쿠버네티스 #13
모니터링 1/2
조대협 (http://bcho.tistory.com)
시스템을 운영하는데 있어서 운영 관점에 있어서 가장 중요한 기능중의 하나는 시스템에 대한 모니터링이다. 시스템 자원의 사용량이나 에러등에 대한 모니터링을 통해서, 시스템을 안정적으로 운영하고 문제 발생시 원인 파악과 대응을 할 수 있다.
이번 글에서는 쿠버네티스 모니터링 시스템에 대한 개념과, 아키텍쳐 그리고 구축 방법에 대해서 소개하고자 한다.
쿠버네티스 모니터링 컨셉
쿠버네티스에 대한 모니터링을 보면 많은 툴과 지표들이 있어서 혼돈하기 쉬운데, 먼저 모니터링 컨셉에 대한 이해를 할 필요가 있다.
쿠버네티스 기반의 시스템을 모니터링하기 위해서는 크게 아래와 같이 4가지 계층을 모니터링해야 한다.
1. 호스트 (노드)
먼저 쿠버네티스 컨테이너를 실행하는 하드웨어 호스트 즉 노드에 대한 지표 모니터링이 필요하다. 노드의 CPU,메모리, 디스크, 네트워크 사용량과, 노드 OS와 커널에 대한 모니터링이 이에 해당한다.
2. 컨테이너
다음은 노드에서 기동되는 각각의 컨테이너에 대한 정보이다. 컨테이너의 CPU,메모리, 디스크, 네트워크 사용량등을 모니터링 한다.
3. 애플리케이션
컨테이너안에서 구동되는 개별 애플리케이션의 지표를 모니터링 한다. 예를 들어, 컨테이너에서 기동되는 node.js 기반의 애플리케이션의 응답시간, HTTP 에러 빈도등을 모니터링한다.
4. 쿠버네티스
마지막으로, 컨테이너를 컨트롤 하는 쿠버네티스 자체에 대한 모니터링을한다. 쿠버네티스의 자원인 서비스나 POD, 계정 정보등이 이에 해당한다.
쿠버네티스 기반의 시스템 모니터링에 대해서 혼돈이 오는 부분중의 하나가 모니터링이라는 개념이 포괄적이기 때문이다. 우리가 여기서 다루는 모니터링은 자원에 대한 지표 대한 모니터링이다. 포괄적인 의미의 모니터링은 로그와, 에러 모니터링등 다양한 내용을 포괄한다.
쿠버네티스 로깅
지표 모니터링과 함께 중요한 모니터링 기능중 하나는 로그 수집 및 로그 모니터링이다.
로그 수집 및 로그 모니터링 방법은 여러가지 방법이 있지만, 오픈소스 로그 수집 및 모니터링 조합인 EFK (Elastic search + FluentD + Kibina) 스택을 이용하는 경우가 대표적이다.
Fluentd 에이전트를 이용하여, 각종 로그를 수집하여, Elastic search에 저장하고, 저장된 지표를 Kibana 대쉬 보들르 이용하여 시작화 해서 나타내는 방법이 있다.
이에 대한 자세한 설명을 생략한다.
쿠버네티스 모니터링 시스템 구축
그러면 이러한 모니터링 시스템을 어떻게 구축할 것인가?
쿠버네티스 모니터링은 버전업 과정에서 많은 변화를 겪고 있다. 기존 모니터링 시스템의 아키텍쳐는 cAdvisor,Heapster를 이용하는 구조였으나, 이 아키텍쳐는 곧 deprecated 될 예정이고, Prometheus등 다양한 모니터링 아키텍쳐가 후보로 고려 되고 있다.
아래 그래프를 보면 재미있는 통계 결과가 있는데, cAdvisor,Heapster,Promethus 를 이용하는 방법도 있지만, 클라우드의 경우에는 클라우드 벤더에서 제공하는 쿠버네티스 모니터링 솔루션을 그대로 사용하거나 (18%) 또는 데이타독이나 뉴렐릭 (Datadog, newRelic)과 같이 전문화된 모니터링 클라우드을 사용하는 비율 (26%) 도 꽤 높다.
<그림. 쿠버네티스 모니터링 솔루션 분포 >
출처 : https://thenewstack.io/5-tools-monitoring-kubernetes-scale-production/
개인적인 의견으로는 직접 모니터링 솔루션을 구축해서 사용하는 것보다는 비용은 약간 들지만 클라우드 벤더에서 제공되는 모니터링 도구나 또는 데이타독과 같은 전문 모니터링 솔루션을 이용하는 것을 추천한다.
직접 모니터링 솔루션을 구축할 경우 구축과 운영에 드는 노력도 꽤 크고, 또한 어떠한 지표를 모니터링해야할지 등에 대한 추가적인 노하우가 필요하다. 또한 cAdvisor,Heapster,Promethues 조합은 호스트와 컨테이너 그리고 쿠버네티스에 대한 모니터링은 제공하지만 애플리케이션 지표에 대한 모니터링과 로깅 기능은 제공하지 않기 때문에 별도의 구축이 필요하다. 이런 노력을 들이는 것 보다는 모든 기능이 한번에 제공되고 운영을 대행해주는 데이타독이나 클라우드에서 제공해주는 모니터링 솔루션을 사용하는 것을 추천한다.
Heapster 기반 모니터링 아키텍처
이러한 모니터링 요건을 지원하기 위해서, 쿠버네티스는 자체적인 모니터링 컴포넌트를 가지고 있는데, 그 구조는 다음과 같다.
<그림. 쿠버네티스 모니터링 시스템 아키텍쳐>
출처 Source : https://www.datadoghq.com/blog/how-to-collect-and-graph-kubernetes-metrics/
cAdvisor
cAdvisor는 모니터링 에이전트로, 각 노드마다 설치되서 노드에 대한 정보와 컨테이너 (Pod)에 대한 지표를 수집하여, Kubelet으로 전달한다.
Heapster
cAdvisor에 의해 수집된 지표는 Heapster 라는 중앙 집중화된 지표 수집 시스템에 모이게 되고, Heapster는 수집된 지표를 스토리지 백앤드에 저장한다.
Storage backend
Heapster가 지표를 저장하는 데이타베이스를 스토리지 백앤드라고 하는데, Heapster는 확장성을 위해서 다양한 스토리지 백앤드를 플러그인 구조를 선택하여 연결할 수 있다.
현재 제공되는 대표적인 스토리지 백앤드는 구글 클라우드의 모니터링 시스템인 스택드라이버 (stackdriver), 오픈 소스 시계열 데이타베이스인 인플럭스 디비 (InfluxDB) 등을 지원한다.
그래프 대쉬 보드
이렇게 저장된 모니터링 지표는 그래프와 같은 형태로 시각화 될필요가 있는데, 스토리지 백앤드를 지원하는 다양한 시각화 도구를 사용할 수 있다. 구글의 모니터링 시스템인 스택드라이버의 경우에는 자체적인 대쉬보드 및 그래프 인터페이스가 있고, 인플럭스 디비나 프로메테우스의 경우에는 오픈소스 시각화 도구인 그라파나(Grafana)를 사용할 수 있다.
<그림. 그라파나와 프로메테우스를 연결하여, 지표 모니터링을 시각화 한 예제>
그러나 이 아키텍쳐는 deprecation 계획이 시작되서 1.13 버전 부터는 완전히 제거될 예정이다.
https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md
쿠버네티스 대시보드
다른 방법으로는 쿠버네티스를 모니터링 하고 관리할 수 있는 쉬운 방법이 하나 있는데, 쿠버네티스 대시보드를 사용하는 방법이다. 쿠버네티스는 기본적으로 kubectl이라는 커맨드 라인 인터페이스 (이하 CLI : Command Line Interface)를 사용하지만, 추가적으로 웹 기반의 관리 콘솔을 제공한다. 이를 쿠버네티스 대시보드라고 한다. (https://github.com/kubernetes/dashboard)
대시 보드 설치
쿠버네티스 대시 보드 설치 방법은 간단하다. 아래와 같이 대시보드 설정 yaml 파일을 이용하면 간단하게 대시 보드를 쿠버네티스 클러스터에 설치할 수 있다.
% kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
일반적인 경우에는 위의 스크립트로 설치가 가능하지만, 구글 클라우드 쿠버네티스 엔진의의 경우에는 설치 중에 권한 관련 에러가 나올 수 있는데, 구글 클라우드 쿠버네티스 엔진의 경우에는 보안을 이유로 일반적인 쿠버네티스보다 권한 설정 레벨이 높게 설정되어 있기 때문이다. 구글 클라우드 쿠버네티스 엔진에서 대시보드를 설치하고자할때에는 위의 스크립트를 실행하기 전에 먼저 아래 명령어를 이용해서, 현재 사용자 계정에 대해서 cluster-admin 롤을 부여해줘야 한다.
%kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole cluster-admin --user $(gcloud config get-value account)
대시 보드 접속
대시보드 설치가 끝났으면, 대시보드를 접속해보자
대시보드는 외부 서비스로 제공되지 않고, 내부 IP로만 접속이 가능한데, 클러스터 외부에서 접근하려면 kubectl proxy를 이용하면, 간단하게 접근이 가능하다.
kubectl proxy는 로컬 머신 (예를 들어 노트북)과 쿠버네티스 클러스터간의 통신을 프록싱해줘서, 로컬 머신에서 쿠버네티스 클러스터내의 HTTP 서비스를 접근할 수 있도록 해준다.
사용 방법은 로컬 머신에서 간단하게
%kubectl proxy
명령을 실행해주면 localhost:8001 포트를 통해서 쿠버네티스 클러스터로 트래픽을 프록시 해준다.
위와 같이 proxy를 실행한후에, 아래 URL로 접근을 하면, 대시보드 콘솔에 접근할 수 있다.
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
URL에 접근하면 아래와 같이 로그인 창이 나타난다.
사용자 계정 및 토큰등에 대해서는 보안 부분에서 별도로 다루기로 하겠다.
대쉬보드를 사용하기 위해서는 사용자 인증이 필요한데, 간단하게 인증을 위한 토큰을 사용하는 방법을 이용하도록 하겠다.
토큰은 쿠버네티스 API 인증 메커니즘중의 하나로, 여기서는 admin-user라는 계정을 하나 만든후에, 그 계정에, 클러스터 관리자롤을 부여한 후에, 그 사용자의 토큰을 사용하는 방법을 사용하겠다.
먼저 아래 스크립트를 이용해서 admin-user 라는 사용자를 생성한다.
admin-user.yaml 파일
apiVersion: v1
kind: ServiceAccount
metadata:
name: admin-user
namespace: kube-system
다음 아래 스크립트를 이용해서 cluster-admin 롤을 앞에서 생성한 admin-user에 부여한다.
admin-rolebinding.yaml 파일
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: admin-user
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin-user
namespace: kube-system
다음 아래 명령어를 이용하면 admin-user의 토큰 값을 알 수 있다.
% kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')
명령을 실행하면 아래와 같이 토큰이 출력된다.
이 토큰 값을 앞의 로그인 창에 입력하면, 대시보드에 로그인할 수 있다.
대시 보드에 로그인하면 아래와 같이 노드나, Pod, 서비스등 쿠버네티스의 자원의 대부분의 정보에 대한 모니터링이 가능하다.
또한 kubectl CLI 명령을 사용하지 않고도 손쉽게 Deployment 등 각종 자원을 생성할 수 있다.
로그 부분에 들어가면 아래와 같이 로그 정보를 볼 수 있다
재미있는 기능중 하나는 아래 그림과 같이 특정 Pod의 컨테이너를 선택하면, 웹콘솔상에서 해당 컨테이너로 SSH 로그인이 가능하다.
여기서 다룬 쿠버네티스 대시보드 설정 및 로그인 부분은 프록시 사용, 로그인을 토큰을 사용하는 등, 운영환경에는 적절하지 않은 방법이다. 개발환경이나 테스트 용도로만 사용하도록 하고, 운영 환경에서는 사용자 계정 시스템 생성과 적절한 권한 배정을 한 후에, 적절한 보안 인증 시스템을 마련한 후에 적용하도록 하자.
'클라우드 컴퓨팅 & NoSQL > 도커 & 쿠버네티스' 카테고리의 다른 글
쿠버네티스 #15 - 모니터링 (3/3) 구글 스택드라이버를 이용한 쿠버네티스 모니터링 (0) | 2018.08.11 |
---|---|
쿠버네티스 #14 - 모니터링 (2/3) Prometheus (0) | 2018.07.18 |
쿠버네티스 #12 - Secret (2) | 2018.07.07 |
쿠버네티스 #11 - ConfigMap (1) | 2018.07.06 |
쿠버네티스 #10 - 배포 (1) | 2018.06.30 |