클라우드 컴퓨팅 & NoSQL/google cloud

데이타 스트리밍 분석 플랫폼 DataFlow - #2 개념 소개 (2/2)

Terry Cho 2016. 7. 22. 00:04

데이타 스트리밍 분석 플랫폼 Dataflow 개념 잡기 #2/2

(트리거, 이벤트 타임, 워터마크 개념)


조대협 (http://bcho.tistory.com)


앞글 http://bcho.tistory.com/1122 에 의해서 Dataflow에 대한 개념에 대해서 계속 알아보자

트리거

윈도우와 더블어서 Dataflow 프로그래밍 개념중에서 유용한 개념중의 하나가 트리거이다. 트리거는 처리중인 데이타를 언제 다음 단계로 넘길지를 결정하는 개념이다. 특히 윈도우의 개념과 같이 생각하면 좋은데, 윈도우는 일반적으로 윈도우가 종료되는 시간에 그 데이타를 다음 Transform으로 넘기게 된다.


그런데 이런 의문이 생길 수 있다. “윈도우의 크기가 클때 (예를 들어 한시간), 한시간을 기다려야 데이타를 볼 수 있는 것인가? 그렇다면 한 시간 후에 결과를 본다면 이것을 실시간 분석이라고 할 수 있는가?”

그래서 여기서 트리거의 개념이 나온다.

예를 들어 한시간 윈도우가 있더라도, 윈도우가 끝나지 않더라도 현재 계산 값을 다음 Transform으로 넘겨서결과를 볼 수 있는 개념이다. 1분 단위로 트리거를 걸면 1분 결과를 저장하고, 2분째도 결과를 저장하고, 3분째도…. 60분째에도 매번 결과를 업데이트 함으로써, 윈도우가 종료되기 전에도 실시간으로 결과를 업데이트 할 수 있게 된다.


트리거의 종류

그렇다면 이러한 트리거는 앞에서 언급한 시간 단위의 트리거만 있을까? Dataflow는 상당히 여러 종류의 트리거를 지원한다.


  • Time trigger (시간 기반 트리거) : 시간 기반 트리거는 일정 시간 주기로 트리거링을 해주는 트리거 이다. 1분 단위, 1초 단위 같이 일정 주기를 지정하거나, “윈도우 시작후 2분후 한번과 윈도우 종료후 한번"과 같이 절대적인 시간을 기준으로도 정의가 가능하다.

  • Element Count (데이타 개수 기반 트리거) : 다음은 개수 기반인데, 예를 들어 “어떤 데이타가 100번 이상 들어오면 한번 트리거링을 해라” 또는 “매번 데이타가 100개씩 들어올때 마다 트리거링을 해라" 라는 형태로 정의가 가능하다.

  • Punctuations  (이벤트 기반 트리거) : Punctuations는 엄밀하게 번역하면 “구두점" 이라는 의미인데, 구두점 처럼 특정 데이타가 들어오는 순간에, 트리거링을 하는 방법이다.

트리거 조합

이러한 트리거는 하나의 트리거 뿐 아니라, 여러개의 트리거를 동시에 조합하여 사용이 가능하다.

  • AND : AND 조건으로 두개의 트리거의 조건이 만족해야 트리거링이 된다. 예를 들어, Time Trigger가 1분이고, Element Count 트리거가 100개이면, 윈도우가 시작된 1분 후에, Element Count가 100개가 되면 트리거링이 된다.

  • OR : OR 조건으로 두개의 트리거의 조건 중 하나만 만족하면 트리거링이 된다.

  • Repeat : Repeat는 트리거를 반복적으로 수행한다. Element Count 트리거 10개를 반복으로 수행하면, 매 10개 마다 트리거링이 된다. Time 트리거를 1분 단위로 반복하면, 매 1분 마다 트리거링이 된다.

  • Sequence : Sequence 트리거는 등록된 트리거를 순차적으로 실행한다. Time 트리거 1분을 걸고 Element count 트리거 100개를 걸면, 윈도우 시작후 1분 후 트리거링인 된후, 그 후 부터 Element 가 100개 들어오면 두번째 트리거링이 발생하고 트리거링이 종료 된다.


트리거 결과의 누적

그러면 트리거링이 될때 마다 전달 되는 데이타는 어떻게 될까라는 질문이 나올 수 있는데. 무슨 이야기인가 하면 윈도우 내에서 트리거가 발생할때, 이전 데이타에 대한 처리를 어떻게 할것인가이다.


데이타가 A,B,C,D,E,F 가 들어왔다고 가정하자. 트리거가 C 다음 발생했다고 했을때, 윈도우가 끝난 F에는 어떤 값이 리턴이 될까?

첫번째 트리거링에는 당연히 A,B,C 가 전달된다.

윈도우가 끝나면 A,B,C,D,E,F 가 전달되는 것이 맞을까 아니면 트리거링 된 이후의 값인 D,E,F 만 전달되는 것이 맞을까?

맞는 건 없고, 옵션으로 지정이 가능하다.

  • Accumulating
    Accumulating은 트리거링을 할때 마다 윈도우 내에서 그때까지의 값을 모두 리턴한다.

  • Discarding
    트리거링 한 후에, 이전 값은 더이상 리턴하지 않고, 그 이후 부터 다음 트리거링 할때까지의 값만을 리턴한다.

예를 들어서 보자


다음과 같은 윈도우가 있고, 3번, 23번, 10번에서 트리거링이 된다고 했을때,

Accumulating mode의 경우

  • 첫번째 트리거 후 : [5,8,3]

  • 두번째 트리거 후 : [5,8,3,15,19,23]

  • 세번째 트리거 후 : [5,8,3,15,19,239,13,10]

와 같이 값이 반환되고

Discarding mode의 경우

  • 첫번째 트리거 후 [5,8,3]

  • 두번째 트리거 후 [15,19,23]

  • 세번째 트리거 후 [9,13,10]

이 반환된다.

데이타 지연에 대한 처리 방법

실시간 데이타 분석은 특성상 데이타의 전달 시간이 중요한데, 데이타는 모바일 클라이언트 등에서 인터넷을 통해서 데이타가 서버로 전송되는 경우가 많기 때문에, 데이타의 실제 도달 시간이 들쭉날쭉 하다. 이러다 보니 데이타의 도착 순서나 지연등이 발생하는데, 이에 대한 처리가 필요하다. 먼저 데이타 도달 시간의 개념을 이해하려면, 이벤트 타임과 프로세싱 타임의 개념을 먼저 이해해야 한다.

이벤트 타임과 프로세싱 타임

모바일 단말에서 다음과 같이 A,B,C,D의 데이타를 1시1초, 1시2초,3초,5초에 보냈다고 하자.


서버에 도착해서 Dataflow에 도착하는 시간은 물리적으로 서버와 단말간의 거리 차이가 있기 때문에 도착 시간은 단말에서 데이타가 발생한 시간보다 느리게 되며, 또한 각 단말의 위치나 단말이 연결되어 있는 네트워크 상황이 다르기 때문에 순차적으로 도착하는 것이 아니라, 늦게 보낸 데이타가 더 빨리 도착할 수 도 있다.

아래 그림을 보면 A데이타는 1시1초에 단말에서 생성되었지만 서버에 도착한 시간은 1시2초가 된다. C,D의 경우, 순서가 바뀌어서 도착하였다.



이렇게 실제로 데이타가 발생한 시간을 이벤트 타임, 그리고 서버에 데이타가 도착한 시간을 프로세싱 타임이라고 정의한다.


이 프로세싱 타임은 네트워크 상황이나 데이타에 크기에 따라 가변적으로 변하기 때문에, 이벤트 타임과 프로세싱 타임의 상관 관계를 그래프로 표현해보면 다음과 같아진다.


가장 이상적인 결과는 이벤트 타임과 프로세싱 타임이 동일한 것이겠지만 불가능하고, 위의 그림처럼 이벤트 타임보다 프로세싱 타임이 항상 늦게 되고, 이벤트 타임과 프로세싱 타임의 차이는 매 순간 다르게 된다.

워터 마크 (Water Mark)

이렇게 위의 그림과 같이 실제 데이타가 시스템에 도착하는 시간을 예측 하게 되는데, 이를 워터 마크라고 한다. 위의 그림에서 “실제 처리 그래프"로 표시되는 부분을 워터마크라고 생각하면 된다. 이 예측된 시간을 기반으로 윈도우의 시스템상의 시작 시간과 종료 시간을 예측 하게 된다.

지연 데이타 처리 방법

윈도우 처리 관련해서, 실제 발생한 시간과 도착 시간이 달라서, 처리 시간내에 못 들어오는 경우가 발생할 수 있다. 아래 그림을 보면, 실제 윈도우는 1시1초~1시6초까지의 데이타를 처리하기를 바라고 정의했을 수 있는데, 시스템에서는 이 윈도우의 값이 프로세싱 타임 기준으로 (워터 마크를 기준으로 연산함) 1시2초~1시6초에 도착하기를 기대하고 있는데, 데이타 C의 경우에는 기대했던 프로세싱 타임에 도착하지 않았기 때문에 이 데이타는 연산에서 누락될 수 있다.



비단 늦게 도착한 데이타 뿐만 아니라, 시스템이 예측한 프로세싱 타임 보다 일찍 데이타가 도착할 수 있는데, 이런 조기 도착한 데이타와 지연 도착한 데이타에 대한 처리는 어떻게 해야 할까?

Dataflow에서는 이런 조기 도착이나 지연 데이타에 대한 처리 메카니즘을 제공한다.

윈도우를 생성할때, withAllowedLateness라는 메서드를 사용하면, 늦게 도착하는 데이타에 대한 처리 기간을 정의할 수 있다.


PCollection<String> items = ...;

 PCollection<String> fixed_windowed_items = items.apply(

   Window.<String>into(FixedWindows.of(1, TimeUnit.MINUTES))

         .withAllowedLateness(Duration.standardDays(2)));

https://cloud.google.com/dataflow/model/windowing#managing-time-skew-and-late-data


위의 예제는 1분 단위의 Fixed Window를 정의하고, 최대 2일까지 지연 도착한 데이타 까지 처리할 수 있도록 정의한 예제이다.


지금까지 간단하게 dataflow를 이용한 스트리밍 데이타 처리의 개념에 대해서 알아보았다.