘은, 머신러닝 알고리즘 중에서 분류 알고리즘으로 많이 사용되는 나이브 베이스 알고리즘이다. 배경 지식나이브 베이스 알고리즘을 이해하려면 몇가지 배경 지식이 필요하다. 베이스 정리먼저 베이스 정리를 보면, 매개 변수, x,y가 있을때, 분류 1에 속할 확률이 p1(x,y)이고, 분류 2에 속할 확률이 p2(x,y)일때, p1(x,y) > p2(x,y) 이면, 이 값은 분류 1에 속한다.p1(x,y) < p2(x,y) 이면, 이 값은 분류 2에 속한다.나이브 베이스 알고리즘은 이 베이스의 정리를 이용하여, 분류하고자 하는 대상의 각 분류별 확..

머신러닝 프레임웍에 대한 간단 메모

머신 러닝 프레임웍에 대한 간단 정리 머신 러닝을 다시 시작해서 보다 보니 어떤 언어로 개발을 해야 하는지 의문이 들어서 페이스북 Server Side architecture 그룹에 올렸더니, 좋은 정보가 많이 들어왔다.Matalab이나 R과 같은 언어는 수학 라이브러리가 풍부해서, 주로 모델을 만들어서 시뮬레이션 하는데 많이 사용되고Python이 수학 라이브러리가 풍부해서 그런지 ML 부분에서 많이 사용되는데, Production 까지 올라가는 경우는 잘 못본거 같고, 주로 Python으로 모델을 프로토타이핑 하는 수준으로 사용되는 것으로 보인다. 아직까지 자세히는 보지 못했지만, 자바의 Spark이나 Mahout과 같은 분산 환경 지원성이 약하고, 언어의 특성상 다른 언어보다 성능이 떨어져서, 실제 ..

Numpy Install

NumPy 설치 하기 파이썬으로 머신 러닝을 구현하기 위해서는 수학 라이브러리인 numpy가 필요하다 설치는 http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 에서 *.whl 파일을 다운로드 받은후pip install numpy-1.9.2rc1+mkl-cp27-none-win_amd64.whl (64 비트 기준)으로 설치 하면 된다. 설치후 확인을 위해서는 위와 같이 from numpy import * 를 한후에, random.rand(4,4)가 제대로 실행되는지 확인하자 참고머신러닝이나 빅데이타 분석을 위해서는 NumPy 뿐만 아니라 matplot등 다양한 수학 모듈을 깔아야 하는데, 방화벽등이 있거나 하면 깔기가 매우 까다롭다. (의존성 관계도 복잡하고). 그래서..