분류 전체보기 1294

텐서플로우의 세션,그래프 그리고 함수의 개념

텐서플로우의 세션,그래프 그리고 함수의 개념 조대협 (http://bcho.tistory.com) 그래프와 세션에 대한 개념이 헷갈려서, 좋은 샘플이 하나 만들어져서 공유합니다.텐서 플로우의 기본 작동 원리는 세션 시작전에 그래프를 정의해놓고, 세션을 시작하면 그 그래프가 실행되는 원리인데, 그래서 이 개념이 일반적인 프로그래밍 개념과 상의하여 헷갈리는 경우가 많다 즉, 세션을 시작해놓고 함수를 호출하는 케이스들이 대표적인데http://bcho.tistory.com/1170 코드를 재 사용해서 이해해보도록 하자 이 코드를 보면, tt = time * 10 을 세션 시작전에 정의해놨는데, 이 코드를 함수로 바꾸면 아래와 같은 형태가 된다. 변경전 코드 def main(): print 'start sessi..

텐서플로우-배치 처리에 대해서 이해하자

텐서플로우 배치 처리 조대협 (http://bcho.tistory.com) 텐서플로우에서 파일에서 데이타를 읽은 후에, 배치처리로 placeholder에서 읽는 예제를 설명한다.텐서의 shape 의 차원과 세션의 실행 시점등이 헷갈려서 시행착오가 많았기 때문에 글로 정리해놓는다.큐와 파일처리에 대한 기본적인 내용은 아래글http://bcho.tistory.com/1163http://bcho.tistory.com/1165를 참고하기 바란다.데이타 포맷읽어 드릴 데이타 포맷은 다음과 같다. 비행기 노선 정보에 대한 데이타로 “년도,항공사 코드, 편명"을 기록한 CSV 파일이다.2014,VX,1212014,WN,18732014,WN,2787배치 처리 코드이 데이타를 텐서 플로우에서 읽어서 배치로 place h..

클라우드에 최적화된 하둡 배포 아키텍쳐 생각하기

클러스터 상에서 하둡 배포 아키텍쳐 조대협 (http://bcho.tistory.com) 오늘 빅데이타 관련 교육을 받다가 클라우드 상에서 하둡 클러스터 활용에 대한 영감을 받은 부분이 있어서 정리해보고자 한다. 하둡의 경우에는 On-prem 환경에 적절하게 디자인이 된 오픈 소스라서, 이걸 클라우드에서 사용할 경우에도 on-prem에서 사용하는 형태와 유사하게 사용하는 경우가 많다. 일종의 습관 또는 관성이라고 해야 하나? 인프라가 바뀌면 그 장점에 맞는 아키텍쳐를 선택해야 하는데, 이 부분을 놓치고 있지 않았나 싶다. Job별 클러스터를 생성하는 아키텍쳐job을 수행하는 방법을 보면, 일반적으로 On-Prem에서 사용하는 방법은 하나의 하둡 클러스터에 Job을 실행하고 Job이 끝나면 다음 Job을 ..

구글 클라우드의 서버리스 서비스 Cloud Functions

Google Cloud Function 조대협 (http://bcho.tistory.com)기본 개념구글 클라우드 펑션은 서버리스 아키텍쳐를 구현하기 위한 구글 클라우드 서비스이다. 아마존 웹서비스의 람다와 같은 기능이라고 보면 된다. 이벤트가 발생하면, 이벤트에 따라서, 코드를 수행해주는 형태인데, 이벤트의 종류는 다음과 같다.Pub/Sub 메세지 큐에서 들어오는 메세지Firebase 모바일 SDK에 의해서 발생되는 이벤트Google Cloud Storage 서비스에 의해서 파일이 생성,수정,삭데 되었을때마지막으로 HTTP로 들어오는 요청 (REST API) 개발환경프로그래밍 언어는 node.js 6.9.1 버전을 기반으로 되어 있으며, node.js의 package.json을 이용하여 왠만한 의존성 ..

연예인 얼굴 인식 서비스를 만들어보자 #2-CSV에 있는 이미지 목록을 텐서로 읽어보자

연예인 얼굴 인식 서비스를 만들어보자 #2 CSV 목록에 있는 이미지 데이타를 읽어보자 조대협 (http://bcho.tistory.com) 앞의 글(http://bcho.tistory.com/1166) 에서는 얼굴 인식 데이타를 확보하고, 전처리를 통해서 96x96 사이즈로 만드는 것을 살펴보았다.그러면, 이 전처리가 끝난 데이타를 텐서플로우에서 학습용으로 쓰기 위해서 데이타를 읽어 들이는 것을 살펴보겠다. 파일에서 학습데이타를 읽는 방법과 큐에 대한 설명은 아래 두 글을 참고하기 바란다.http://bcho.tistory.com/1165http://bcho.tistory.com/1163파일 포맷파일 포맷은 다음과 같다/Users/terrycho/traning_datav2/training/007BIL_..

연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습 데이타 준비하기

연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습데이타 준비하기 조대협 (http://bcho.tistory.com) CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다. 이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face )얼굴 데이타를 내려 받자먼저 얼굴 인식 모델을 만들려면, ..

텐서플로우 - 파일에서 학습데이타를 읽어보자#2 (Reader와 Decoder)

텐서플로우 - 파일에서 학습데이타를 읽어보자#2 CSV 파일을 읽어보자 조대협 (http://bcho.tistory.com) 이 글은 http://bcho.tistory.com/1163 의 두번째 글이다. 앞의 글을 먼저 읽고 읽기를 권장한다.앞의 글에서는 트레이닝 파일명의 목록을 읽어서 큐에 넣고, 파일명을 하나씩 읽어오는 처리 방법에 대해서 알아보았다. 이번 글에서는 그 파일들에 있는 데이타를 읽어서 파싱한 후, 실제 트레이닝 세션에 학습용 데이타로 불러들이는 방법을 설명하도록 한다.파일에서 데이타 읽기 (Reader)finename_queue에 파일명이 저장되었으면, 이 파일들을 하나씩 읽어서 처리하는 방법을 알아본다.파일에서 데이타를 읽어오는 컴포넌트를 Reader라고 한다. 이 Reader들은 ..

구글의 IOT 솔루션

구글의 IOT 솔루션 조대협 (http://bcho.tistory.com) 오늘 샌프란시스코 구글 NEXT 행사에서 IOT 솔루션에 대한 소개가 있었는데, 내용이 괜찮아서 정리를 해놓는다. 구글의 특징은 안드로이드 플랫폼, 클라우드 , 분석 플랫폼, 개발자 에코 시스템 등 End to End 에 걸쳐서 상당히 다양한 포트폴리오를 가지고 있다는 것이 장점인데 이를 잘 녹여낸 아키텍쳐 구성이다.디바이스 OSIOT는 라즈베리파이와 같은 임베디드 디바이스를 사용하는 것이 일반적인데, 이런 임베디드 시스템 운용에 어려운 점중의 하나가 보안이다.장비에 따라서 보안적인 문제가 없는지 체크를 해야 하고, 주기적으로 기능 및 보안에 대한 업데이트를 해줘야 하는데, 구글의 Android IOT (https://develo..

텐서플로우-파일에서 학습 데이타를 읽어보자 #1 (큐 사용 방법과 구조)

텐서플로우 - 파일에서 학습데이타를 읽어보자#1 조대협 (http://bcho.tistory.com) 텐서플로우를 학습하면서 실제 모델을 만들어보려고 하니 생각보다 데이타 처리에 대한 부분에서 많은 노하우가 필요하다는 것을 알게되었다. MNIST와 같은 예제는 데이타가 다 이쁘게 정리되어서 학습 하기 좋은 형태로 되어 있지만, 실제로 내 모델을 만들고 학습을 하기 위해서는 데이타에 대한 정재와 분류 작업등이 많이 필요하다. 이번글에서는 학습에 필요한 데이타를 파일에서 읽을때 필요한 큐에 대한 개념에 대해서 알아보도록 한다. 피딩 (Feeding) 개념 복습 텐서플로우에서 모델을 학습 시킬때, 학습 데이타를 모델에 적용하는 방법은 일반적으로 피딩 (feeding)이라는 방법을 사용한다. 메모리상의 어떤 변..

텐서플로우에서 이미지 데이타 처리 성능 향상방법

텐서플로우에서 이미지 데이타 처리 성능 향상방법 이미지 인식 모델을 만들다가 파일 포맷 성능 향상 관련해서 좋은 팁을 찾아서 메모 if you are working with >O(1000) JPEG images, keep in mind that it is extremely inefficient to individually ready 1000's of small files. This will slow down your training quite a bit.A more robust and faster solution to convert a dataset of images to a sharded TFRecord of Example protos. Here is a fully worked script for co..