클라우드 컴퓨팅 & NoSQL/도커 & 쿠버네티스

쿠버네티스 #21 - 리소스(CPU/Memory) 할당과 관리

Terry Cho 2018. 11. 5. 02:09

쿠버네티스 리소스(CPU/Memory)할당과 관리

조대협

리소스 관리


쿠버네티스에서 Pod를 어느 노드에 배포할지를 결정하는 것을 스케쥴링이라고 한다.

Pod에 대한 스케쥴링시에, Pod내의 애플리케이션이 동작할 수 있는 충분한 자원 (CPU,메모리 등)이 확보되어야 한다. 쿠버네티스 입장에서는 애플리케이션에서 필요한 자원의 양을 알아야, 그 만한 자원이 가용한 노드에 Pod를 배포할 수 있다.


쿠버네티스에서는 이런 컨셉을 지원하기 위해서 컨테이너에 필요한 리소스의 양을 명시할 수 있도록 지원하고 있다.  현재(1.9 버전) 지원되는 리소스 타입은 CPU와 메모리이며, 아직 까지는 네트워크 대역폭이나 다른 리소스 타입은 지원하고 있지 않다.

리소스 단위

리소스를 정의하는데 사용되는 단위는 CPU의 경우에는 ms(밀리 세컨드)를 사용한다. 해당 컨테이너에 얼마만큼의 CPU 자원을 할당할것인가인데, 대략 1000ms가 1 vCore (가상 CPU 코어) 정도가 된다. 클라우드 벤더에 따라 또는 쿠버네티스를 운영하는 인프라에 따라서 약간씩 차이가 있으니 참고하기 바란다.

메모리의 경우에는 Mb를 사용한다.

Request & Limit

컨테이너에 적용될 리소스의 양을 정의하는데 쿠버네티스에서는 request와 limit이라는 컨셉을 사용한다.

request는 컨테이너가 생성될때 요청하는 리소스 양이고, limit은 컨테이너가 생성된 후에 실행되다가 리소스가 더 필요한 경우 (CPU가 메모리가 더 필요한 경우) 추가로 더 사용할 수 있는 부분이다.


예를 들어 CPU request를 500ms로 하고, limit을 1000ms로 하면 해당 컨테이너는 처음에 생성될때 500ms를 사용할 수 있다. 그런데, 시스템 성능에 의해서 더 필요하다면 CPU가 추가로 더 할당되어 최대 1000ms 까지 할당될 수 있다.


리소스를 정의하는 방법은 아래와 같이 Pod spec 부분에서 개별 컨테이너 마다. Resources 파트에 request와 limit으로 필요한 리소스의 최소/최대양을 정의하면 된다.


apiVersion: v1

kind: Pod

metadata:

 name: frontend

spec:

 containers:

 - name: db

   image: mysql

   resources:

     requests:

       memory: "64Mi"

       cpu: "250m"

     limits:

       memory: "128Mi"

       cpu: "500m"

 - name: wp

   image: wordpress

   resources:

     requests:

       memory: "64Mi"

       cpu: "250m"

     limits:

       memory: "128Mi"

       cpu: "500m"


위의 예제에 따라서 정의된 Pod내의 컨테이너 CPU 리소스의 할당은 다음과 같이 된다.


db라는 이름과 wp라는 이름의 컨테이너는 생성시 250ms 만큼의 CPU 리소스를 사용할 수 있도록 생성이 되고, 필요시 최대 CPU를 500ms 까지 늘려서 사용할 수 있다.

모니터링 리소스

그러면 사용할 수 있는 리소스의 양과 현재 사용되고 있는 리소스의 양을 어떻게 모니터링할 수 있을까?

사용할 수 있는 리소스의 양은 쿠버네티스 클러스터를 생성하는데 사용된 node의 스펙을 보면 알 수 있다. 예를 들어 2 코어 VM 5대로 node를 만들었다면 그 총량은 10 코어 = 10,000ms가 된다.

그러나 이 자원을 모두 사용자 애플리케이션에 사용할 수 있는 것이 아니다. 쿠버네티스 클러스터를 유지하는 시스템 자원이나 또는 모니터링등에 자원이 소비되기 때문에 실제로 사용할 수 있는 자원의 양을 확인하는게 좋은데 “kubectl describe nodes” 명령을 이용하면 된다.

아래 예제는 kubectl describe nodes 명령으로 node들의 상세정보중에서 한 node의 자원 상태를 모니터링한 내용이다.



아래 붉은 박스를 보면 총 4 코어 머신으로 현재 request된 CPU는 1081m이고 limit으로 296m를 확보하고 있다. 메모리는 request 된것은 685M가 requested 되었고, 약 1G가 limit으로 확보되어 있다.

실제 사용량은 붉은 박스 위를 보면 되는데, default 네임 스페이스의 client-6bcxxx Pod는 현재 110m의 CPU를 request해서 사용중인것을 확인할 수 있다.


확보된 리소스와 현재 실제로 사용되는 리소스의 양은 다른데, “kubectl top nodes” 명령을 이용하면 실제로 사용되고 있는 리소스의 상태를 확인할 수 있다. 아래는 4개의 노드에서 실제로 사용되고 있는 리소스의 양이다. 붉은 색으로 표시된 노드가 위의 예제와 같은 노드인데, 위에서 requested 된 양은 1081m이었는데, 실제 사용된 cpu는 151m가 사용되고 있다.


Pod들의 리소스 사용량은 “kubectl top pods” 명령으로 확인이 가능하다.


ResourceQuota & LimitRange

이제까지 컨테이너 운영에 필요한 리소스의 양을 명시하여 요청하는 방법을 알아보았다.

만약에 어떤 개발자나 팀이 불필요하게 많은 리소스를 요청한다면, 쿠버네티스 클러스터를 운영하는 입장에서 자원이 낭비가 되고, 다른 팀이 피해를 볼 수 있는 상황이 될 수 있다. 그래서, 쿠버네티스에서는 네임스페이스별로 사용할 수 있는 리소스의 양을 정하고, 컨테이너마다 사용할 수 있는 리소스의 양을 지정할 수 있는 기능을 제공한다.

Resource Quota

Resource Quota는 네임스페이스별로 사용할 수 있는 리소스의 양을 정한다.

아래는 예는 demo 네임스페이스에, CPU 는 500m ~ 700m 까지, 메모리는 100M~500M까지 할당한 예제이다.



이 용량안에서 demo 네임스페이스내에 컨테이너를 자유롭게 만들어서 사용할 수 있다.

Limit Range

Resource Quota가 네임 스페이스 전체의 리소스양을 정의한다면, Limit Range는 컨테이너 개별 자원의 사용 가능 범위를 지정한다.

아래 예제를 보자.



  • default 로 정의된 부분은 컨테이너에 limit을 지정하지 않았을 경우 디폴트로 지정되는 limit이다. 여기서는 cpu 600m, 메모리 100m로 정의되었다.

  • defaultRequest 로 정의된 부분은 컨테이너의 request를 지정하지 않았을 경우 디폴트로 지정되는 request의 양이다.

  • max : 컨테이너에 limit을 지정할 경우, 지정할 수 있는 최대 크기이다.

  • min : 컨테이너에 limit을 지정할 경우, 지정할 수 있는 최소 크기이다.  

Overcommitted 상태

이  request와 limit의 개념이 있기 때문에 생기는 문제인데, request 된 양에 따라서 컨테이너를 만들었다고 하더라도, 컨테이너가 운영이되다가 자원이 모자르면 limit 에 정의된 양까지 계속해서 리소스를 요청하게 된다.

컨테이너의 총 Limit의 양이 실제 시스템이 가용한 resource의 양보다 많을 수 있는 경우가 발생한다. 이를 overcommitted 상태라고 한다.

Overcommitted 상태가 발생하면, CPU의 경우에는 실제 사용량을 requested 에 정의된 상태까지 낮춘다. 예를 들어 limit이 500, request가 100인 경우, 현재 500으로 가동되고 있는 컨테이너의 CPU할당량을 100으로 낮춘다. 그래도 Overcommitted 상태가 해결되지 않는 경우, 우선 순위에 따라서 운영중인 컨테이너를 강제 종료 시킨다.  

메모리의 경우에는 할당되어 사용중인 메모리의 크기를 줄일 수 는 없기 때문에, 우선 순위에 따라서 운영 중인 컨테이너를 강제 종료 시킨다.  Deployment,RS/RC에 의해 관리되고 있는 컨테이너는 다시 리스타트가 되고 초기 requested 상태의 만큼만 자원 (메모리/CPU)를 요청해서 사용하기 때문에, overcommitted  상태가 해제된다.

Best practice

구글 문서에 따르면 데이타 베이스등 아주 무거운 애플리케이션이 아니면, 일반적인 경우에는 CPU request를 100m 이하로 사용하기를 권장한다.

또한 세밀하게 클러스터를 운영하기 어려운 경우에는 request와 limit의 사이즈를 같게 하는 것을 권장한다. limit이 request보다 클 경우 overcommitted 상태가 발생할 수 있는데, 이때 CPU가 throttle down 되면, 실제 필요한 CPU양 보다 작은 CPU양으로 줄어들기 때문에 성능저하가 발생할 수 있다.