블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 

'tensorflow'에 해당되는 글 33

  1. 2017.08.21 Tensorflow Object Detection API를 이용한 물체 인식 #2-동물 사진을 학습 시켜보자 (1)
  2. 2017.08.16 Tensorflow Object Detection API를 이용한 물체 인식 #1-설치와 사용하기
  3. 2017.08.15 얼굴 인식 모델을 만들어보자 #6 - CloudML을 이용하여 예측하기
  4. 2017.08.10 텐서플로우 트레이닝 데이타 포맷인 *.tfrecord 파일 읽고 쓰기
  5. 2017.07.31 얼굴 인식 모델을 만들어보자 #5-학습된 모델을 Export 하기 (1)
  6. 2017.07.20 Wide and deep network 모델 활용하기
  7. 2017.06.26 텐서플로우에서 모델 export시 그래프를 다시 그리는 이유
  8. 2017.06.25 구글 프로토콜 버퍼 (Protocol buffer)
  9. 2017.06.24 텐서플로우에서 array index를 문자열로 변환하는 방법
  10. 2017.06.22 얼굴 인식 모델을 만들어보자 #4 -클라우드를 이용하여 학습 시키기
  11. 2017.06.19 얼굴 인식 모델을 만들어보자 #3 - 학습된 모델로 예측하기 (2)
  12. 2017.06.15 연예인 얼굴 인식 모델을 만들어보자 - #2. CNN 모델을 만들고 학습시켜 보자 (8)
  13. 2017.06.10 머신러닝 시스템 프로세스와 아키텍쳐 (6)
  14. 2017.05.16 연예인 얼굴 인식 모델을 만들어보자 - #1. 학습 데이타 준비하기 (2)
  15. 2017.04.24 머신러닝 모델 개발 삽질기
  16. 2017.04.10 머신러닝 라벨 데이타 타입에 대해서
  17. 2017.04.03 텐서플로우의 세션,그래프 그리고 함수의 개념
  18. 2017.04.03 텐서플로우-배치 처리에 대해서 이해하자
  19. 2017.03.15 연예인 얼굴 인식 서비스를 만들어보자 #2-CSV에 있는 이미지 목록을 텐서로 읽어보자 (4)
  20. 2017.03.14 연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습 데이타 준비하기 (1)
 

Object Detection API에 애완동물 사진을 학습 시켜 보자


조대협 (http://bcho.tistory.com)


Object Detection API에 이번에는 애완동물 사진 데이타를 학습시켜 보도록 한다.

애완 동물 학습 데이타의 원본은  Oxford-IIIT Pets lives  http://www.robots.ox.ac.uk/~vgg/data/pets/ 에 있다. 약 37개의 클래스에, 클래스당 200개 정도의 이미지를 가지고 있다.



이번 글에서는 이 애완동물 데이타를 다운 받아서, Object Detection API에 학습 시키는 것까지 진행을 한다.

데이타를 다운로드 받은 후, Object Detection API에 학습 시키기 위해서, 데이타 포맷을 TFRecord 형태로 변환한 후, 학습을 하는 과정을 설명한다.


주의할점 : 이 튜토리얼은 총 37개의 클래스 약 7000장의 이미지를 학습시키는데, 17시간 이상이 소요되며, 구글 클라우 CloudML의 텐서플로우 클러스터에서 분산 러닝을 하도록 설명하고 있는데, 많은 비용이 들 수 있다. 전체 흐름과 과정을 이해하기 위해서는 17시간을 풀 트레이닝 시키지 말고 학습 횟수를 줄이거나 아니면 중간에서 학습을 멈춰서 비용이 많이 나오지 않도록 하는 것을 권장한다.

학습 데이타 다운로드 받기

%curl -O http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz

%curl -O http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

※ 맥이기 때문에, curl -O 를 사용했는데, Linux의 경우에는 wget을 사용하면 된다.

파일을 다운로드 받았으면 압축을 풀어보자

  • images.tar.gz에는 애완동물의 학습용 이미지가 들어가 있다.

  • annotations.tar.gz 는 각 이미지에 대한 메타 데이타가 들어있다. 이미지 마다 나타난 동물의 종류, 사진상 동물의 위치 (박스)

TFRecord 파일 포맷으로  컨버팅 하기

압축을 푼 메타데이타와 이미지 파일을 이용해서 tfrecord 파일 형태로 컨버팅을 해야 한다. Tfrecord 내에는 이미지 바이너리, 이미지에 대한 정보 (이미지 크기, 인식할 물체의 위치, 라벨)등이 들어간다. 상세 데이타 포맷에 대해서는 다음글에서 설명하도록 한다.

이 데이타를 가지고 tfrecord 타입으로 컨버팅 하는 코드는 object_detection/create_pet_tf_record.py

에 이미 작성되어 있다. 아래 코드를 이용해서 실행해주면 자동으로 pet_train.record에 학습용 데이타를 pet_val.record에 테스트용 데이타를 생성해준다.


python object_detection/create_pet_tf_record.py \
   --label_map_path=object_detection/data/pet_label_map.pbtxt \
   --data_dir=`pwd` \
   --output_dir=`pwd`

학습 환경 준비하기

데이타가 준비되었으면 학습을 위한 환경을 준비해야 한다.

학습은 구글 클라우드 플랫폼의 CloudML을 사용한다. CloudML은 구글 클라우드 플랫폼의 Tensorflow managed 서비스로, Tensorflow 클러스터 설치나 운영 필요 없이 간단하게 명령어 만으로 여러대의 머신에서 학습을 가능하게 해준다.

CloudML을 사용하기 위해서는 몇가지 환경 설정을 해줘야 한다.

  • 먼저 학습용 데이타 (tfrecord)파일을 구글 클라우드 스토리지 (GCS)로 업로드 해야 한다.

  • Object Detection API에서 사물 인식에 사용된 모델의 체크 포인트를 업로드 해야 한다.

  • 클라우드에서 학습을 하기 때문에, 텐서플로우 코드를 패키징해서 업로드해야 한다.

학습 데이타 업로드 하기

데이타를 업로드하기전에, 구글 클라우드 콘솔에서 구글 클라우드 스토리지 버킷을 생성한다.

생성된 버킷명을 YOUR_GCS_BUCKET 환경 변수에 저장한다.

export YOUR_GCS_BUCKET=${YOUR_GCS_BUCKET}


다음 gsutil 유틸리티를 이용하여 YOUR_GCS_BUCKET 버킷으로 학습용 데이타와, 라벨맵 데이타를 업로드 한다.


gsutil cp pet_train.record gs://${YOUR_GCS_BUCKET}/data/pet_train.record
gsutil cp pet_val.record gs://${YOUR_GCS_BUCKET}/data/pet_val.record
gsutil cp object_detection/data/pet_label_map.pbtxt gs://${YOUR_GCS_BUCKET}/data/pet_label_map.pbtxt


학습된 모델 다운로드 받아서 업로드 하기

다음은 학습된 모델을 받아서, 그중에서 체크포인트를  GCS에 올린다.


curl -O http://storage.googleapis.com/download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz

tar -xvf faster_rcnn_resnet101_coco_11_06_2017.tar.gz
gsutil cp faster_rcnn_resnet101_coco_11_06_2017/model.ckpt.* gs://${YOUR_GCS_BUCKET}/data/


체크 포인트를 다운받아서 업로드 하는 이유는, 트랜스퍼 러닝 (Transfer Learning)을 하기 위함인데, 하나도 학습이 되지 않은 모델을 학습을 시키는데는 시간이 많이 들어간다. 트랜서퍼러닝은 이미 학습이 되어 있는 모델로 다른 데이타를 학습 시키는 방법인데, 사물을 인식하는 상태로 학습되어 있는 모델을 다른 물체 (여기서는 애완동물)를 학습하는데 사용하면 학습 시간을 많이 줄 일 수 있다. 이런 이유로, 사물 인식용으로 학습된 체크포인트를 로딩해서 이 체크포인트 부터 학습을 하기 위함이다.

설정 파일 변경하기

Object Detection API를 사용하기 위해서는 학습에 대한 설정 정보를 정의해야 한다.

이 설정 파일안에는 학습 데이타의 위치, 클래스의 수 및 각종 하이퍼 패러미터들이 정의되어 있다. 패러미터에 대한 자세한 설명은  https://github.com/tensorflow/models/blob/master/object_detection/g3doc/configuring_jobs.md를 참고하기 바란다. 이 예제에서는 설정 파일을 따로 만들지 않고 애완동물 사진 학습을 위해서 미리 정의되어 있는 템플릿 설정 파일을 이용하도록 한다.  설정 파일은 미리 정의된 모델에 따라 다른데, 여기서는 faster_rcnn_resnet101_pets 모델을 사용하기 때문에 object_detection/samples/configs/faster_rcnn_resnet101_pets.config 파일을 사용한다.


파일의 위치가 PATH_TO_BE_CONFIGURED 문자열로 정의되어 있는데, 이를 앞에서 만든 GCS 버킷명으로 변경해야 하기 때문에, 아래와 같이 sed 명령을 이용하여 해당 문자열을 변경하자


Linux : sed -i "s|PATH_TO_BE_CONFIGURED|"gs://${YOUR_GCS_BUCKET}"/data|g" object_detection/samples/configs/faster_rcnn_resnet101_pets.config


Max : sed -i ‘’ -e "s|PATH_TO_BE_CONFIGURED|"gs://${YOUR_GCS_BUCKET}"/data|g" object_detection/samples/configs/faster_rcnn_resnet101_pets.config


설정 파일 작성이 끝났으면 이를 GCS 버킷에 올린 후에, 학습시에 사용하도록 한다. 다음 명령어는 설정 파일을 GCS 버킷에 올리는 명령이다.

gsutil cp object_detection/samples/configs/faster_rcnn_resnet101_pets.config \
   gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config


텐서플로우 코드 패키징 및 업로드

학습에 사용할 데이타와 체크포인트등을 업로드 했으면, 다음 텐서플로우 코드를 패키징 해야 한다. 이 글에서는 학습을 로컬 머신이 아니라 구글 클라우드의 텐서플로우 메니지드 서비스인 CloudML을 사용하는데, 이를 위해서는 텐서플로우코드와 코드에서 사용하는 파이썬 라이브러리들을 패키징해서 올려야 한다.


Object Detection API 모델 디렉토리에서 다음 명령어를 실행하면, model 디렉토리와 model/slim 디렉토리에 있는 텐서플로우 코드 및 관련 라이브러리를 같이 패키징하게된다.


# From tensorflow/models/
python setup.py sdist
(cd slim && python setup.py sdist)


명령을 실행하고 나면 패키징된 파일들은 dist/object_detection-0.1.tar.gzslim/dist/slim-0.1.tar.gz 에 저장되게 된다.

학습하기

구글 CloudML을 이용하여 학습하기. 그러면 학습을 시작해보자. 학습은 200,000 스탭에 총 17시간 정도가 소요되며, 비용이 3000$ 이상이 소요되니, 비용이 넉넉하지 않다면, 학습을 중간에 중단 시키기를 권장한다. 테스트 목적이라면 약 10~20분 정도면 충분하지 않을까 한다. 아니면 앞의 config 파일에서 trainning step을 작게 낮춰서 실행하기 바란다.


# From tensorflow/models/
gcloud ml-engine jobs submit training `whoami`_object_detection_`date +%s` \
   --job-dir=gs://${YOUR_GCS_BUCKET}/train \
   --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
   --module-name object_detection.train \
   --region asia-east1 \
   --config object_detection/samples/cloud/cloud.yml \
   -- \
   --train_dir=gs://${YOUR_GCS_BUCKET}/train \
   --pipeline_config_path=gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config


학습을 시킬 텐서플로우 클러스터에 대한 정보는 object_detection/samples/cloud/cloud.yml 에 들어 있다. 내용을 보면,

trainingInput:

 runtimeVersion: "1.0"

 scaleTier: CUSTOM

 masterType: standard_gpu

 workerCount: 5

 workerType: standard_gpu

 parameterServerCount: 3

 parameterServerType: standard


scaleTier로 클러스터의 종류를 정의할 수 있는데, 서버 1대에서 부터 여러대의 클러스터까지 다양하게 적용이 가능하다. 여기서는 모델이 크기가 다소 크기 때문에, Custom으로 설정하였다.


역할

서버 타입

댓수

Master server

standard_gpu

1

Worker

standard_gpu

5

Parameter Server

standard

5


각 서버의 스펙은 상세 스펙은 나와있지 않고, 상대값으로 정의되어 있는데 대략 내용이 다음과 같다.



출처 https://cloud.google.com/ml-engine/docs/concepts/training-overview#machine_type_table




학습을 시작하고 나면 CloudML 콘솔에서 실행중인 Job을 볼 수 있고, Job을 클릭하면 자원의 사용 현황을 볼 수 있다. (CPU와 메모리 사용량)



학습을 시작한 후에, 학습된 모델을 Evaluate할 수 있는데, Object Detection API에서는 학습 말고 Evaluation 모델을 별도로 나눠서, 잡을 나눠서 수행하도록 하였다. 학습중에 생성되는 체크포인트 파일을 읽어서 Evaluation을 하는 형태이다.

다음을 Evaluation을 실행하는 명령어인데, 위의 학습 작업이 시작한 후에, 한시간 정도 후부터 실행해도 실행 상태를 볼 수 있다.


# From tensorflow/models/
gcloud ml-engine jobs submit training `whoami`_object_detection_eval_`date +%s` \
   --job-dir=gs://${YOUR_GCS_BUCKET}/train \
   --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
   --module-name object_detection.eval \
   --region asia-east1 \
   --scale-tier BASIC_GPU \
   -- \
   --checkpoint_dir=gs://${YOUR_GCS_BUCKET}/train \
   --eval_dir=gs://${YOUR_GCS_BUCKET}/eval \
  --pipeline_config_path=gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config


학습 진행 상황 확인하기

학습이 진행중에도, Evaluation을 시작했으면, Tensorboard를 이용하여 학습 진행 상황을 모니터링 할 수 있다. 학습 진행 데이타가 gs://${YOUR_GCS_BUCKET} 에 저장되기 때문에, 이 버킷에 있는 데이타를 Tensorboard로 모니터링 하면 된다.

실행 방법은 먼저 GCS 에 접속이 가능하도록 auth 정보를 설정하고, Tensorboard에 로그 파일 경로를

GCS 버킷으로 지정하면 된다.

gcloud auth application-default login
tensorboard --logdir=gs://${YOUR_GCS_BUCKET}


아래는 실제 실행 결과이다.



Evaluataion이 끝났으면, 테스트된 이미지도 IMAGES 탭에서 확인이 가능하다.



학습된 모델을 Export 하기

학습이 완료되었으면, 이 모델을 예측 (Prediction)에 사용하기 위해서 Export 할 수 있다. 이렇게 Export 된 이미지는 나중에 다시 로딩하여 예측(Prediction)코드에서 로딩을 하여 사용이 가능하다.

${YOUR_GCS_BUCKET}에 가면 체크 포인트 파일들이 저장되어 있는데, 이 체크 포인트를 이용하여 모델을 Export 한다.



GCS 버킷에서 Export 하고자 하는 Check Point 번호를 선택한 후에 Export 하면 된다, 여기서는 200006 Check Point를 Export 해보겠다.


${CHECKPOINT_NUMBER} 환경 변수를

export CHECKPOINT_NUMBER=200006

으로 설정한 다음에 다음 명령어를 실행한다.


# From tensorflow/models
gsutil cp gs://${YOUR_GCS_BUCKET}/train/model.ckpt-${CHECKPOINT_NUMBER}.* .
python object_detection/export_inference_graph.py \

   --input_type image_tensor \

   --pipeline_config_path object_detection/samples/configs/faster_rcnn_resnet101_pets.config \

   --trained_checkpoint_prefix model.ckpt-${CHECKPOINT_NUMBER} \

   --output_directory output_inference_graph.pb


명령을 실행하고 나면 output_inference_graph.pb 디렉토리에 모델이 Export 된것을 확인할 수 있다.

다음 글에서는 직접 자신의 사진 데이타만을 가지고 학습과 예측을 하는 방법에 대해서 알아보겠다.


참고 자료



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


Tensorflow Object Detection API


조대협 ( http://bcho.tistory.com)


Tensorflow Object Detection API는, Tensorflow 를 이용하여 이미지를 인식할 수 있도록 개발된 모델로, 라이브러리 형태로 제공되며, 각기 다른 정확도와 속도를 가지고 있는 5개의 모델을 제공한다. 머신러닝이나 텐서플로우에 대한 개념이 거의 없더라도 라이브러리 형태로 손쉽게 사용할 수 있으며, 직접 사용자 데이타를 업로드해서 학습을 하여, 내 시나리오에 맞는 Object Detection System을 손쉽게 만들 수 있다.


Object Detection API를 설치하기 위해서는 텐서플로우 1.x 와 파이썬 2.7x 버전이 사전 설치되어 있어야 한다. 이 글에서는 파이썬 2.7.13과 텐서플로우 2.7.13 버전을 기준으로 하고, 맥에 설치하는 것을 기준으로 한다. 리눅스나 다른 플랫폼 설치는 원본 설치 문서 https://github.com/tensorflow/models/blob/master/object_detection/g3doc/installation.md 를 참고하기 바란다.


설치 및 테스팅

Protocol Buffer 설치

Object Detection API는 내부적으로 Protocol Buffer를 사용한다. MAC에서 Protocol Buffer를 설치 하는 방법은 https://github.com/google/protobuf/tree/master/pythonhttp://bcho.tistory.com/1182 를 참고하기 바란다.

설치가 되었는지를 확인하려면, 프롬프트 상에서 protoc 명령을 실행해보면 된다.

파이썬 라이브러리 설치

프로토콜 버퍼 설치가 끝났으면, 필요한 파이썬 라이브러리를 설치한다.

% pip install pillow

% pip install lxml

% pip install jupyter

% pip install matplotlib

Object Detection API 다운로드 및 설치

Object Detection API 설치는 간단하게, 라이브러리를 다운 받으면 된다. 설치할 디렉토리로 들어가서 git clone 명령어를 통해서, 라이브러리를 다운로드 받자

% git clone https://github.com/tensorflow/models

Protocol Buffer 컴파일

다음 프로토콜 버퍼를 사용하기 위해서 protoc로 proto 파일을 컴파일 한데, Object Detection API를 설치한 디렉토리에서 models 디렉토리로 들어간 후에, 다음 명령어를 수행한다.


protoc object_detection/protos/*.proto --python_out=.

PATH 조정하기

설치가 끝났으면 Object Detection API를 PATH와 파이썬 라이브러리 경로인 PYTHONPATH에 추가한다. 맥에서는 사용자 홈디렉토리의 .bash_profile 에 추가 하면되낟.

PYTHONPATH 환경 변수에 {Object Detection API 설치 디렉토리}/models/slim 디렉토리와 Object Detection API 설치 디렉토리}/models/models 디렉토리를 추가한다.

같은 디렉토리를 PATH에도 추가해준다.


export PYTHONPATH=$PYTHONPATH:/Users/terrycho/dev/workspace/objectdetection/models:/Users/terrycho/dev/workspace/objectdetection/models/slim

export PATH=$PATH:/Users/terrycho/dev/workspace/objectdetection/models:/Users/terrycho/dev/workspace/objectdetection/models/slim

테스팅

설치가 제대로 되었는지를 확인하기 위해서 {Object Detection API 설치 디렉토리}/models/ 디렉토리에서 다음 명령을 실행해보자


% python object_detection/builders/model_builder_test.py


문제 없이 실행이 되었으면 제대로 설치가 된것이다.


사용하기

설치가 끝났으면 실제로 사용해 보자, Object Detection API를 인스톨한 디렉토리 아래 models/object_detection/object_detection_tutorial.ipynb 에 테스트용 노트북 파일이 있다. 이 파일을 주피터 노트북 (http://jupyter.org/)을 이용하여 실행해보자.
(원본 코드 https://github.com/tensorflow/models/blob/master/object_detection/object_detection_tutorial.ipynb)


실행을 하면 결과로 아래와 같이 물체를 인식한 결과를 보여준다.




이 중에서 중요한 부분은 Model Preparation이라는 부분으로,

여기서 하는 일은 크게 아래 3가지와 같다.

  • Export 된 모델 다운로드

  • 다운로드된 모델 로딩

  • 라벨맵 로딩


Export 된 모델 다운로드

Object Detection API는 여러가지 종류의 미리 훈련된 모델을 가지고 있다.

모델 종류는 https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md 를 보면 되는데,  다음과 같은 모델들을 지원하고 있다.  COCO mAP가 높을 수 록 정확도가 높은 모델인데, 대신 예측에 걸리는 속도가 더 느리다.


Model name

Speed

COCO mAP

Outputs

ssd_mobilenet_v1_coco

fast

21

Boxes

ssd_inception_v2_coco

fast

24

Boxes

rfcn_resnet101_coco

medium

30

Boxes

faster_rcnn_resnet101_coco

medium

32

Boxes

faster_rcnn_inception_resnet_v2_atrous_coco

slow

37

Boxes


모델은 *.gz 형태로 다운로드가 되는데, 이 파일안에는 다음과 같은 내용들이 들어있다.

  • Check point (model.ckpt.data-00000-of-00001, model.ckpt.index, model.ckpt.meta)
    텐서플로우 학습 체크 포인트로, 나중에, 다른 데이타를 학습 시킬때 Transfer Learning을 이용할때, 텐서플로우 그래프에 이 체크포인트를 로딩하여, 그 체크포인트 당시의 상태로 학습 시켜놓을 수 있다. 이 예제에서는 사용하지 않지만, 다른 데이타를 이용하여 학습할때 사용한다.

  • 학습된 모델 그래프 (frozen_inference_graph.pb)
    학습이 완료된 그래프에 대한 내용을 Export 해놓은 파일이다. 이 예제에서는 이 모델 파일을 다시 로딩하여 Prediction을 수행한다.

  • Graph proto (pgrah.pbtxt)


기타 파일들

이외에도 기타 다른 파일들이 있는데, 다른 파일들은 이미 Object Detection API 안에 이미 다운로드 되어 있다.

  • 라벨맵
    라벨맵은 {Object Detection API 설치 디렉토리}/models/object_detection/data  디렉토리 안에 몇몇 샘플 모델에 대한 라벨맵이 저장되어 있다. 라벨맵은 모델에서 사용한 분류 클래스에 대한 정보로 name,id,display_name 식으로 정의되며, name은 텍스트 라벨, id는 라벨을 숫자로 표현한 값 (반드시 1부터 시작해야 한다.), display_name은 Prediction 결과를 원본 이미지에서 인식한 물체들을 박스처리해서 출력하는데 이때 박스에 어떤 물체인지 출력해주는 문자열에 들어가는 텍스트 이다.
    여기서 사용한 라벨맵은 mscoco_label_map.pbtxt 파일이 사용되었다.

  • 학습 CONFIG 파일
    모델 학습과 예측에 사용되는 각종 설정 정보를 저장한 파일로 위에서 미리 정의된 모델별로 각각 다른 설정 파일을 가지고 있으며 설정 파일의 위치는  {Object Detection API 설치 디렉토리}/models/object_detection/samples/configs 에 {모델명}.config 에 저장되어 있다.


다운로드된 모델과 라벨맵 로딩

위에서 많은 파일이 다운되고 언급되었지만 예측 (Prediction)에는 학습된 그래프 모델을 저장한 frozen_inference_graph.pb 파일과, 분류 라벨이 저장된 mscoco_label_map.pbtxt 두 개만 사용된다.


다음 코드 부분에서 모델을 다운 로드 받고, 모델 파일과 라벨 파일의 경로를 지정하였다.


# What model to download.

MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'

MODEL_FILE = MODEL_NAME + '.tar.gz'

DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'


# Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'


# List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')


NUM_CLASSES = 90


그리고 마지막 부분에 분류 클래스의 수를 설정한다. 여기서는 90개의 클래스로 정의하였다.

만약에 모델을 바꾸고자 한다면 PATH_TO_CKPT를 다른 모델 파일로 경로만 변경해주면 된다.


다음으로  frozen_inference_graph.pb  로 부터 모델을 읽어서 그래프를 재생성하였다.


detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.GraphDef()

 with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

   serialized_graph = fid.read()

   od_graph_def.ParseFromString(serialized_graph)

   tf.import_graph_def(od_graph_def, name='')


나머지 부분은 이미지를 읽어서, 로딩된 모델을 이용하여 물체를 Detection 하는 코드이다.


여기까지 간단하게 Tensorflow Object Detection API를 설치 및 사용하는 방법에 대해서 알아보았다.

다음 글에서는 다른 데이타로 모델을 학습해서 예측하는 부분에 대해서 알아보도록 하겠다.


참고 자료





저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

CloudML을 이용하여 예측하기

조대협 (http://bcho.tistory.com)


지난글 (http://bcho.tistory.com/1189) 에서 학습된 모델을 *.pb 파일 포맷으로 Export 하였다. 그러면 이 Export 된 모델을 이용하여 예측 (prediction)을 하는 방법에 대해서 알아보겠다. 앞글에서도 언급했듯이, 예측은 Google CloudML을 이용한다.

전체 코드를 https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/%2528wwoo%2529%2BML%2BEngine%2Bprediction.ipynb 를 참고하기 바란다.

Export된 모델을 CloudML에 배포하기

학습된 모델을 CloudML에 배포하기 위해서는 export된 *.pb 파일과 variables 폴더를 구글 클라우드 스토리지 ( GCS / Google Cloud Storage) 에 업로드해야 한다.

아니면 학습때 모델 Export를 GCS로 시킬 수 도 있다.


아래는 terrycho-face-recog-export 라는 GCS 버킷아래 /export 디렉토리에, export 된 *.pb 파일과 variables 폴더가 저장된 모습이다.


다음 구글 클라우드 콘솔에서 ML Engine을 선택하여, Models 메뉴를 고른다. 이 메뉴는 모델을 배포하고 Prediction을 해주는 기능이다.



Models 화면으로 들어오면 Create Model 버튼이 나온다. 이 버튼을 이용해서 모델을 생성한다.





모델 생성시에 아래와 같이 단순하게 모델이름을 넣어주면된다.




모델 이름을 넣어준후에, 해당 모델에 실제 Export된 모델 파일을 배포해줘야 하는데, CloudML은 버전 기능을 제공한다. 그래서 아래 그림과 같이 Create Version 버튼을 눌러서 새로운 버전을 생성한다.





Create Version 메뉴에서는 Name에 버전명을 쓰고, Source에는 Export된 *.pb 파일과 variables 폴더가 저장된 GCS 경로를 선택한다.



아래는 terrycho-face-recog-export 버킷을 선택한 후, 그 버킷안에 export 폴더를 선택하는 화면이다.



선택을 해서 배포를 하면 아래와 같이 v7 버전이름을 모델이 배포가 된다.


배포된 모델로 예측 (Prediction)하기

그러면 배포된 모델을 사용해서 예측을 해보자. 아래가 전체코드이다.


from googleapiclient import discovery

from oauth2client.client import GoogleCredentials

import numpy

import base64

import logging


from IPython.display import display, Image


cropped_image = "croppedjolie.jpg"

display(Image(cropped_image))


PROJECT = 'terrycho-ml'

MODEL_NAME = 'face_recog'

MODEL_VERSION ='v7'



def call_ml_service(img_str):

   parent = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL_NAME,MODEL_VERSION)

   pred = None


   request_dict = {

       "instances": [

           {

               "image": {

                   "b64": img_str

               }

           }

       ]

   }


   try:

       credentials = GoogleCredentials.get_application_default()

       cloudml_svc = discovery.build('ml', 'v1', credentials=credentials)

       request = cloudml_svc.projects().predict(name=parent, body=request_dict)

       response = request.execute()

       print(response)

       #pred = response['predictions'][0]['scores']

       #pred = numpy.asarray(pred)


   except Exception, e:

       logging.exception("Something went wrong!")


   return pred



# base64 encode the same image

with open(cropped_image, 'rb') as image_file:

   encoded_string = base64.b64encode(image_file.read())


# See what ML Engine thinks

online_prediction = call_ml_service(encoded_string)


print online_prediction


코드를 살펴보면

       credentials = GoogleCredentials.get_application_default()

       cloudml_svc = discovery.build('ml', 'v1', credentials=credentials)


에서 discovery.build를 이용해서 구글 클라우드 API 중, ‘ML’ 이라는 API의 버전 ‘v1’을 불러왔다. CloudML 1.0 이다. 다음 credentials는 get_application_default()로 디폴트 credential을 사용하였다.

다음으로, CloudML에 request 를 보내야 하는데, 코드 윗쪽으로 이동해서 보면


def call_ml_service(img_str):

   parent = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL_NAME,MODEL_VERSION)

   pred = None


   request_dict = {

       "instances": [

           {

               "image": {

                   "b64": img_str

               }

           }

       ]

   }


를 보면 request body에 보낼 JSON을 request_dict로 정의하였다. 이때, 이미지를 “b64”라는 키로 img_str을 넘겼는데, 이 부분은 이미지 파일을 읽어서 base64 스트링으로 인코딩 한 값이다.

request = cloudml_svc.projects().predict(name=parent, body=request_dict)


다음 request 를 만드는데, 앞에서 선언한 cloudml_svc객체를 이용하여 prediction request 객체를 생성한다. 이때 parent 에는 모델의 경로가 들어가고 body에는 앞서 정의한 이미지가 들어있는 JSON 문자열이 된다.


   parent = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL_NAME,MODEL_VERSION)


Parent에는 모델의 경로를 나타내는데, projects/{프로젝트명}/models/{모델명}/versions/{버전명} 형태로 표현되며, 여기서는 projects/terrycho-ml/models/face_recog/versions/v7 의 경로를 사용하였다.


이렇게 request 객체가 만들어지면 이를 request.execute()로 이를 호출하고 결과를 받는다.

       response = request.execute()

       print(response)


결과를 받아서 출력해보면 다음과 같은 결과가 나온다.




2번째 라벨이 0.99% 확률로 유사한 결과가 나온것을 볼 수 있다. 라벨 순서 대로 첫번째가 제시카 알바, 두번째가 안젤리나 졸리, 세번째가 니콜 키드만, 네번째가 설현, 다섯번째가 빅토리아 베컴이다.


이제 까지 여러회에 걸쳐서 텐서플로우를 이용하여 CNN 모델을 구현하고, 이 모델을 기반으로 얼굴 인식을 학습 시키고 예측 시키는 모델 개발까지 모두 끝 맞췄다.


실제 운영 환경에서 사용하기에는 모델이 단순하지만, 여기에 CNN 네트워크만 고도화하면 충분히 사용할만한 모델을 개발할 수 있을 것이라고 본다. CNN 네트워크에 대한 이론 보다는 실제 구현하면서 데이타 전처리 및 학습과, 학습된 모델의 저장 및 이를 이용한 예측 까지 전체 흐름을 설명하기 위해서 노력하였다.


다음은 이 얼굴 인식 모델을 실제 운영환경에서 사용할만한 수준의 품질이 되는 모델을 사용하는 방법을 설명하고자 한다.

직접 CNN 모델을 만들어도 되지만, 얼마전에, 발표된 Tensorflow Object Detection API (https://github.com/tensorflow/models/tree/master/object_detection)는 높은 정확도를 제공하는 이미지 인식 모델을 라이브러리 형태로 제공하고 있다. 다음 글에서는 이 Object Detection API를 이용하여 연예인 얼굴을 학습 시키고 인식하는 모델을 개발하고 학습 및 예측 하는 방법에 대해서 알아보도록 하겠다.



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

TFRecord


조대협 (http://bcho.tistory.com)


텐서플로우를 접하게 다 보면 필히 만나는 부분이 텐서플로우 학습 데이타 포맷인 TFRecord라는 파일 포맷이다. 마침 얼굴 인식 모델을 이번에는 텐서플로우에서 미리 개발되어 제공되는 물체 인식 API인 Tensorflow Object Detection API를 사용해서 얼굴을 학습시켜보려고 하니 데이타 포맷을 TFRecord 포맷으로 변경해야 한다. 그래서, TFRecord 파일을 만들어보고, 테스트를 위해서 데이타 내용도 직접 읽는 코드를 작성해보았다. (전체 코드는 https://github.com/bwcho75/objectdetection/tree/master/tfrecord 에 다.)

TFRecord 파일 포맷이란

TFRecord 파일은 텐서플로우의 학습 데이타 등을 저장하기 위한 바이너리 데이타 포맷으로, 구글의 Protocol Buffer 포맷으로 데이타를 파일에 Serialize 하여 저장한다.

CSV 파일에서와 같이 숫자나 텍스트 데이타를 읽을때는 크게 지장이 없지만, 이미지를 데이타를 읽을 경우 이미지는 JPEG나 PNG 형태의 파일로 저장되어 있고 이에 대한 메타 데이타와 라벨은 별도의 파일에 저장되어 있기 때문에, 학습 데이타를 읽을때 메타데이타나 라벨용 파일 하나만 읽는 것이 아니라 이미지 파일도 별도로 읽어야 하기 때문에, 코드가 복잡해진다.


또한 이미지를 JPG나 PNG 포맷으로 읽어서 매번 디코딩을 하게 되면, 그 성능이 저하되서 학습단계에서 데이타를 읽는 부분에서 많은 성능 저하가 발생한다.


이와 같이 성능과 개발의 편의성을 이유로 TFRecord 파일 포맷을 이용하는 것이 좋다.


그러면 간단한 예제를 통해서 TFRecord 파일을 쓰고 읽는 방법에 대해서 알아보도록 하자

본 예제는 http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/ 글과 https://github.com/tensorflow/models/blob/master/object_detection/g3doc/using_your_own_dataset.md 글을 참고하였다.


TFRecord 파일 생성

TFRecord 파일 생성은 tf.train.Example에 Feature를 딕셔너리 형태로 정의한 후에, tf.train.Example 객체를 TFRecord 파일 포맷 Writer인 tf.python_io.TFRecordWriter를 통해서 파일로 저장하면 된다.


다음 코드를 보자, 이 코드는 Tensorflow Object Detection API를 자신의 데이타로 학습시키기 위해서 데이타를 TFRecord 형태로 변환하여 저장하는 코드의 내용이다.

이미지를 저장할때 사물의 위치를 사각형 좌표로 지정하고 저장한다.


def create_cat_tf_example(encoded_image_data):


 height = 1032

 width = 1200

 filename = 'example_cat.jpg'

 image_format = 'jpg'


 xmins = [322.0 / 1200.0]

 xmaxs = [1062.0 / 1200.0]

 ymins = [174.0 / 1032.0]

 ymaxs = [761.0 / 1032.0]

 classes_text = ['Cat']

 classes = [1]


 tf_example = tf.train.Example(features=tf.train.Features(feature={

     'image/height': dataset_util.int64_feature(height),

     'image/width': dataset_util.int64_feature(width),

     'image/filename': dataset_util.bytes_feature(filename),

     'image/source_id': dataset_util.bytes_feature(filename),

     'image/encoded': dataset_util.bytes_feature(encoded_image_data),

     'image/format': dataset_util.bytes_feature(image_format),

     'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),

     'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),

     'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),

     'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),

     'image/object/class/text': dataset_util.bytes_list_feature(classes_text),

     'image/object/class/label': dataset_util.int64_list_feature(classes),

 }))

 return tf_example


저장되는 내용은 이미지의 높이와 너비 (height,weight), 파일명 (filename), 인코딩 포맷 (format), 이미지 바이너리 (encoded), 이미지내에서 물체의 위치를 가르키는 사각형 위치 (xmin,ymin,xmax,ymax) 와 라벨 값등이 저장된다.


코드를 유심이 살표보면 생각보다 이해하기어렵지 않다.

tf.train.Example 객체를 만들고 이때 인자로 features에 TFRecord에 저장될 갚들의 목록을 딕셔너리 형태로 저장한다.

이때 저장되는 데이타의 이름과 값을 지정해야 하는데


'image/height': dataset_util.int64_feature(height),


를 보면 'image/height' 이 데이타의 이름이 되고, dataset_util.int64_feature(height), 가 height 값을 텐서플로우용 리스트형으로 변형하여 이를 학습용 피쳐 타입으로 변환하여 저장한다.

이 예제는 Object Detection API의 일부이기 때문에, dataset_util이라는 모듈을 사용했지만, 실제로 이 함수의 내부를 보면  tf.train.Feature(int64_list=tf.train.Int64List(value=values)) 로 구현이 되어 있다.


다음 이렇게 생성된 tf.train.Example 객체를 tf.python_io.TFRecordWriter 를 이용해서 다음과 같이 파일에 써주면 된다.

   writer = tf.python_io.TFRecordWriter(tfrecord_filename)

   writer.write(tf_example.SerializeToString())


다음은 코드 전체이다.


import tensorflow as tf

from PIL import Image

from object_detection.utils import dataset_util


def create_cat_tf_example(encoded_image_data):


 height = 1032

 width = 1200

 filename = 'example_cat.jpg'

 image_format = 'jpg'


 xmins = [322.0 / 1200.0]

 xmaxs = [1062.0 / 1200.0]

 ymins = [174.0 / 1032.0]

 ymaxs = [761.0 / 1032.0]

 classes_text = ['Cat']

 classes = [1]


 tf_example = tf.train.Example(features=tf.train.Features(feature={

     'image/height': dataset_util.int64_feature(height),

     'image/width': dataset_util.int64_feature(width),

     'image/filename': dataset_util.bytes_feature(filename),

     'image/source_id': dataset_util.bytes_feature(filename),

     'image/encoded': dataset_util.bytes_feature(encoded_image_data),

     'image/format': dataset_util.bytes_feature(image_format),

     'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),

     'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),

     'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),

     'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),

     'image/object/class/text': dataset_util.bytes_list_feature(classes_text),

     'image/object/class/label': dataset_util.int64_list_feature(classes),

 }))

 return tf_example


def read_imagebytes(imagefile):

   file = open(imagefile,'rb')

   bytes = file.read()


   return bytes

   

def main():

   print ('Converting example_cat.jpg to example_cat.tfrecord')

   tfrecord_filename = 'example_cat.tfrecord'

   bytes = read_imagebytes('example_cat.jpg')

   tf_example = create_cat_tf_example(bytes)


   writer = tf.python_io.TFRecordWriter(tfrecord_filename)

   writer.write(tf_example.SerializeToString())


main()


참고로 이 예제는 앞에서도 언급하였듯이 Object Detection API에 대한 의존성을 가지고 있기 때문에 일반적인 텐서플로우 개발환경에서는 실행이 되지 않는다. Tensorflow Object Detection API 를 인스톨해야 dataset_util 를 사용할 수 있기 때문에 Object Detection API 설치가 필요하다.

만약에 Object Detection API 설치 없이 TFRecord Writer를 짜보고 싶은 경우에는 http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/ 문서에 예제가 간단하게 잘 정리되어 있으니 참고하기 바란다.

TFRecord에서 데이타 읽기

데이타를 읽는 방법도 크게 다르지 않다. 쓰는 순서의 반대라고 보면 되는데, TFReader를 통해서 Serialized 된 데이타를 읽고, 이를 Feature 목록을 넣어서 파싱한 후에, 파싱된 데이타셋에서 각 피쳐를 하나하나 읽으면 된다.


코드를 보자


def readRecord(filename_queue):

   reader = tf.TFRecordReader()

   _,serialized_example = reader.read(filename_queue)

   

   #'''

   keys_to_features = {

       'image/height': tf.FixedLenFeature((), tf.int64, 1),

       'image/width': tf.FixedLenFeature((), tf.int64, 1),

       'image/filename': tf.FixedLenFeature((), tf.string, default_value=''),

       #'image/key/sha256': tf.FixedLenFeature((), tf.string, default_value=''),

       'image/source_id': tf.FixedLenFeature((), tf.string, default_value=''),

       'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),

: (중략)

   }

   

   features = tf.parse_single_example(serialized_example,features= keys_to_features)

   

   height = tf.cast(features['image/height'],tf.int64)

   width = tf.cast(features['image/width'],tf.int64)

   filename = tf.cast(features['image/filename'],tf.string)

   source_id = tf.cast(features['image/source_id'],tf.string)

   encoded = tf.cast(features['image/encoded'],tf.string)

: (중략)

   return height,width,filename,source_id,encoded,image_format


TFRecoderReader를 이용하여 파일을 읽는데, 파일을 직접읽지 않고 filename_queue를 이용해서 읽는다. 코드 전체를 보면, 이 큐는

filename_queue = tf.train.string_input_producer([tfrecord_filename])

로, 파일 이름 목록을 가지고 리턴하는 string_input_producer를 사용하였다.

파일을 읽으면 데이타는 직렬화 된 상태로 리턴이 되어 serialized_example 에 저장된다.

이를 각 개별 피쳐로 디코딩 하기 위해서 피쳐 목록을 keys_to_features 딕셔너리에 저장한다.

이때, 각 피쳐의 이름과, 타입을 정의한다.

다음은 ‘image/height’ 피쳐를 정의하여 int 64 타입으로 읽어드리는 부분이다.


       'image/height': tf.FixedLenFeature((), tf.int64, 1),


피쳐 목록과, 데이타 타입은 TFRecord 파일을 쓸때 사용한 이름과 데이타 타입을 그대로 사용하면 된다.

피쳐 목록이 정의되었으면


   features = tf.parse_single_example(serialized_example,features= keys_to_features)


를 통해서 피쳐를 파싱해낸다. 파싱된 피쳐는 features에 딕셔너리 형태로 저장된다.

다음 리턴 받은 텐서를 각 변수에 저장한다. 이때 타입 캐스팅을 해서 저장한다. (이미 타입을 맞춰서 데이타를 꺼냈기 때문에, 별도의 캐스팅은 필요없지만 확실히 하기 위해서 캐스팅을 한다.)

다음은 ‘image/height’ 를 피쳐를 배열에서 뽑아서, int64 타입으로 변환하여 height 에 저장하는 부분이다.


   height = tf.cast(features['image/height'],tf.int64)


리턴값은 텐서가 되는데, 이 값을 출력하는 코드를 보자

당연히 텐서이기 때문에 Session 을 시작해야 하는데, 먼저 파일에서 데이타를 읽기 위해서 filename queue를 정의한다.

    filename_queue = tf.train.string_input_producer([tfrecord_filename])

다음 filename_queue를 인자로 넘겨서 height,source_id 등의 값을 *.tfrecord 파일에서 읽어서 텐서로 리턴 받는다.


    height,width,filename,source_id,encoded,image_format = readRecord(filename_queue)


다음 세션을 시작하고, readRecord 에서 리턴된 값을 받아온다.         vheight,vwidth,vfilename,vsource_id,vencoded,vimage_format = sess.run([height,width,filename,source_id,encoded,image_format])


전체 코드는 https://github.com/bwcho75/objectdetection/tree/master/tfrecord/reader.py 를 참고하기 바란다.


마지막으로 받은 값을 화면에 출력한다.



간단하게 tfRecord 파일 포맷으로 학습용 데이타를 쓰는 방법을 알아보았다. 텐서플로우 코드가 간단해 지고 성능에 도움이 되는 만큼 데이타 전처리 단계에서 가급적이면 학습 데이타를 tfrecord 타입으로 바꿔서 학습하는 것을 권장한다. (특히 이미지 데이타!!)


참고 자료


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

얼굴 인식 모델을 만들어보자 #5 학습된 모델을 Export 하기



조대협 (http://bcho.tistory.com)


앞의 글에서 CloudML을 이용하여 학습하는 부분까지 끝냈다. 그렇다면 학습된 모델을 이용하여 실제로 예측은 어떻게 할것인가? 여기에는 두가지 선택지가 있다.


첫번째는, 체크포인트로 저장된 파일을 이용하는 방식인데, 체크포인트에는 저장된 데이타는 텐서플로우 모델 그래프는 없고, 모델에서 사용된 변수 (Weight,bias etc) 만 저장하기 때문에, 이 데이타를 로딩하려면 텐서플로우 코드로 그래프를 그려준 다음에, 로딩을 해야한다. (상세 설명 http://bcho.tistory.com/1179 )


두번째는, 체크포인트처럼 변수만 저장하는 것이 아니라, 그래프를 함께 저장하는 방식으로 모델을 Protocol Buffer (http://bcho.tistory.com/1182) 타입으로 저장하는 방식이다. 이렇게 Protocol buffer (이하 pb)로 저장된 파일은 Prediction에 최적화된 엔진인 Tensorflow Serving (https://www.tensorflow.org/deploy/tfserve) 에 로딩하여 사용이 가능하다. 그런데, Tensorflow Serving의 경우 일일이 빌드를 해야 하는데, bazel 빌드 툴 (make,gradle과 같은 빌드툴. http://bcho.tistory.com/1160 )을 이용해서 빌드 및 배포를 해야 하는데 이 과정이 쉽지 않고, 또한 Tensorflow Serving에 배포된 모델을 호출하기 위해서는 Google protocol buffer (grpc)를 사용해야 한다.

이 과정에 많은 노력(삽질?)이 필요하고, 운영환경에 올리기 위해서는 모델 pb 파일에 대한 배포 프로세스 그리고 여러개의 Tensorflow Serving Cluster 설치 및 운영등의 이슈가 발생한다.


그래서 이를 플랫폼화하여 서비스로 만들어놓은 것이 Google CloudML Prediction 서비스이다. CloudML Prediction 서비스는 단순하게, 학습된 pb 파일만 배포하게 되면, 운영에 대한 이슈없이 대용량 서비스가 가능하고 grpc를 사용하지 않더라도 SDK를 이용하여 손쉽게 json으로 요청을 보냄으로써 prediction에 대한 구현이 가능하다.

모델 Export 하기

http://bcho.tistory.com/1180 에서 CloudML을 이용하여 얼굴 인식 모델을 학습 시켰다. 여기서 사용된 코드를 수정하여 학습이 끝나면, 모델(그래프와 변수값)을 Export 하는 코드를 추가해야 한다.

Export를 할때 주의할 점은 학습에 사용된 그래프를 그대로 Export 하는 것이 아니라 새로 그래프를 그려서 Export를 해야 한다. Export할 그래프는 Prediction을 위한 그래프이기 때문에, 학습에 사용된 그래프는 Dropout이나 또는 validation등을 위한 로직이 들어가 있기 때문에 이런 부분을 다 제거 하고 Prediction을 위한 그래프로 재정의하여 Export 해야한다.


얼굴 인식 모델에서 학습된 모델을 Export 하는 과정은

  1. 학습을 진행하고 학습 진행중에 체크포인트를 저장한다.

  2. 학습이 종료되면 Export를 위한 그래프를 새로 그린다.

  3. 체크포인트 파일에서 변수 값을 읽어서 2에서 그린 그래프에 채워넣는다.


자 그러면 코드를 보자. (전체 코드는 https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/model_localfile_export.py 에 저장되어 있다.)

체크 포인트 저장하기

코드 401 라인을 보면 아래와 같이 saver 객체를 이용하여 현재 학습이 종료된 세션의 값을 넘겨서 체크포인트 값으로 저장한다. 이 때 체크포인트 파일은 os.path.join(model_dir, 'face_recog') 에 저장한다.

       print('Save model')

       model_dir = os.path.join( FLAGS.base_dir , 'model')

       if not os.path.exists(model_dir):

           os.makedirs(model_dir)

       saver.save(sess, os.path.join(model_dir, 'face_recog'))

       print('Save model done '+model_dir)


다음으로 408 라인에서, 모델을 Export하는 함수 export_model 함수를 호출한다. 이때 첫번째 인자로는 체크포인트 파일 경로를 넘긴다.


       export_dir = os.path.join( FLAGS.base_dir , 'export')

       if  os.path.exists(export_dir):

          rmdir(export_dir)

       export_model(os.path.join(model_dir, 'face_recog'), export_dir)

Export용 그래프 그리기

274 라인의 def export_model(checkpoint, model_dir) 함수를 보자. 이 함수는 checkpoint 디렉토리를 입력받아서 model_dir에 모델을 export 해주는 함수이다.


앞에서도 설명했듯이 Export 용 그래프는 새롭게 그려줘야 하는데, 276~279 라인까지가 새롭게 그래프를 그리는 부분이다.

 with tf.Session(graph=tf.Graph()) as sess:


   images = tf.placeholder(tf.string)

   prediction = build_inference(images)


이미지를 입력할 input용 placeholer를 정의한다. 이때 중요한점이 우리가 학습에서는 float형 placeholder를 사용했는데, 여기서는 입력을 string으로 바꿨다. 이유는 모델을 학습한 후에 실제 운영 환경에 올렸을 때, 클라이언트 (웹이나 모바일)에서 이미지를 입력 받아서 학습된 모델을 호출할때 float 형 행렬로 넘기기에는 불편하고 데이타의 크기도 커진다. (행렬데이타를 [1,2,3,4…] 와 같은 문자열로 넘겨야 하기 때문에 ) 그래서 호출할때 데이타 전달을 쉽게 할 수 있도록 이미지를 문자열 바이너리로 입력 받도록 수정하였다.

다음 build_inference(images) 함수가 실제로 Export 용 그래프를 새로 그리는 부분인데

261 라인에 아래와 같이 정의 되어 있다.


def build_inference(image_bytes):

   # graph for prediction in CloudML

   #image_bytes = tf.placeholder(tf.string)

   rgb_image = tf.image.decode_jpeg(image_bytes[0],channels = FLAGS.image_color)

   rgb_image  = tf.image.convert_image_dtype(rgb_image, dtype=tf.float32)

   image_batch = tf.expand_dims(rgb_image, 0)

   #rgb_image_value = rgb_image.eval()

   #rgb_images = []

   #rgb_images.append(rgb_image_value)

   result = tf.nn.softmax(build_model(image_batch,keep_prob=1.0))

   

   return result


문자열로 입력받은 이미지 데이타는 배열형이기 때문에, [0] 로 첫번째 이미지를 골라내고 (이미지를 입력할때도 하나만 입력한다.) tf.image_decode_jpeg로 디코딩을 한후에, 타입을 tf_float32 형태의 행렬로 바꿔준다. 원래 우리가 사용했던 학습용 모델의 모양이 batch 형이기 때문에, tf.expand_dim으로 차원을 맞춰준다.

그 다음에 build_model() 함수를 이용하여 image_batch를 입력값으로 넣고 그래프를 그린다. dropout을 하지 않기 때문에, keep_prob=1.0 으로 한다. (build_model은 얼굴 인식 모델을 위해서 CNN 네트워크를 정의한 코드이다.)

build_model에 결과를 마지막에 softmax함수를 정의하여 result값을 리턴하도록 한다.

시그네쳐 정의하기

Tensorflow serving (CloudML inference)를 사용하기 위해서는 Tensorflow serving에 모델의 Input 과 Output 변수를 알려줘야 한다. 이를 시그네쳐라고 하는데,  SignatureDefs 를 이용하여 정의한다. (참고 https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/signature_defs.md)


SignatureDefs는 용도에 따라서 Classification SignatureDef와 Predict SignatureDef 두가지로 나뉘어 진다. Cassification SignatureDef는 분류 모델에 최적화되어 정의된 시그네쳐로 출력값들이 클래스 종류나 클래스별 정확도등을 옵션으로 가질 수 있고, Predict SignatureDef는 분류 모델뿐 아니라 모든 모델에 범용적으로사용될 수 있는 형태로 입력과 출력값을 정의할 수 있다.


이 예제에서는 Predict Signature Def을 사용하였다.

   inputs = {'image': images}

   input_signatures = {}

   for key, val in inputs.iteritems():

     predict_input_tensor = meta_graph_pb2.TensorInfo()

     predict_input_tensor.name = val.name

     predict_input_tensor.dtype = val.dtype.as_datatype_enum

     input_signatures[key] = predict_input_tensor


코드에서는 images placeholder를 입력값으로 하여 “image”라는 이름의 입력 시그네쳐를 생성하였고, 마찬가지로 다음과 같이 출력 값은 prediction 변수를 “prediction”이라는 이름의 시그네쳐로 사용하여 정의하였다.

   outputs = {'prediction': prediction}

   output_signatures = {}

   for key, val in outputs.iteritems():

     predict_output_tensor = meta_graph_pb2.TensorInfo()

     predict_output_tensor.name = val.name

     predict_output_tensor.dtype = val.dtype.as_datatype_enum

     output_signatures[key] = predict_output_tensor


다음, 이렇게 생성한 시그네쳐 변수들을 ‘image’,’prediction’ 을 add_to_colleciton을 이용하여 텐서플로우 그래프에 추가하였다.


   inputs_name, outputs_name = {}, {}

   for key, val in inputs.iteritems():

     inputs_name[key] = val.name

   for key, val in outputs.iteritems():

     outputs_name[key] = val.name

   tf.add_to_collection('inputs', json.dumps(inputs_name))

   tf.add_to_collection('outputs', json.dumps(outputs_name))

체크포인트 데이타 로딩해서 Export 용 그래프에 채워넣기

Export할 그래프가 완성되었으면 여기에 학습된 값을 채워넣으면 된다.

학습된 값은 학습후에, 체크 포인트 파일에 저장되어있기 때문에, 이 체크 포인트 파일을 다시 로딩하자


init_op = tf.global_variables_initializer()

   sess.run(init_op)


   # Restore the latest checkpoint and save the model

   saver = tf.train.Saver()

   saver.restore(sess, checkpoint)


모델 저장

다음 최종적으로 모델을 저장하면 된다.

   predict_signature_def = signature_def_utils.build_signature_def(

       input_signatures, output_signatures,

       signature_constants.PREDICT_METHOD_NAME)


앞서 정의한 input,output 시그네쳐를 가지고, Predict Signature Def를 정의한다.

다음 SavedModelBuilder를 만들어서 디렉토리를 지정하고, add_meta_graph_and_variables 메서드를 이용하여, 정의한 시그네쳐를 넘겨주고, assets_collection을 통해서 그래프 값을 넘긴후, 최종적으로 save() 메서드를 이용하여 그 값을 저장한다.

   build = builder.SavedModelBuilder(model_dir)

   build.add_meta_graph_and_variables(

       sess, [tag_constants.SERVING],

       signature_def_map={

           signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:

               predict_signature_def

       },

       assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS))

   build.save()


저장된 모델 확인

모델 저장이 완료되면 Export 디렉토리데 다음과 같이 파일들이 생성된다

  • saved_model.pb (파일) : 그래프를 저장하고 있는 모델 바이너리 파일이다.

  • variables (디렉토리) : 디렉토리로 변수 값을 저장하고 있는 파일들이 저장되어 있다.

정리

텐서플로우 자료나 튜토리얼을 보면 대부분 모델을 만들고 학습 하는 정도만 있고 Prediction(또는 Inference)는 대부분 체크포인트에 저장된 값을 그래프로 복원하는 방식을 사용하고 있지 Tensorflow Serving등을 사용하는 자료가 별로 없다. 그래서 정리를 해봤는데, 생각보다 어렵기는 하지만 코드를 찬찬히 살펴보니 Signature와 Graph Collection 을 개념을 이해하고 나면 여러 예제코드를 보면서 진행하면 어느정도 할 수 있지 않을까 싶다. 개념 자체가 어려운것 보다는 이를 지원하는 예제나 문서가 적기 때문이라고 보는데,이것도 텐서플로우가 활성화되는 중이니 많은 예제가 나오지 않을까 기대해 본다.


다음 글에서는 이번에 Export 한 모델 (*.pb)을 이용하여 구글 CloudML을 통해서 예측 (Inference) 하는 방법에 대해서 알아보겠다.


참고 자료


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

Wide and deep network 모델 활용하기

빅데이타/머신러닝 | 2017.07.20 17:12 | Posted by 조대협


Wide & deep model 알아보기

조대협 (http://bcho.tistory.com)

Wide & deep model

이글에 설명된 예제는 https://www.tensorflow.org/tutorials/wide_and_deep  문서에 있는 코드를 활용하였습니다. 음식 검색 키워드와 검색 결과를 학습 시킨 후에 이 결과를 기반으로 사용자에게 음식을 추천해주는 서비스가 있다고 하자.

Monetization and Wide model (기억과 와이드 모델)

로지스틱 회귀 모델을 이용하여 추천 알고리즘을 작성하여 학습을 시킨 경우, 학습 데이타를 기반으로 상세화된 예측 결과를 리턴해준다. 예를 들어 검색 키워드 (프라이드 치킨)으로 검색한 사용자가 (치킨과 와플)을 주문한 기록이 많았다면, 이 모델은 (프라이드 치킨)으로 검색한 사용자는 항상 (치킨과 와플)을 추천해주게 된다.  즉 예전에 기억된 값 (Memorization된 값)을 통해서 예측을 하는데, 이러한 모델을 와이드 모델이라고 한다.



<그림 와이드 모델 >

그러나 (프라이드 치킨)으로 검색한 사용자에게 같은 패스트 푸드 종류인 햄버거나 프렌치프라이등을 추천해도 잘 구매가 되지만 와이드 모델은 기존에 기억된 결과로만 추천을 하기 때문에 이러한 결과를 얻기가 어렵다.


Generalization and Deep model (일반화와 딥모델)

뉴럴네트워크 모델의 경우 프라이드 치킨을 햄버거, 프랜치 프라이등을 일반화 시켜서 패스트 푸드로 분류하여 프라이드 치킨으로 검색을 해도 이와 같은 종류의 햄버거를 추천해도 사용자가 택할 가능성이 높다.


<그림 딥 모델>


이러한 모델을 딥모델이라고 하는데, 딥 모델의 경우 문제점이, 너무 일반화가(under fitting)  되서 엉뚱한 결과가 나올 수 있다는 것인데, 예를 들어서 따뜻한 아메리카노를 검색했는데, 커피라는 일반화 범주에서 아이스 라떼를 추천해줄 수 있다는 것이다. 즉 커피라는 일반화 범주에서 라떼는 맞는 추천일 수 있지만, 따뜻한 음료를 원하는 사람에게 차가운 음료를 추천하는 지나친 일반화가 발생할 수 있다.


그래서 이런 문제를 해결하기 위해서 와이드 모델과 딥모델을 합친 “Wide & deep model”이라는 것을 구글이 개발하였고 이를 구글 플레이 스토어에 적용한 결과, 큰 효과를 얻었다고 한다. (https://arxiv.org/abs/1606.07792)


<그림 와이드 앤 딥모델 >


모델 사용 방법

이 모델이 텐서플로우에서 tf.contrib.learn 패키지에 라이브러리 형태로 공개가 되었다.

Classification 용은 tf.contrib.learn.DNNLinearCombinedClassifier

Regression 용은 tf.contrib.learn.DNNLinearCombinedRegressor

를 사용하면 된다.


이 라이브러리들은 텐서플로우의 Esimator API (https://www.tensorflow.org/extend/estimators)인데, 복잡한 알고리즘을 구현할 필요 없이 불러다 쓸 수 있는 하이레벨 API 이면서 학습에서 중요한 다음 두가지를 도와준다.

  • 분산러닝
    멀티 GPU나 멀티 머신에서 분산학습을 하려면 직접 텐서플로우 코드를 써서 작업 분산 및 취합 작업을 해줘야 하는데, Estimator API를 사용할 경우 Experiment API 를 통해서 Google CloudML 인프라 상에서 이런 작업을 자동으로 해준다.

  • 모델 EXPORT
    그리고 학습된 모델은 운영환경에서 예측용으로 사용할때, 모델을 Export 하여 Tensorflow Serving 과 같은 예측 엔진에 배포해야 하는데, 모델을 Export 하려면, 예측에 사용할 텐서플로우 그래프를 다시 그려주고 변수 값을 채워넣는 것에 대한 코드를 작성해야 하는데 (자세한 설명은 http://bcho.tistory.com/1183 문서 참조), 이 역시도 자동화를 해준다.


자 이제 머신러닝 모델은  있으니 여기에 데이타 즉 적절한 피쳐만 제대로 넣어서 학습을 시키면 되는데, 와이드 모델과 딥모델 각각 학습 하기 좋은 피쳐가 따로 있다.

와이드 모델 학습용 피쳐

와이드 모델에는 카테고리(분류)와 같은 비연속성을 가지는 데이타가 학습에 적절하다. 카테고리성 컬럼의 경우에는 다음과 같이 크게 두 가지가 있다.

Sparse based column

성별, 눈동자의 색깔과 같이 비연속성을 지니는 값으로 학습에 사용하려면 이를 벡터화를 해야 한다.

예를 들어 남자 = [1,0] 여자는 = [0,1] 식으로 또는 검정눈 = [1,0,0], 갈색눈 = [0,1,0], 푸른눈 = [0,0,1] 식으로 벡터화할 수 있다.

이때는 다음과 같이 sparse_column_with_keys라는 메서드를 써주면 위와 같은 방식으로 인코딩을 해준다.

gender = tf.contrib.layers.sparse_column_with_keys(column_name="gender", keys=["Female", "Male"])

만약에 나이와 같이 연속형 데이타라도 이를 10대,20대,30대와 같이 구간으로 나눠서 비연속성 분류 데이타로 바꾸고자 할 경우에는 다음과 같이 bucketized_column을 사용하면 된다.

age_buckets = tf.contrib.layers.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])

Crossed column

다음은 crossed column 이라는 피쳐인데, 예를 들어 교육 수준과, 직업이라는 피쳐가 있다고 하자. 이를 각각의 독립된 변수로 취급할 수 도 있지만, 교육수준과 직업에 상관 관계가 있다고 할때 이를 관계를 묶어서 피쳐로 사용할 수 있다. 예를 들어 대졸 사원의 연봉, 컴퓨터 프로그래머의 연봉과 같이 독립된 특징으로 보는것이 아니라 대졸 컴퓨터 프로그래머, 대학원졸 컴퓨터 프로그래머와 같은 상관 관계를 기반으로 피쳐를 사용할 수 있는데 이를 Crossed column이라고 한다. Cross column은 다음과 같이 crossed_colmn이라는 메서드를 이용해서 정의할 수 있다.

tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4))

딥 모델 학습용 피쳐

딥 모델용 학습데이타는 연속성을 가지는 데이타가 적절하다.

Continuous column

Continuous column은 일반적인 연속형 데이타 변수이고 간단하게 real_valued_column 메서드를 정해서 다음과 같이 정의가 가능하다.

age = tf.contrib.layers.real_valued_column("age")

Embedding column

문장의 단어들을 학습 시키기 위해서 각 단어를 벡터로 표현하고자 할때 , 예를 들어 boy = [1,0,0,0..], girl=[0,1,0,...] 으로 단어 하나를 하나의 숫자로 1:1 맵핑을 시킬 수 있다. 그러나 이 경우 이 단어가 다른 단어와 어떤 상관 관계를 갖는지 표현이 불가능하다. 예를 들어 남자:소년=여자:?? 라는 관계식을 줬을때, 위의 방식으로는 단어간의 관계를 유추할 수 없기 때문에, ?? 를 찾아낼 수 없다. 즉 컴퓨터가 “단어가 다른 단어와 어떤 차이점과 공통점”을 가지는지 이해할 수가 없다는 단점이 존재한다.

이런 문제를 해결하기 위해서 단어를 다차원 공간에서 벡터로 표현하여 각 단어간의 관계를 표현할 수 있는 방법을 만들었다.

이와 같은 원리로 어떤 비연속된 카테고리 피쳐들을 숫자로 맵핑할때, 위의 boy,girl 과 같은 방식 (on_hot_encoding) 으로 의미없이 1:1 맵핑을 하는 것이 아니라, 각 카테고리들이 어떠한 연관 관계를 가질때 이 연관성을 표현하여 벡터값으로 변환하는 방법을 임베딩 (embedding)이라고 한다.


그래서 카테고리내의 값들이 서로 연관성을 가질때는 임베딩을 이용하여 벡터 값으로 변경을 한 후, 이 값을 딥모델에 넣어서 학습하면 좋은 결과를 얻을 수 있다. 카테고리화된 값을 임베딩하기 위해서는 아래와 같이 embedding_column이라는 메서드를 사용하면 된다.


tf.contrib.layers.embedding_column(education, dimension=8)

피쳐를 모델에 넣는 방법

위와 같은 방법으로 분리되고 변경된 피쳐는, Wide & deep model에서 각각 와이드 모델과, 딥모델로 주입되서 학습되게 된다.

아래와 같이 피쳐를 와이드 컬럼과 딥 컬럼으로 구별한 후에, 리스트에 넣는다.

wide_columns = [
 gender, native_country, education, occupation, workclass, relationship, age_buckets,
 tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)),
 tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4)),
 tf.contrib.layers.crossed_column([age_buckets, education, occupation], hash_bucket_size=int(1e6))

deep_columns = [
 tf.contrib.layers.embedding_column(workclass, dimension=8),
 tf.contrib.layers.embedding_column(education, dimension=8),
 tf.contrib.layers.embedding_column(gender, dimension=8),
 tf.contrib.layers.embedding_column(relationship, dimension=8),
 tf.contrib.layers.embedding_column(native_country, dimension=8),
 tf.contrib.layers.embedding_column(occupation, dimension=8),
 age, education_num, capital_gain, capital_loss, hours_per_week]

다음 딥모델용 피쳐 리스트와 와이드 모델용 피쳐 리스트를 DNNLinearCombinedClassifier 에 각각 변수로 넣으면 된다. 이때 딥 모델은 뉴럴네트워크이기 때문에, 네트워크의 크기를 정해줘야 하는데 아래 코드에서는 각각 크기가 100인 히든 레이어와 50인 레이어 두개를 넣어서 구성하도록 하였다.

m = tf.contrib.learn.DNNLinearCombinedClassifier(
   model_dir=model_dir,
   linear_feature_columns=wide_columns,
   dnn_feature_columns=deep_columns,
   dnn_hidden_units=[100, 50])



지금 까지 아주 간단하게 나마 Wide & deep model에 대한 이론 적인 설명과 이에 대한 구현체인 DNNLinearCombinedRegressortf.contrib.learn.DNNLinearCombinedClassifier 에 대해서 알아보았다.  이 정도 개념만 있으면 실제 Wide & deep model 튜토리얼을 이해할 수 있으니, 다음은 직접 튜토리얼을 참고하기 바란다. https://www.tensorflow.org/tutorials/wide_and_deep


Reference


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우에서 checkpoint와 saved model의 차이와


모델을 export할때 그래프를 다시 그리는 이유


조대협 (http://bcho.tistory.com)


Check point vs Saved model


텐서플로우 튜토리얼들을 보면 모델을 저장하고 리스토어 하는데, check point를 사용하도록 가이드하고 있다.

그런데, Tensorflow Serving이나 CloudML등에 학습된 모델을 올려서 inference를 하고자 할때는 check point 파일을 사용하지 않고, 별도로 모델을 Saved model로 export하여 사용한다. 그렇다면 check-point와 saved model의 차이가 무엇일까?


check-point를 학습을 하다가 학습 내용을 중간에 저장하고 나중에 학습을 연달아서 하기 위한 용도로 check point에 의해서 저장되는 값을 모델 그래프의 변수 (Variable)만이 저장된다. 모델의 그래프 자체는 저장되지 않는다. 그래서 check-point를 리스토어하는 예제를 보면, 다시 그래프를 코드로 그 정의한 후에, check-point에 저장된 데이타를 리스토어 하는 것을 볼 수 있다.


Saved model은 inference를 위해서 모델을 저장하는 것으로, check-point와는 다르게 변수뿐만 아니라 모델의 그래프도 같이 저장한다. Tensorflow serving이나 cloud ml 등에서 inference를 위해서는 당연히 변수뿐 아니라 모델의 그래프도 필요하기 때문에 이를 같이 넘기는 것이다.

모델을 Export 할때, 그래프를 다시 그리는 이유는?


다음은 모델을 export 하는 코드의 예제인데, 코드를 보면 모델을 위한 그래프를 다시 정의 하는 것을 볼 수 있다.


 with tf.Session(graph=tf.Graph()) as sess:

   images = tf.placeholder(tf.float32,[None,FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

   prediction = build_model(images, keep_prob=1.0)


   # Define API inputs/outputs object

   inputs = {'image': images}

   input_signatures = {}

   for key, val in inputs.iteritems():

     predict_input_tensor = meta_graph_pb2.TensorInfo()

     predict_input_tensor.name = val.name

     predict_input_tensor.dtype = val.dtype.as_datatype_enum

     input_signatures[key] = predict_input_tensor


   outputs = {'prediction': prediction}

   output_signatures = {}

   for key, val in outputs.iteritems():

     predict_output_tensor = meta_graph_pb2.TensorInfo()

     predict_output_tensor.name = val.name

     predict_output_tensor.dtype = val.dtype.as_datatype_enum

     output_signatures[key] = predict_output_tensor


   inputs_name, outputs_name = {}, {}

   for key, val in inputs.iteritems():

     inputs_name[key] = val.name

   for key, val in outputs.iteritems():

     outputs_name[key] = val.name

   tf.add_to_collection('inputs', json.dumps(inputs_name))

   tf.add_to_collection('outputs', json.dumps(outputs_name))


   init_op = tf.global_variables_initializer()

   sess.run(init_op)


   # Restore the latest checkpoint and save the model

   saver = tf.train.Saver()

   saver.restore(sess, checkpoint)


   predict_signature_def = signature_def_utils.build_signature_def(

       input_signatures, output_signatures,

       signature_constants.PREDICT_METHOD_NAME)

   build = builder.SavedModelBuilder(model_dir)

   build.add_meta_graph_and_variables(

       sess, [tag_constants.SERVING],

       signature_def_map={

           signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:

               predict_signature_def

       },

       assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS))

   build.save()


기존의 학습 부분에 그래프가 그려져 있는데도 불구하고, export 할때 그래프를 다시 그려서 저장하는 이유는, training용 그래프와 inference용 그래프가 다르기 때문이다.

training 그래프는, 중간 중간 test (evaluation) 에 사용되는 코드가 들어간다. 즉 test 코드가 들어간다.

또는 training 그래프는 dropout 계층이 있지만, inference에는 dropout 계층이 필요 없기 때문에 그래프가 달라진다.

데이타를 피딩하는 경우에도 training 에서는 속도를 위해서 placeholder를 없애고 바로 Queue runner에서 데이타를 읽어서 모델에 읽도록할 수 도 있지만, inference에는 queue runner를 통해서 데이타를 읽는 것이 아니라 예측을 할 값을 입력 받아야 하기 때문에, 이 경우에는  placeholder가 필요하다.


이런 이유로 training 그래프와 inference 그래프가 달라지는데, 텐서플로우 1.0 버전 이후에서 부터는 model export를 SavedModel을 이용하여 저장하도록 가이드하는데, 구현 복잡도가 다소 높고 아직까지 가이드가 부족하다. 이를 단순화 하기 위해서 Experiment 클래스를 이용하면 자동으로 training 그래프와 inference graph를 분리해주기 때문에, 코드가 단순화 될 수 있기 때문에 모델을 만들때 처음 부터 Experiment 클래스를 사용하기를 권장한다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

구글 프로토콜 버퍼 (Protocol buffer)

프로그래밍 | 2017.06.25 19:30 | Posted by 조대협


구글 프로토콜 버퍼

조대협 (http://bcho.tistory.com)


텐서 플로우로 모델을 개발하다가 학습이 끝난 모델을 저장하여, 예측하는 데 사용하려고 하니, 모델을 저장하는 부분이 꽤나 복잡하여 찾아보니, 텐서플로우는 파일 저장 포맷을 프로토콜 버퍼를 사용한다는 것을 알았다.


그래서, 오래전에 살펴보았던 프로토콜 버퍼를 다시 살펴보았다.

개요 및 특징

프로토토콜 버퍼는 구글에서 개발하고 오픈소스로 공개한, 직렬화 데이타 구조 (Serialized Data Structure)이다. C++,C#, Go, Java, Python, Object C, Javascript, Ruby 등 다양한 언어를 지원하며 특히 직렬화 속도가 빠르고 직렬화된 파일의 크기도 작아서 Apache Avro 파일 포맷과 함께 많이 사용된다.

(직렬화란 데이타를 파일로 저장하거나 또는 네트워크로 전송하기 위하여 바이너리 스트림 형태로 저장하는 행위이다.)


특히 GRPC 라는 네트워크 프로토콜의 경우 HTTP 2.0 을 기반으로 하면서, 메세지를 이 프로토콜 버퍼를 이용하여 직렬화하기 때문에, 프로토콜 버퍼를 이해해놓으면 GRPC를 습득하는 것이 상대적으로 쉽다.


프로토콜 버퍼는 하나의 파일에 최대 64M까지 지원할 수 있으며, 재미있는 기능중 하나는 JSON 파일을 프로토콜 버퍼 파일 포맷으로 전환이 가능하고, 반대로 프로토콜 버퍼 파일도 JSON으로 전환이 가능하다.

설치 및 구성

프로토콜 버퍼 개발툴킷은 크게 두가지 부분이 있다. 데이타 포맷 파일을 컴파일 해주는 protoc 와 각 프로그래밍 언어에서 프로토콜 버퍼를 사용하게 해주는 라이브러리 SDK가 있다.


protoc 컴파일러와, 각 프로그래밍 언어별 SDK는 https://github.com/google/protobuf/releases  에서 다운 받으면 된다.


protoc 는 C++ 소스 코드를 직접 다운 받아서 컴파일하여 설치할 수 도 있고, 아니면 OS 별로 미리 컴파일된 바이너리를 다운받아서 설치할 수 도 있다.  


각 프로그래밍 언어용 프로토콜 버퍼 SDK는 맞는 버전을 다운 받아서 사용하면 된다. 파이썬 버전 설치 방법은  https://github.com/google/protobuf/tree/master/python 를 참고한다.

이 글에서는 파이썬 SDK 버전을 기준으로 설명하도록 한다.

구조 및 사용 방법

프로토콜 버퍼를 사용하기 위해서는 저장하기 위한 데이타형을 proto file 이라는 형태로 정의한다. 프로토콜 버퍼는 하나의 프로그래밍 언어가 아니라 여러 프로그래밍 언어를 지원하기 때문에, 특정 언어에 종속성이 없는 형태로 데이타 타입을 정의하게 되는데, 이 파일을 proto file이라고 한다.

이렇게 정의된 데이타 타입을 프로그래밍 언어에서 사용하려면, 해당 언어에 맞는 형태의 데이타 클래스로 생성을 해야 하는데, protoc 컴파일러로 proto file을 컴파일하면, 각 언어에 맞는 형태의 데이타 클래스 파일을 생성해준다.


다음은 생성된 데이타 파일을 프로그래밍 언어에서 불러서, 데이타 클래스를 사용하면 된다.

예제

간단한 파이썬 예제를 통해서 사용법을 익혀보자. 저장하고자 하는 데이타 포맷은 Person 이라는 클래스형으로, 이름,나이,이메일을 순차적으로 가지고 있는 데이타 포맷을 정의하여, Person 객체를 생성하여 데이타를 저장하고 이 객체를 파일에 저장했다가 읽어 들이는 예제이다.


이름과 이메일은 문자열, 나이는 숫자로 저장된다. 이 데이타형을 proto 형으로 정의하면 다음과 같다.

address.proto

syntax = "proto3";

package com.terry.proto;


message Person{

 string name = 1;

 int32 age=2;

 string email=3;

}


이 파일을 address.proto 라는 이름으로 저장한다. 다음 proto 파일을 파이썬용 코드로 컴파일한다. protoc 명령을 이용하면 되는데,


protoc -I=./ --python_out=./ ./address.proto


  • -I에는 이 protofile이 있는 소스 디렉토리

  • --python_out에는 생성된 파이썬 파일이 저장될 디렉토리

  • 그리고 마지막으로 proto 파일을 정의한다.


이렇게 컴파일을 하면 --python_out으로 지정된 디렉토리에 address_pb2.py 라는 이름으로 파이썬 파일이 생성된다. (pb2는 protocol buffer2를 의미하는 확장자이다.)


다음은 생성된 Person 클래스를 이용하여 객체를 만들고, 값을 지정한 후 이를 파일로 저장하는 예제이다.

write.py

import address_pb2


person = address_pb2.Person()


person.name = 'Terry'

person.age = 42

person.email = 'terry@mycompany.com'


try:

f = open('myaddress','wb')

f.write(person.SerializeToString())

f.close()

print 'file is wriiten'

except IOError:

print 'file creation error'


protoc에 의해 컴파일된 address_pb2 모듈을 import 한후에, address_pb2.Person()으로 person 객체를 생성한다. 다음에 person.name, person.age, person.email에 값을 넣은 후 파일을 열어서 파일에 person 객체의 내용을 넣는데, 이때 SerializeToString() 메서드를 이용하여 문자열로 직렬화 한다.


다음 코드는 이렇게 파일로 저장된 person 객체를 다시 파일로 부터 읽는 코드이다.

read.py

import address_pb2


person = address_pb2.Person()


try:

f = open('myaddress','rb')

person.ParseFromString(f.read())

f.close()

print person.name

print person.age

print person.email

except IOError:

print 'file read error'


앞의 코드와 같이 빈 person 객체를 만든 후에, 파일에서 문자열을 읽어서 ParseFromString() 메서드를 이용하여 문자열을 person 객체로 파싱한후에, 그 내용을 출력한다.

데이타 구조

위의 예제에서는 간단하게 name,age,email 정도의 구조만 간단하게 정의했지만, JSON과 같이 계층을 가지거나 배열형의 데이타 구조도 같이 정의할 수 있고, enum과 같은 타입 정의도 가능하다.

자세한 설명은 https://developers.google.com/protocol-buffers/docs/proto 를 참고하기 바란다.

간단한 팁 - JSON 변환

앞서 설명했듯이, 프로토콜 버퍼의 다른 장점중의 하나는 프로토콜 버퍼로 저장된 데이타 구조를 JSON으로 변환하는 것도 가능하고 역으로 JSON 구조를 프로토콜 버퍼 객체로 만들 수 도 있다.

아래 코드는 프로토콜 버퍼 객체인 person을 JSON으로 변환하여 출력하는 부분이다. MessageToJson 메서드를 사용하면 된다.


print person.name

print person.age

print person.email


from google.protobuf.json_format import MessageToJson

jsonObj = MessageToJson(person)

print jsonObj


다음은 실행 결과이다.


Terry

42

terry@mycompany.com

{

 "age": 42,

 "name": "Terry",

 "email": "terry@mycompany.com"

}



이 기능을 사용하면, 클라이언트(모바일)에서 서버로 HTTP/JSON 과 같은 REST API를 구현할때, 전송전에, JSON을 프로토콜 버퍼 포맷으로 직렬화 해서, 전체적인 패킷양을 줄여서 전송하고, 서버에서는 받은 후에, 다시 JSON으로 풀어서 사용하는 구조를 취할 수 있다. 사실 이게 바로 GRPC 구조이다.

API 게이트웨이를 백앤드 서버 전면에 배치 해놓고, 프로토콜 버퍼로 들어온 메세지 바디를 JSON으로 변환해서 백앤드 API 서버에 넘겨주는 식의 구현이 가능하다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우에서 array index를 문자열로 변환하는 방법


조대협 (http://bcho.tistory.com)


예전에, 얼굴 인식 모델을 만들때, 라벨 숫자로 하지 않고 사람 이름 문자열로 했다가 이 문자열의 배열 인덱스를 구하는 것을 구현하지 못해서 라벨을 다시 숫자로 데이타를 재생성한 적이 있었다. 텐서플로우에서 텐서는 파이썬의 일반 자료형이 아니기 때문에, 파이썬의 배열등을 사용하지 못해서 생기는 문제였는데, 포기하고 있다가 다른 코드를 보던중에, 이 부분을 해결해주는 코드를 찾아서, 정리해놓는다.


tf.contrib.lookup 에 이를 지원하기 위한 함수들이 정의되어 있다.

https://www.tensorflow.org/api_docs/python/tf/contrib/lookup


배열 인덱스로 문자열로 리턴하기


코드를 보자


import tensorflow as tf


table = tf.contrib.lookup.index_to_string_table_from_tensor(

    tf.constant(['Jessica','Jolie','Kidman','Sulyun'])

)


sess = tf.InteractiveSession()


# Initialize Table

tf.tables_initializer().run()


p1 = table.lookup(tf.to_int64(3))

print p1.eval()


p2 = table.lookup(tf.to_int64([0,2]))

print p2.eval()


tf.contrib.lookup.index_to_string_from_tensor() 메서드를 이용하여, index를 string으로 lookup 하기 위한 테이블을 생성한다. 이 때 테이블에 들어가는 배열은 tf.constant로 정의해서 전달한다.


다음 이렇게 정의된 테이블을 사용하기 위해서는 테이블을 초기화 해줘야 한다. 초기화는

tf.tables_initializer().run()


를 사용한다. 이렇게 초기화 된 테이블은 세션이 시작된 후에, table.lookup($배열의 인덱스)를 호출하면, 그 인덱스에 해당하는 문자열 배열값을 리턴한다.
다음은 실행 결과이다.

Sulyun
['Jessica' 'Kidman']


문자열로 배열 인덱스 구하기


반대로 문자열로 배열의 인덱스를 리턴할 수 도 있다. 함수는 tf.contrib.lookup.index_table_from_tensor()를 이용하여, 문자열이 들어간 배열을 tf.constant 형태로 넘기면 되고, 찾을때는 마찬가지로 lookup() 함수를 이용하면 된다.


import tensorflow as tf


table = tf.contrib.lookup.index_table_from_tensor(

    mapping = tf.constant(['Jessica','Jolie','Kidman','Sulyun'])

)


sess = tf.InteractiveSession()

tf.tables_initializer().run()


p1 = table.lookup(tf.constant('Kidman'))

print p1.eval()


p2 = table.lookup(tf.constant(['Jessica','Sulyun','Soho']))

print p2.eval()




저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

얼굴 인식 모델을 만들어보자 #4 클라우드를 이용하여 학습 시키기

(머신러닝 학습 및 예측 시스템의 운영환경화)


조대협 (http://bcho.tistory.com)

앞에서 모델을 만들고 학습도 다했다. 이제, 이 모델을 실제 운영 환경에서 운영할 수 있는 스케일로 포팅을 하고자 한다.


로컬 환경 대비 실제 운영 환경으로 확장할때 고려해야 하는 사항은


  • 대규모 학습 데이타를 저장할 수 있는 공간

  • 대규모 학습 데이타를 전처리하기 위한 병렬 처리 환경
    이 내용은 이미  http://bcho.tistory.com/1177에서 다루었다.

  • 대규모 학습 데이타를 빠르게 학습 시킬 수 있는 컴퓨팅 파워

  • 학습된 데이타를 이용한 대규모 예측 서비스를 할 수 있는 기능


위의 요건을 만족하면서 텐서플로우로 환경을 올리는 방법은 여러가지가 있지만, 클라우드를 선택하기로 한다.

이유는

  • 첫번째 모델 개발에 집중하고, 텐서플로우의 설치 및 운영 등에 신경쓰지 않도록 한다. 단순한 텐서플로우 설치뿐만 아니라 여러 장비를 동시에 이용하여 분산 학습을 하려면, 클러스터 구성 및 유지가 부담이 된다.

  • 클라우드 컴퓨팅 파워를 이용하여, 대규모 데이타에 대한 전처리를 수행하고 개개별 학습 속도를 높이는 것은 물론이고, 모델을 튜닝하여 동시에 여러 모델을 학습 시킬 수 있다.

  • 대용량 학습 데이타를 저장하기 위한 스토리지 인프라에 대한 구성 및 운영 비용을 절감한다.


즉 설정이나 운영은 클라우드에 맏겨 놓고, 클라우드의 무한한 자원과 컴퓨팅 파워를 이용하여 빠르게 모델을 학습하기 위함이다.

구글 클라우드


아무래도 일하는 성격상 구글 클라우드를 먼저 볼 수 밖에 없는데, 구글 클라우드에서는 텐서플로우의 매니지드 서비스인 CloudML을 제공한다.


CloudML은 별도의 설치나 환경 설정 없이 텐서플로우로 만든 모델을 학습 시키거나 학습된 결과로 예측을 하는 것이 가능하다. 주요 특징을 보면 다음과 같다.


  • 학습시에, 별도의 설정 없이 텐서플로우 클러스터 크기 조절이 가능하다. 싱글 머신에서 부터 GPU 머신 그리고 여러대의 클러스터 머신 사용이 가능하다

  • 하이퍼 패러미터 튜닝이 가능하다. DNN의 네트워크의 폭과 깊이도 하이퍼 패러미터로 지정할 수 있으며, CloudML은 이런 하이퍼패러미터의 최적값을 자동으로 찾아준다.

  • 예측 서비스에서는 Tensorflow Serv를 별도의 빌드할 필요 없이 미리 환경 설정이 다되어 있으며 (bazel 빌드의 끔직함을 겪어보신 분들은 이해하실듯) gRPC가 아닌 간단한 JSON 호출로 예측 (PREDICTION) 요청을 할 수 있다

  • 분당 과금이다. 이게 강력한 기능인데, 구글 클라우드는 기본적으로 분당 과금으로 CPU를 사용하던, GPU를 사용하던 정확히 사용한 만큼만 과금하기 때문에, 필요할때 필요한 만큼만 사용하면 된다. 일부 클라우드의 경우에는 시간당 과금을 사용하기 때문에, 8대의 GPU머신에서 1시간 5분을 학습하더라도 8대에 대해서 2시간 요금을 내야하기 때문에 상대적으로 비용 부담이 높다.

  • 가장 큰 메리트는 TPU (Tensorflow Processing Unit)을 지원한다는 것인데, 딥러닝 전용 GPU라고 생각하면 된다. 일반적인 CPU또는 GPU대비 15~30배 정도 빠른 성능을 제공한다.


    현재는 Close Alpha로 특정 사용자에게만 시범 서비스를 제공하고 있지만 곧 CloudML을 통해서 일반 사용자에게도 서비스가 제공될 예정이다.

CloudML을 이용하여 학습하기

코드 수정

CloudML에서 학습을 시키려면 약간의 코드를 수정해야 한다. 수정해야 하는 이유는 학습 데이타를 같이 올릴 수 없기 때문인데, 여기에는 두 가지 방법이 있다.


  • 학습 데이타를 GCS (Google Cloud Storage)에 올려놓은 후, 학습이 시작되기 전에 로컬 디렉토리로 복사해 오거나

  • 또는 학습 데이타를 바로 GCS로 부터 읽어오도록 할 수 있다.


첫번째 방법은 gsutil 이라는 GCS 명령어를 이용하여 학습 시작전에 GCS에서 학습 데이타를 카피해오면 되고,

두번째 방법은 학습 데이타의 파일명을 GCS 로 지정하면 된다.

예를 들어 텐서 플로우 코드에서 이미지 파일을 아래와 같이 로컬 경로에서 읽어왔다면

   image =  tf.image.decode_jpeg(tf.read_file(“/local/trainingdata/”+image_file),channels=FLAGS.image_color)


GCS에서 읽어오려면 GCS 경로로 바꿔 주면 된다. GCS 버킷명이 terrycho-training-data라고 하면

   image =  tf.image.decode_jpeg(tf.read_file(“gs://terrycho-training-data/trainingdata/”+image_file),channels=FLAGS.image_color)


첫번째 방법의 경우에는 데이타가 아주 많지 않고, 분산 학습이 아닌경우 매우 속도가 빠르다. 두번째 방법의 경우에는 데이타가 아주아주 많아서 분산 학습이 필요할때 사용한다. 아무래도 로컬 파일 억세스가 GCS 억세스 보다 빠르기 때문이다.


다음은 첫번째 방식으로 학습 데이타를 로컬에 복사해서 학습하는 방식의 코드이다.


https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/model_localfile.py

코드 내용은 앞서 만들 모델 코드와 다를것이 없고 단지 아래 부분과, 파일 경로 부분만 다르다

def gcs_copy(source, dest):

   print('Recursively copying from %s to %s' %

       (source, dest))

   subprocess.check_call(['gsutil', '-q', '-m', 'cp', '-R']

       + [source] + [dest]


gcs_copy 함수는 GCS의 source 경로에서 파일을 dest 경로로 복사해주는 명령이다.


def prepare_data():

   # load training and testing data index file into local

   gcs_copy( 'gs://'+DESTINATION_BUCKET+'/'+TRAINING_FILE,'.')

   gcs_copy( 'gs://'+DESTINATION_BUCKET+'/'+VALIDATION_FILE,'.')

   

   # loading training and testing images to local

   image_url = 'gs://'+DESTINATION_BUCKET+'/images/*'


   if not os.path.exists(FLAGS.local_image_dir):

        os.makedirs(FLAGS.local_image_dir)

   gcs_copy( image_url,FLAGS.local_image_dir)

   

prepare_data()    

main()


그리고 prepare_data를 이용해서, 학습과 테스트용 이미지 목록 파일을 복사하고, 이미지들도 로컬에 복사한다.

로컬에 데이타 복사가 끝나면 main()함수를 호출하여 모델을 정의하고 학습을 시작한다.



디렉토리 구조

코드를 수정하였으면, CloudML을 이용하여 학습을 하려면, 파일들을 패키징 해야 한다. 별 다를것은 없고


[작업 디렉토리]

  • __init__.py

  • {모델 파일명}.py


식으로 디렉토리를 구성하면 된다.

얼굴 학습 모델을 model_localfile.py라는 이름으로 저장하였다


명령어

이제 학습용 모델이 준비되었으면, 이 모델을 CloudML에 집어 넣으면 된다.

명령어가 다소 길기 때문에, 쉘 스크립트로 만들어놓거나 또는 파이썬 노트북에 노트 형식으로 만들어 놓으면 사용이 간편하다. 다음은 파이썬 노트북으로 만들어놓은 내용이다.


import google.auth

import os

import datetime


os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/Users/terrycho/keys/terrycho-ml.json"

job_name = 'preparefacedata'+ datetime.datetime.now().strftime('%y%m%d%H%M%S')


리모트로 구글 클라우드의 CloudML을 호출하기 때문에, GOOGLE_APPLICATION_CREDIENTIALS에 서비스 어카운트 파일을 지정한다.

그리고 CloudML에 학습을 실행하면, 각 학습은 JOB으로 등록되는데, 손쉽게 JOB을 찾아서 모니터링 하거나 중지할 수 있도록, JOB ID를 현재 시간으로 생성한다.



print job_name

# Job name whatever you want

JOB_NAME=job_name

# the directory of folder that include your source and init file

PACKAGE_PATH='/Users/terrycho/anaconda/work/face_recog/face_recog_model'

# format: folder_name.source_file_name

MODULE_NAME='face_recog_model.model_localfile'

# bucket you created

STAGING_BUCKET='gs://terrycho-face-recog-stage'

# I recommand "europe-west1" region because there are not enough GPUs in US region for you.....

REGION='us-east1'

# Default is CPU computation. set BASIC_GPU to use Tesla K80 !

SCALE_TIER='BASIC_GPU'


# Submit job with these settings

!gcloud ml-engine jobs submit training $JOB_NAME \

--package-path=$PACKAGE_PATH \

--module-name=$MODULE_NAME \

--staging-bucket=$STAGING_BUCKET \

--region=$REGION \

--scale-tier=$SCALE_TIER \


다음은 cloudml 명령어를 실행하면 된다. 각 인자를 보면

  • JOB_NAME은 학습 JOB의 이름이다.

  • package-path는 __init__.py와 학습 모델 및 관련 파일들이 있는 디렉토리가 된다.

  • module-name은 package-path안에 있는 학습 실행 파일이다.

  • staging-bucket은 CloudML에서 학습 코드를 올리는 임시 Google Cloud Storage로, Google Cloud Storage 만든 후에, 그 버킷 경로를 지정하면 된다.

  • region은 CloudML을 사용한 리전을 선택한다.

  • 마지막으로 scale-tier는 학습 머신의 사이즈를 지정한다.

스케일 티어

설명

BASIC

싱글 머신. CPU

BASIC_GPU

싱글 머신 + K80 GPU

STANDARD_1

분산 머신

PREMIUM_1

대규모 분산 머신

CUSTOM

사용자가 클러스터 크기를 마음대로 설정


일반적인 모델은 BASIC_GPU를 사용하면 되고, 모델이 분산 학습이 가능하도록 개발되었으면 STANDARD_1 이나 PREMIUM_1을 사용하면 된다.


이렇게 명령을 수행하면 모델코드가 CloudML로 전송되고, 전송된 코드는 CloudML에서 실행된다.

학습 모니터링

학습이 시작되면 JOB을 구글 클라우드 콘솔의 CloudML 메뉴에서 모니터링을 할 수 있다.




다음은 CloudML에서의 JOB 목록이다.  (진짜 없어 보인다…)




실행중인 JOB에서 STOP 버튼을 누르면 실행중인 JOB을 정지시킬 수도 있고, View Logs 버튼을 누르면, 학습 JOB에서 나오는 로그를 볼 수 있다. ( 텐서플로우 코드내에서 print로 찍은 내용들도 모두 여기 나온다.)




여기까지 간단하게나마 CloudML을 이용하여 모델을 학습하는 방법을 알아보았다.

본인의 경우 연예인 인식 모델을 MAC PRO 15” i7 (NO GPU)에서 학습한 경우 7000 스텝가지 약 8시간이 소요되었는데, CloudML의 BASIC_GPU를 사용하였을때는 10,000 스탭에 약 1시간 15분 정도 (GCS를 사용하지 않고 직접 파일을 로컬에 복사해놓고 돌린 경우) 가 소요되었다. (빠르다)


여기서 사용된 전체 코드는 https://github.com/bwcho75/facerecognition/tree/master/CloudML%20Version 에 있다.


  • model_gcs.py 는 학습데이타를 GCS에서 부터 읽으면서 학습하는 버전이고

  • model_localfile.py는 학습데이타를 로컬 디스크에 복사해놓고 학습하는 버전이다.


다음 글에서는 학습된 모델을 배포하여 실제로 예측을 실행할 수 있는 API를 개발해보도록 하겠다.

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

 

얼굴 인식 모델을 만들어보자

#3 - 학습된 모델로 예측하기


조대협 (http://bcho.tistory.com)


앞글에 걸쳐서 얼굴 인식을 위한 데이타를 수집 및 정재하고, 이를 기반으로 얼굴 인식 모델을 학습 시켰다.

 

 

이번글에서는 학습이 된 데이타를 가지고, 사진을 넣어서 실제로 인식하는 코드를 만들어보자

전체 소스 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb 와 같다.

모델 로딩 하기

 

모델 학습에 사용한 CNN 모델을 똑같이 정의한다. conv1(),conv2(),conv3(),conv4(),fc1(),fc2(), build_model() 등 학습에 사용된 CNN 네트워크를 똑같이 정의하면 된다.

 

다음으로 이 모델에 학습된 값들을 채워 넣어야 한다.

# build graph

images = tf.placeholder(tf.float32,[None,FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

keep_prob = tf.placeholder(tf.float32) # dropout ratio

 

예측에 사용할 image 를 넘길 인자를  images라는 플레이스홀더로 정의하고, dropout 비율을 정하는 keep_prob도 플레이스 홀더로 정의한다.

 

prediction = tf.nn.softmax(build_model(images,keep_prob))

 

그래프를 만드는데, build_model에 의해서 나온 예측 결과에 softmax 함수를 적용한다. 학습시에는 softmax 함수의 비용이 크기 때문에 적용하지 않았지만, 예측에서는 결과를 쉽게 알아보기 위해서  softmax 함수를 적용한다. Softmax 함수는 카테고리 별로 확률을 보여줄때 전체 값을 1.0으로 해서 보여주는것인데, 만약에 Jolie,Sulyun,Victora 3개의 카테코리가 있을때 각각의 확률이 70%,20%,10%이면 Softmax를 적용한 결과는 [0.7,0.2,0.1] 식으로 출력해준다.

 

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

 

다음 텐서플로우 세션을 초기화 하고,

 

saver = tf.train.Saver()

saver.restore(sess, 'face_recog')

 

마지막으로 Saver의 restore 함수를 이용하여 ‘face_recog’라는 이름으로 저장된 학습 결과를 리스토어 한다. (앞의 예제에서, 학습이 완료된 모델을 ‘face_recog’라는 이름으로 저장하였다.)

 

예측하기

로딩 된 모델을 가지고 예측을 하는 방법은 다음과 같다. 이미지 파일을 읽은 후에, 구글 클라우드 VISION API를 이용하여, 얼굴의 위치를 추출한후, 얼굴 이미지만 크롭핑을 한후에, 크롭된 이미지를 텐서플로우 데이타형으로 바꾼후에, 앞서 로딩한 모델에 입력하여 예측된 결과를 받게 된다.

 

얼굴 영역 추출하기

먼저 vision API로 얼굴 영역을 추출하는 부분이다. 앞의 이미지 전처리에 사용된 부분과 다르지 않다.

 

import google.auth

import io

import os

from oauth2client.client import GoogleCredentials

from google.cloud import vision

from PIL import Image

from PIL import ImageDraw

 

FLAGS.image_size = 96

 

# set service account file into OS environment value

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/Users/terrycho/keys/terrycho-ml.json"

 

위와 같이 구글 클라우드 Vision API를 사용하기 위해서 억세스 토큰을 Service Account 파일로 다운 받아서 위와 같이 GOOGLE_APPLICATION_CREDENTIALS 환경 변수에 세팅 하였다.

 

visionClient = vision.Client()

print ('[INFO] processing %s'%(imagefile))

 

#detect face

image = visionClient.image(filename=imagefile)

faces = image.detect_faces()

face = faces[0]

 

다음 vision API 클라이언트를 생성한 후에, detect_faces() 를 이용하여 얼굴 정보를 추출해낸다.

 

print 'number of faces ',len(faces)

 

#get face location in the photo

left = face.fd_bounds.vertices[0].x_coordinate

top = face.fd_bounds.vertices[0].y_coordinate

right = face.fd_bounds.vertices[2].x_coordinate

bottom = face.fd_bounds.vertices[2].y_coordinate

rect = [left,top,right,bottom]

 

추출된 얼굴 정보에서 첫번째 얼굴의 위치 (상하좌우) 좌표를 리턴 받는다.

얼굴 영역을 크롭하기

앞에서 입력 받은 상하좌우 좌표를 이용하여, 이미지 파일을 열고,  크롭한다.

 

fd = io.open(imagefile,'rb')

image = Image.open(fd)

 

import matplotlib.pyplot as plt

# display original image

print "Original image"

plt.imshow(image)

plt.show()

 

 

# draw green box for face in the original image

print "Detect face boundary box "

draw = ImageDraw.Draw(image)

draw.rectangle(rect,fill=None,outline="green")

 

plt.imshow(image)

plt.show()

 

crop = image.crop(rect)

im = crop.resize((FLAGS.image_size,FLAGS.image_size),Image.ANTIALIAS)

plt.show()

im.save('cropped'+imagefile)

 

크롭된 이미지를 텐서플로우에서 읽는다.

 

print "Cropped image"

tfimage = tf.image.decode_jpeg(tf.read_file('cropped'+imagefile),channels=3)

tfimage_value = tfimage.eval()

 

크롭된 파일을 decode_jpeg() 메서드로 읽은 후에, 값을 tfimage.eval()로 읽어드린다.

 

tfimages = []

tfimages.append(tfimage_value)

 

앞에서 정의된 모델이 한개의 이미지를 인식하는게 아니라 여러개의 이미지 파일을 동시에 읽도록 되어 있기 때문에, tfimages라는 리스트를 만든 후, 인식할 이미지를 붙여서 전달한다.

 

plt.imshow(tfimage_value)

plt.show()

fd.close()

 

p_val = sess.run(prediction,feed_dict={images:tfimages,keep_prob:1.0})

name_labels = ['Jessica Alba','Angelina Jolie','Nicole Kidman','Sulhyun','Victoria Beckam']

i = 0

for p in p_val[0]:

   print('%s %f'% (name_labels[i],float(p)) )

   i = i + 1

 

tfimages 에 이미지를 넣어서 모델에 넣고 prediction 값을 리턴 받는다. dropout은 사용하지 않기 때문에, keep_prob을 1.0으로 한다.

나온 결과를 가지고 Jessica, Jolie,Nicole Kidman, Sulhyun, Victoria Beckam 일 확률을 각각 출력한다.


전체 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb


다음은 설현 사진을 가지고 예측을 한 결과 이다.


 

이 코드는 학습된 모델을 기반으로 얼굴을 인식이 가능하기는 하지만 실제 운영 환경에 적용하기에는 부족하다. 파이썬 모델 코드를 그대로 옮겼기 때문에, 성능도 상대적으로 떨어지고, 실제 운영에서는 모델을 업그레이드 배포 할 수 있고, 여러 서버를 이용하여 스케일링도 지원해야 한다.

그래서 텐서플로우에서는 Tensorflow Serving 이라는 예측 서비스 엔진을 제공하고 구글 클라우에서는 Tensorflow Serving의 매니지드 서비스인, CloudML 서비스를 제공한다.

 

앞의 두 글이 로컬 환경에서 학습과 예측을 진행했는데, 다음 글에서는 상용 서비스에 올릴 수 있는 수준으로 학습과 예측을 할 수 있는 방법에 대해서 알아보도록 하겠다.

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

연예인 얼굴 인식 모델을 만들어보자

#2 CNN 모델을 만들고 학습 시켜보기

조대협 (http://bcho.tistroy.com)

선행 학습 자료

이 글은 딥러닝 컨볼루셔널 네트워크 (이하 CNN)을 이용하여 사람의 얼굴을 인식하는 모델을 만드는 튜토리얼이다. 이 글을 이해하기 위해서는 머신러닝과 컨볼루셔널 네트워크등에 대한 사전 지식이 필요한데, 사전 지식이 부족한 사람은 아래 글을 먼저 읽어보기를 추천한다.

 

머신러닝의 개요 http://bcho.tistory.com/1140

머신러닝의 기본 원리는 http://bcho.tistory.com/1139

이산 분류의 원리에 대해서는 http://bcho.tistory.com/1142

인공 신경망에 대한 개념은 http://bcho.tistory.com/1147

컨볼루셔널 네트워크에 대한 개념 http://bcho.tistory.com/1149

학습용 데이타 전처리 http://bcho.tistory.com/1176

학습용 데이타 전처리를 스케일링 하기 http://bcho.tistory.com/1177

손글씨를 CNN을 이용하여 인식하는 모델 만들기 http://bcho.tistory.com/1156

손글씨 인식 CNN 모델을 이용하여 숫자 인식 하기 http://bcho.tistory.com/1157

환경

본 예제는 텐서플로우 1.1과 파이썬 2.7 그리고 Jupyter 노트북 환경 및 구글 클라우드를 사용하여 개발되었다.

준비된 데이타

학습에 사용한 데이타는 96x96 사이즈의 얼굴 이미지로, 총 5명의 사진(안젤리나 졸리, 니콜키드만, 제시카 알바, 빅토리아 베컴,설현)을 이용하였으며, 인당 학습 데이타 40장 테스트 데이타 10장으로 총 250장의 얼굴 이미지를 사용하였다.

사전 데이타를 준비할때, 정면 얼굴을 사용하였으며, 얼굴 각도 변화 폭이 최대한 적은 이미지를 사용하였다. (참고 : https://www.slideshare.net/Byungwook/ss-76098082 ) 만약에 이 모델로 학습이 제대로 되지 않는다면 학습에 사용된 데이타가 적절하지 않은것이기 때문에 데이타를 정재해서 학습하기를 권장한다.

데이타 수집 및 정재 과정에 대한 내용은 http://bcho.tistory.com/1177 를 참고하기 바란다.

 

컨볼루셔널 네트워크 모델

얼굴 인식을 위해서, 머신러닝 모델 중 이미지 인식에 탁월한 성능을 보이는 CNN 모델을 사용하였다. 테스트용 모델이기 때문에 모델은 복잡하지 않게 설계하였다.

 

학습과 예측에 사용되는 이미지는 96x96픽셀의 RGB 컬러 이미지를 사용하였다.

아래 그림과 같은 모델을 사용했는데, 총 4개의 Convolutional 계층과, 2개의 Fully connected 계층, 하나의 Dropout 계층을 사용하였다.


Convolutional 계층의 크기는 각각 16,32,64,128개를 사용하였고, 사용된 Convolutional 필터의 사이즈는 3x3 이다.

Fully connected 계층은 각각 512, 1024를 사용하였고 Dropout 계층에서는 Keep_prob값을 0.7로 둬서 30%의 뉴론이 drop out 되도록 하여 학습을 진행하였다.

 

학습 결과 5개의 카테고리에 대해서 총 200장의 이미지로 맥북 프로 i7 CPU 기준 7000 스텝정도의 학습을 진행한 결과 테스트 정확도 기준 90% 정도의 정확도를 얻을 수 있었다.

코드 설명

텐서플로우로 구현된 코드를 살펴보자

파일에서 데이타 읽기

먼저 학습 데이타를 읽어오는 부분이다.

학습과 테스트에서 읽어드리는 데이타의 포맷은 다음과 같다

 

/Users/terrycho/training_data_class5_40/validate/s1.jpg,Sulhyun,3

이미지 파일 경로, 사람 이름 , 숫자 라벨

 

파일에서 데이타를 읽어서 처리 하는 함수는 read_data_batch(), read_data(), get_input_queue()  세가지 함수가 사용된다.

  • get_input_queue() 함수는 CSV 파일을 한줄씩 읽어서, 파일 경로 및 숫자 라벨 두가지를 리턴할 수 있는 큐를 만들어서 리턴한다.

  • read_data() 함수는 get_input_queue()에서 리턴한 큐로 부터 데이타를 하나씩 읽어서 리턴한다.

  • read_batch_data()함수는 read_data() 함수를 이용하여, 데이타를 읽어서 일정 단위(배치)로 묶어서 리턴을 하고, 그 과정에서 이미지 데이타를 뻥튀기 하는 작업을 한다.

즉 호출 구조는 다음과 같다.

 

read_batch_data():

 → Queue = get_input_queue()

 → image,label = read_data(Queue)

 → image_data = 이미지 데이타 뻥튀기

Return image_data,label

 

실제 코드를 보자

get_input_queue

get_input_queue() 함수는 CSV 파일을 읽어서 image와 labels을 리턴하는 input queue를 만들어서 리턴하는 함수이다.

 

def get_input_queue(csv_file_name,num_epochs = None):

   train_images = []

   train_labels = []

   for line in open(csv_file_name,'r'):

       cols = re.split(',|\n',line)

       train_images.append(cols[0])

       # 3rd column is label and needs to be converted to int type

       train_labels.append(int(cols[2]) )

                           

   input_queue = tf.train.slice_input_producer([train_images,train_labels],

                                              num_epochs = num_epochs,shuffle = True)

   

   return input_queue

 

CSV 파일을 순차적으로 읽은 후에, train_images와 train_labels라는 배열에 넣은 다음 tf.train.slice_input_producer를 이용하여 큐를 만들어냈다. 이때 중요한 점은 shuffle=True라는 옵션을 준것인데, 만약에 이 옵션을 주지 않으면, 학습 데이타를 큐에서 읽을때 CSV에서 읽은 순차적으로 데이타를 리턴한다. 즉 현재 데이타 포맷은 Jessica Alba가 40개, Jolie 가 40개, Nicole Kidman이 40개 .. 식으로 순서대로 들어가 있기 때문에, Jessica Alba를 40개 리턴한 후 Jolie를 40개 리턴하는 식이 된다.  이럴 경우 Convolutional 네트워크가 Jessica Alba에 치우쳐지기 때문에 제대로 학습이 되지 않는다. Shuffle은 필수이다.

read_data()

input_queue에서 데이타를 읽는 부분인데 특이한 점은 input_queue에서 읽어드린 이미지 파일명의 파일을 읽어서 데이타 객체로 저장해야 한다. 텐서플로우에서는 tf.image.decode_jpeg, tf.image.decode_png 등을 이용하여 이러한 기능을 제공한다.

def read_data(input_queue):

   image_file = input_queue[0]

   label = input_queue[1]

   

   image =  tf.image.decode_jpeg(tf.read_file(image_file),channels=FLAGS.image_color)

   

   return image,label,image_file

read_data_batch()

마지막으로 read_data_batch() 함수 부분이다.get_input_queue에서 읽은 큐를 가지고 read_data함수에 넣어서 이미지 데이타와 라벨을 읽어서 리턴하는 값을 받아서 일정 단위로 (배치) 묶어서 리턴하는 함수이다. 중요한 부분이 데이타를 뻥튀기 하는 부분이 있다.

이 모델에서 학습 데이타가 클래스당 40개 밖에 되지 않기 때문에 학습데이타가 부족하다. 그래서 여기서 사용한 방법은 read_data에서 리턴된 이미지 데이타에 대해서 tf.image.random_xx 함수를 이용하여 좌우를 바꾸거나, brightness,contrast,hue,saturation 함수를 이용하여 매번 색을 바꿔서 리턴하도록 하였다.

 

def read_data_batch(csv_file_name,batch_size=FLAGS.batch_size):

   input_queue = get_input_queue(csv_file_name)

   image,label,file_name= read_data(input_queue)

   image = tf.reshape(image,[FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

   

   # random image

   image = tf.image.random_flip_left_right(image)

   image = tf.image.random_brightness(image,max_delta=0.5)

   image = tf.image.random_contrast(image,lower=0.2,upper=2.0)

   image = tf.image.random_hue(image,max_delta=0.08)

   image = tf.image.random_saturation(image,lower=0.2,upper=2.0)

   

   batch_image,batch_label,batch_file = tf.train.batch([image,label,file_name],batch_size=batch_size)

   #,enqueue_many=True)

   batch_file = tf.reshape(batch_file,[batch_size,1])

 

   batch_label_on_hot=tf.one_hot(tf.to_int64(batch_label),

       FLAGS.num_classes, on_value=1.0, off_value=0.0)

   return batch_image,batch_label_on_hot,batch_file

 

그리고 마지막 부분에 label을 tf.one_hot을 이용해서 변환한것을 볼 수 있는데, 입력된 label은 0,1,2,3,4 과 같은 단일 정수이다. 그런데, CNN에서 나오는 결과는 정수가 아니라 클래스가 5개인 (분류하는 사람이 5명이기 때문에) 행렬이다. 즉 Jessica Alba일 가능성이 90%이고, Jolie일 가능성이 10%이면 결과는 [0.9,0.1,0,0,0] 식으로 리턴이 되기 때문에, 입력된 라벨 0은 [1,0,0,0,0], 라벨 1은 [0,1,0,0,0] 라벨 2는 [0,0,1,0,0] 식으로 변환되어야 한다. tf.one_hot 이라는 함수가 이 기능을 수행해준다.

 

모델 코드

모델은 앞서 설명했듯이 4개의 Convolutional 계층과, 2개의 Fully connected 계층 그리고 Dropout 계층을 사용한다. 각각의 계층별로는 코드가 다르지 않고 인지만 다르니 하나씩 만 설명하도록 한다.

 

Convolutional 계층

아래 코드는 두번째 Convolutional 계층의 코드이다.

  • FLAGS.conv2_layer_size 는 이 Convolutional 계층의 뉴런의 수로 32개를 사용한다.

  • FLAGS.conv2_filter_size 는 필터 사이즈를 지정하는데, 3x3 을 사용한다.

  • FLAGS.stride2 = 1 는 필터의 이동 속도로 한칸씩 이동하도록 정의했다.

 

# convolutional network layer 2

def conv2(input_data):

   FLAGS.conv2_filter_size = 3

   FLAGS.conv2_layer_size = 32

   FLAGS.stride2 = 1

   

   with tf.name_scope('conv_2'):

       W_conv2 = tf.Variable(tf.truncated_normal(

                       [FLAGS.conv2_filter_size,FLAGS.conv2_filter_size,FLAGS.conv1_layer_size,FLAGS.conv2_layer_size],

                                             stddev=0.1))

       b2 = tf.Variable(tf.truncated_normal(

                       [FLAGS.conv2_layer_size],stddev=0.1))

       h_conv2 = tf.nn.conv2d(input_data,W_conv2,strides=[1,1,1,1],padding='SAME')

       h_conv2_relu = tf.nn.relu(tf.add(h_conv2,b2))

       h_conv2_maxpool = tf.nn.max_pool(h_conv2_relu

                                       ,ksize=[1,2,2,1]

                                       ,strides=[1,2,2,1],padding='SAME')

       

       

   return h_conv2_maxpool

 

다음 Weight 값 W_conv2 와 Bias 값 b2를 지정한후에, 간단하게 tf.nn.conv2d 함수를 이용하면 2차원의 Convolutional 네트워크를 정의해준다. 다음 결과가 나오면 이 결과를 액티베이션 함수인 relu 함수에 넣은 후에, 마지막으로 max pooling 을 이용하여 결과를 뽑아낸다.

 

각 값의 의미에 대해서는 http://bcho.tistory.com/1149 의 컨볼루셔널 네트워크 개념 글을 참고하기 바란다.

같은 방법으로 총 4개의 Convolutional 계층을 중첩한다.

 

Fully Connected 계층

앞서 정의한 4개의 Convolutional 계층을 통과하면 다음 두개의 Fully Connected 계층을 통과하게 되는데 모양은 다음과 같다.

  • FLAGS.fc1_layer_size = 512 를 통하여 Fully connected 계층의 뉴런 수를 512개로 지정하였다.

 

# fully connected layer 1

def fc1(input_data):

   input_layer_size = 6*6*FLAGS.conv4_layer_size

   FLAGS.fc1_layer_size = 512

   

   with tf.name_scope('fc_1'):

       # 앞에서 입력받은 다차원 텐서를 fcc에 넣기 위해서 1차원으로 피는 작업

       input_data_reshape = tf.reshape(input_data, [-1, input_layer_size])

       W_fc1 = tf.Variable(tf.truncated_normal([input_layer_size,FLAGS.fc1_layer_size],stddev=0.1))

       b_fc1 = tf.Variable(tf.truncated_normal(

                       [FLAGS.fc1_layer_size],stddev=0.1))

       h_fc1 = tf.add(tf.matmul(input_data_reshape,W_fc1) , b_fc1) # h_fc1 = input_data*W_fc1 + b_fc1

       h_fc1_relu = tf.nn.relu(h_fc1)

   

   return h_fc1_relu

 

Fully connected 계층은 단순하게 relu(W*x + b) 함수이기 때문에 이 함수를 위와 같이 그대로 적용하였다.

마지막 계층

Fully connected 계층을 거쳐 나온 데이타는 Dropout 계층을 거친후에, 5개의 카테고리에 대한 확률로 결과를 내기 위해서 final_out 계층을 거치게 되는데, 이 과정에서 softmax 함수를 사용해야 하나, 학습 과정에서는 별도로 softmax 함수를 사용하지 않는다. softmax는 나온 결과의 합이 1.0이 되도록 값을 변환해주는 것인데, 학습 과정에서는 5개의 결과 값이 어떤 값이 나오던 가장 큰 값에 해당하는 것이 예측된 값이기 때문에, 그 값과 입력된 라벨을 비교하면 되기 때문이다.

즉 예를 들어 Jessica Alba일 확률이 100%면 실제 예측에서는 [1,0,0,0,0] 식으로 결과가 나와야 되지만, 학습 중는 Jessica Alaba 로 예측이 되었다고만 알면 되기 때문에 결과가 [1292,-0.221,-0.221,-0.221] 식으로 나오더라도 최대값만 찾으면 되기 때문에 별도로 softmax 함수를 적용할 필요가 없다. Softmax 함수는 연산 비용이 큰 함수이기 때문에 일반적으로 학습 단계에서는 적용하지 않는다.

 

마지막 계층의 코드는 다음과 같다.

# final layer

def final_out(input_data):

 

   with tf.name_scope('final_out'):

       W_fo = tf.Variable(tf.truncated_normal([FLAGS.fc2_layer_size,FLAGS.num_classes],stddev=0.1))

       b_fo = tf.Variable(tf.truncated_normal(

                       [FLAGS.num_classes],stddev=0.1))

       h_fo = tf.add(tf.matmul(input_data,W_fo) , b_fo) # h_fc1 = input_data*W_fc1 + b_fc1

       

   # 최종 레이어에 softmax 함수는 적용하지 않았다.

       

   return h_fo

전체 네트워크 모델 정의

이제 각 CNN의 각 계층을 함수로 정의 하였으면 각 계층을 묶어 보도록 하자. 묶는 법은 간단하다 앞 계층에서 나온 계층을 순서대로 배열하고 앞에서 나온 결과를 뒤의 계층에 넣는 식으로 묶으면 된다.

 

# build cnn_graph

def build_model(images,keep_prob):

   # define CNN network graph

   # output shape will be (*,48,48,16)

   r_cnn1 = conv1(images) # convolutional layer 1

   print ("shape after cnn1 ",r_cnn1.get_shape())

   

   # output shape will be (*,24,24,32)

   r_cnn2 = conv2(r_cnn1) # convolutional layer 2

   print ("shape after cnn2 :",r_cnn2.get_shape() )

   

   # output shape will be (*,12,12,64)

   r_cnn3 = conv3(r_cnn2) # convolutional layer 3

   print ("shape after cnn3 :",r_cnn3.get_shape() )

 

   # output shape will be (*,6,6,128)

   r_cnn4 = conv4(r_cnn3) # convolutional layer 4

   print ("shape after cnn4 :",r_cnn4.get_shape() )

   

   # fully connected layer 1

   r_fc1 = fc1(r_cnn4)

   print ("shape after fc1 :",r_fc1.get_shape() )

 

   # fully connected layer2

   r_fc2 = fc2(r_fc1)

   print ("shape after fc2 :",r_fc2.get_shape() )

   

   ## drop out

   # 참고 http://stackoverflow.com/questions/34597316/why-input-is-scaled-in-tf-nn-dropout-in-tensorflow

   # 트레이닝시에는 keep_prob < 1.0 , Test 시에는 1.0으로 한다.

   r_dropout = tf.nn.dropout(r_fc2,keep_prob)

   print ("shape after dropout :",r_dropout.get_shape() )

   

   # final layer

   r_out = final_out(r_dropout)

   print ("shape after final layer :",r_out.get_shape() )

 

   return r_out

 

이 build_model 함수는 image 를 입력 값으로 받아서 어떤 카테고리에 속할지를 리턴하는 컨볼루셔널 네트워크이다.  중간에 Dropout 계층이 추가되어 있는데, tf.nn.dropout함수를 이용하면 간단하게 dropout 계층을 구현할 수 있다. r_fc2는 Dropout 계층 앞의 Fully Connected 계층에서 나온 값이고,  두번째 인자로 남긴 keep_prob는 Dropout 비율이다.

 

   r_dropout = tf.nn.dropout(r_fc2,keep_prob)

   print ("shape after dropout :",r_dropout.get_shape() )

 

모델 학습

데이타를 읽는 부분과 학습용 모델 정의가 끝났으면 실제로 학습을 시켜보자

 

def main(argv=None):

   

   # define placeholders for image data & label for traning dataset

   

   images = tf.placeholder(tf.float32,[None,FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

   labels = tf.placeholder(tf.int32,[None,FLAGS.num_classes])

   image_batch,label_batch,file_batch = read_data_batch(TRAINING_FILE)

 

먼저 학습용 모델에 넣기 위한 image 데이타를 읽어드릴 placeholder를 images로 정의하고, 다음으로 모델에 의해 계산된 결과와 비교하기 위해서 학습데이타에서 읽어드린 label 데이타를 저장하기 위한 placeholder를 labels로 정의한다. 다음 image_batch,label_batch,fle_batch 변수에 배치로 학습용 데이타를 읽어드린다. 그리고 dropout 계층에서 dropout 비율을 지정할 keep_prob를 place holder로 정의한다.

각 변수가 지정되었으면, build_model 함수를 호출하여, images 값과 keep_prob 값을 넘겨서 Convolutional 네트워크에 값을 넣도록 그래프를 정의하고 그 결과 값을 prediction으로 정의한다.

 

   keep_prob = tf.placeholder(tf.float32) # dropout ratio

   prediction = build_model(images,keep_prob)

   # define loss function

   loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=labels))

   tf.summary.scalar('loss',loss)

 

   #define optimizer

   optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)

   train = optimizer.minimize(loss)

 

중간 중간에 학습 과정을 시각화 하기 위해서 tf.summary.scalar 함수를 이용하여 loss 값을 저장하였다.

 

그래프 생성이 완료 되었으면, 학습에서 계산할 비용 함수를 정의한다. 비용함수는 sofrmax cross entopy 함수를 이용하여, 모델에 의해서 예측된 값 prediction 과, 학습 파일에서 읽어드린 label 값을 비교하여 loss 값에 저장한다.

그리고 이 비용 최적화 함수를 위해서 옵티마이져를 AdamOptimizer를 정의하여, loss 값을 최적화 하도록 하였다.

 

학습용 모델 정의와, 비용 함수, 옵티마이저 정의가 끝났으면 학습 중간 중간 학습된 모델을 테스트하기 위한 Validation 관련 항목등을 정의한다.

 

   # for validation

   #with tf.name_scope("prediction"):

   validate_image_batch,validate_label_batch,validate_file_batch = read_data_batch(VALIDATION_FILE)

   label_max = tf.argmax(labels,1)

   pre_max = tf.argmax(prediction,1)

   correct_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(labels,1))

   accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

           

   tf.summary.scalar('accuracy',accuracy)

      

   startTime = datetime.now()

 

학습용 데이타가 아니라 검증용 데이타를 VALIDATION_FILE에서 읽어서 데이타를 validate_image_batch,validate_label_batch,validate_file_batch에 저장한다. 다음, 정확도 체크를 위해서 학습에서 예측된 라벨값과, 학습 데이타용 라벨값을 비교하여 같은지 틀린지를 비교하고, 이를 가지고 평균을 내서 정확도 (accuracy)로 사용한다.

 

학습용 모델과, 테스트용 데이타 등이 준비되었으면 이제 학습을 시작한다.

학습을 시직하기 전에, 학습된 모델을 저장하기 위해서 tf.train.Saver()를 지정한다. 그리고, 그래프로 loss와 accuracy등을 저장하기 위해서 Summary write를 저장한다.

다음 tf.global_variable_initializer()를 수행하여 변수를 초기화 하고, queue에서 데이타를 읽기 위해서 tf.train.Corrdinator를 선언하고 tf.start_queue_runners를 지정하여, queue 러너를 실행한다.

 

   #build the summary tensor based on the tF collection of Summaries

   summary = tf.summary.merge_all()

   

   with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess:

       saver = tf.train.Saver() # create saver to store training model into file

       summary_writer = tf.summary.FileWriter(FLAGS.log_dir,sess.graph)

       

       init_op = tf.global_variables_initializer() # use this for tensorflow 0.12rc0

       coord = tf.train.Coordinator()

       threads = tf.train.start_queue_runners(sess=sess, coord=coord)

       sess.run(init_op)

 

변수 초기화와 세션이 준비되었기 때문에 이제 학습을 시작해보자. for 루프를 이용하여 총 10,000 스텝의 학습을 하도록 하였다.

 

       for i in range(10000):

           images_,labels_ = sess.run([image_batch,label_batch])

 

다음 image_batch와 label_batch에서 값을 읽어서 앞에서 정의한 모델에 넣고 train 그래프 (AdamOptimizer를 정의한)를 실행한다.

 

           sess.run(train,feed_dict={images:images_,labels:labels_,keep_prob:0.7})

 

이때 앞에서 읽은 images_와, labels_ 데이타를 피딩하고 keep_prob 값을 0.7로 하여 30% 정도의 값을 Dropout 시킨다.

 

다음 10 스텝 마다 학습 상태를 체크하도록 하였다.

           

           if i % 10 == 0:

               now = datetime.now()-startTime

               print('## time:',now,' steps:',i)         

               

               # print out training status

               rt = sess.run([label_max,pre_max,loss,accuracy],feed_dict={images:images_

                                                         , labels:labels_

                                                         , keep_prob:1.0})

               print ('Prediction loss:',rt[2],' accuracy:',rt[3])

위와 같이 loss 값과 accuracy 값을 받아서 출력하여 현재 모델의 비용 함수 값과 정확도를 측정하고

 

               # validation steps

               validate_images_,validate_labels_ = sess.run([validate_image_batch,validate_label_batch])

               rv = sess.run([label_max,pre_max,loss,accuracy],feed_dict={images:validate_images_

                                                         , labels:validate_labels_

                                                         , keep_prob:1.0})

               print ('Validation loss:',rv[2],' accuracy:',rv[3])

학습용 데이타가 아니라 위와 같이 테스트용 데이타를 피딩하여, 테스트용 데이타로 정확도를 검증한다. 이때 keep_prob를 1.0으로 해서 Dropout 없이 100% 네트워크를 활용한다.

 

               if(rv[3] > 0.9):

                   Break

 

만약에 테스트 정확도가 90% 이상이면 학습을 멈춘다. 그리고 아래와 같이 Summary

 

               # validation accuracy

               summary_str = sess.run(summary,feed_dict={images:validate_images_

                                                         , labels:validate_labels_

                                                         , keep_prob:1.0})

 

               summary_writer.add_summary(summary_str,i)

               summary_writer.flush()

 

마지막으로 다음과 같이 학습이 다된 모델을 saver.save를 이용하여 저장하고, 사용된 리소스들을 정리한다.

       saver.save(sess, 'face_recog') # save session

       coord.request_stop()

       coord.join(threads)

       print('finish')

   

main()

 

이렇게 학습을 끝내면 본인의 경우 약 7000 스텝에서 테스트 정확도 91%로 끝난것을 확인할 수 있다.

 

아래는 텐서보드를 이용하여 학습 과정을 시각화한 내용이다.

 


 

코드는 공개가 가능하지만 학습에 사용한 데이타는 저작권 문제로 공유가 불가능하다. 약 200장의 사진만 제대로 수집을 하면 되기 때문에 각자 수집을 해서 학습을 도전해보는 것을 권장한다. (더 많은 인물에 대한 시도를 해보는것도 좋겠다.)

정리 하며

혹시나 이 튜토리얼을 따라하면서 학습 데이타를 공개할 수 있는 분들이 있다면 다른 분들에게도 많은 도움이 될것이라고 생각한다. 가능하면 데이타가 공개되었으면 좋겠다.

전체 코드는 https://github.com/bwcho75/facerecognition/blob/master/1.%2BFace%2BRecognition%2BTraining.ipynb 에 있다.

그리고 직접 사진을 수집해보면, 데이타 수집 및 가공이 얼마나 어려운지 알 수 있기 때문에 직접 한번 시도해보는 것도 권장한다. 아래는 크롬브라우져 플러그인으로 구글 검색에서 나온 이미지를 싹 긁을 수 있는 플러그인이다. Bulk Download Images (ZIG)

https://www.youtube.com/watch?v=k5ioaelzEBM

 



이 플러그인을 이용하면 손쉽게 특정 인물의 데이타를 수집할 수 있다.

다음 글에서는 학습이 끝난 데이타를 이용해서 실제로 예측을 해보는 부분에 대해서 소개하도록 하겠다.

 

 

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


Machine Learning Pipeline


조대협 (http://bcho.tistory.com)

대부분 모델 개발과 알고리즘에 집중

머신러닝을 공부하고 나서는 주로 통계학이나, 모델 자체에 많은 공부를 하는 노력을 드렸었다. 선형대수나 미적분 그리고 방정식에 까지 기본으로 돌아가려고 노력을 했었고, 그 중간에 많은 한계에도 부딪혔지만, 김성훈 교수님의 모두를 위한 딥러닝 강의를 접하고 나서, 수학적인 지식도 중요하지만 수학적인 깊은 지식이 없어도 모델 자체를 이해하고 근래에 발전된 머신러닝 개발 프레임웍을 이용하면 모델 개발이 가능하다는 것을 깨달았다.

 

계속해서 모델을 공부하고, 머신러닝을 공부하는 분들을 관심있게 지켜보고 실제 머신러닝을 사용하는 업무들을 살펴보니 재미있는 점이 모두 모델 자체 개발에만 집중한다는 것이다. 커뮤니티에 올라오는 글의 대부분은 어떻게 모델을 구현하는지 어떤 알고리즘을 사용하는지에 대한 내용들이 많았고, 실 업무에 적용하는 분들을 보면 많은 곳들이 R을 이용하여 데이타를 분석하고 모델링을 하는데, 데이타를 CSV 파일 형태로 다운 받아서 정재하고 데이타를 분석하고 모델을 개발하는 곳이 많은 것을 보았다. 데이타의 수집 및 전처리 및 개발된 모델에 대한 서비스에 대해서는 상대적으로 많은 정보를 접하지 못했는데, 예상하기로 대부분 모델 개발에 집중하기 때문이 아닌가 싶다.

 

엔지니어 백그라운드를 가진 나로써는 CSV로 데이타를 끌어다가 정재하고 분석하는 것이 매우 불편해 보이고 이해가 되지 않았다. 빅데이타 분석 시스템에 바로 연결을 하면, CSV로 덤프 받고 업로드 하는 시간등에 대한 고민이 없을텐데.” 왜 그렇게 할까 ?”라는 의문이 계속 생기기 시작하였다.

미니 프로젝트를 시작하다

이런 의문을 가지던중 CNN 네트워크 모델에 대한 대략적인 학습이 끝나고, 실제로 적용하면서 경험을 쌓아보기로 하였다. 그래서 얼굴 인식 모델 개발을 시작하였다. CNN 모델이라는 마법을 사용하면 쉽게 개발이 될줄 알았던 프로젝트가 벌써 몇달이 되어 간다. 학습용 데이타를 구하고, 이를 학습에 적절하도록 전처리 하는 과정에서 많은 실수가 있었고, 그 과정에서 많은 재시도가 있었다.

 

(자세한 내용은 http://bcho.tistory.com/1174 , https://www.slideshare.net/Byungwook/ss-76098082 를 참조)

 

특히나 데이타 자체를 다시 처리해야 하는 일이 많았기 때문에, 데이타 전처리 코드를 지속적으로 개선하였고 개선된 코드를 이용하여 데이타를 지속적으로 다시 처리해서 데이타의 품질을 높여나갔는데, 처리 시간이 계속해서 많이 걸렸다.

자동화와 스케일링의 필요성

특히 이미지 전처리 부분은 사진에서 얼굴이 하나만 있는 사진을 골라내고 얼굴의 각도와 선글라스 유무등을 확인한후 사용 가능한 사진에서 얼굴을 크롭핑하고 학습용 크기로 리사이즈 하는 코드였는데 (자세한 내용 http://bcho.tistory.com/1176) 싱글 쓰레드로 만들다 보니 아무래도 시간이 많이 걸렸다. 실제 운영환경에서는 멀티 쓰레드 또는 멀티 서버를 이용하여 스케일링을 할 필요가 있다고 느꼈다.

 

또한 이미지 수집에서 부터 필터링, 그리고 학습 및 학습된 모델의 배포와 서비스 까지 이 전 과정을 순차적으로 진행을 하되 반복적인 작업이기 때문에 자동화할 필요성이 있다고 생각했다.

아이 체중 예측 모델을 통한 파이프라인에 대한 이해

그러던 중에 팀 동료로 부터 좋은 예제 하나를 전달 받게 되었다.

미국 아기들의 환경에 따른 출생 체중을 예측하는 간단한 선형 회귀 모델을 구현한 파이썬 노트북인데 (https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/blogs/babyweight/babyweight.ipynb) 하나의 노트북에 전체 단계를 모두 구현해놓았다.

 


 

데이타에 대한 분석을 통한 데이타 특성 추출, 추출된 특성을 통한 모델 개발, 모델 학습을 위한 데이타 전처리 그리고 학습 및 학습된 모델을 통한 예측 서비스 까지 모든 과정을 하나의 노트북에 구현해놓았다.

(시간이 있으면 꼭 보기를 강력 추천한다.)

 

흥미로운 점이 데이타 전처리를 Apache Beam이라는 데이타 처리 플랫폼을 썼고, 그 전처리 코드를 파이썬 노트북에 하나로 다 정리한것이다. (실제로 수행은 로컬에서도 가능하지만, 클라우드에서도 실행이 가능해서 충분한 스케일링을 지원한다.)

 

Apache Beam의 구글의 빅데이타 분석 프레임웍으로 Apache Spark 과 같은 프레임웍이라고 보면된다. Google Dataflow라는 이름으로 구글 클라우드에서 서비스가 되는데, Apache Beam이라는 오픈소스로 공개가 되었다. ( http://bcho.tistory.com/1123 http://bcho.tistory.com/1122 http://bcho.tistory.com/1124 )

 

아 이렇게 하는구나 하는 생각이 들었고, 그즘 실무에서 이와 같은 흐름으로 실제로 머신러닝을 수행하는 것을 볼 기회가 있었다.

데이타 전처리를 스케일링하다.

서비스가 가능한 수준의 전체 머신러닝 서비스 파이프라인을 만들어보고 싶어졌다. 마침 또 Apache Beam의 경우에는 예전에 Java 코드로 실시간 분석을 해본 경험이 있고 이번에 2.0 버전이 릴리즈 되서 이번에는 2.0에서 파이썬을 공부해보기로 하고 개발에 들어갔다.

 

특히 기존의 데이타 전처리 코드는 싱글 쓰레드로 돌기 때문에 스케일링에 문제가 있었지만, Apache Beam을 사용할 경우 멀티 쓰레드 뿐만 아니라 동시에 여러대의 머신에서 돌릴 수 있고 이러한 병렬성에 대해서는 크게 고민을 하지 않아도 Apache Beam이 이 기능을 다 제공해준다. 또한 이 데이타 전처리 코드를 돌릴 런타임도 별도 설치할 필요가 없이 커멘드 하나로 구글 클라우드에서 돌릴 수 가 있다. (직업 특성상 클라우드 자원을 비교적 자유롭게 사용할 수 있었다.)

 

Apache Beam으로 전처리 코드를 컨버팅 한결과 기존 싱글 쓰레드 파이썬 코드가 400~500장의 이미지 전처리에 1~2시간이 걸렸던 반면, 전환후에 대략 15~17분이면 끝낼 수 있었다. 전처리 중에는 서버의 대수가 1대에서 시작해서 부하가 많아지자 자동으로 5대까지 늘어났다. 이제는 아무리 많은 데이타가 들어오더라도 서버의 대수만 단순하게 늘리면 수분~수십분내에 수십,수만장의 데이타 처리가 가능하게 되었다.


<그림. Apache Beam 기반의 이미지 전처리 시스템 실행 화면 >

 

Apache Beam 기반의 이미지 전처리 코드는 https://github.com/bwcho75/facerecognition/blob/master/Preprocess%2Bface%2Brecognition%2Bdata%2Band%2Bgenerate%2Btraining%2Bdata.ipynb 에 공개해 놨다.

 

머신러닝 파이프라인 아키텍쳐와 프로세스

이번 과정을 통해서 머신러닝의 학습 및 예측 시스템 개발이 어느 정도 정형화된 프로세스화가 가능하고 시스템 역시 비슷한 패턴의 아키텍쳐를 사용할 수 있지 않을까 하는 생각이 들었고, 그 내용을 아래와 같이 정리한다.

파이프라인 개발 프로세스

지금까지 경험한 머신러닝 개발 프로세스는 다음과 같다.

 

  1. 데이타 분석
    먼저 머신러닝에 사용할 전체 데이타셋을 분석한다. 그래프도 그려보고 각 변수간의 연관 관계나 분포도를 분석하여, 학습에 사용할 변수를 정의하고 어떤 모델을 사용할지 판단한다.

  2. 모델 정의
    분석된 데이타를 기반으로 모델을 정의하고, 일부 데이타를 샘플링하여 모델을 돌려보고 유효한 모델인지를 체크한다. 모델이 유효하지 않다면 변수와 모델을 바꿔 가면서 최적의 모델을 찾는다.

  3. 데이타 추출 및 전처리
    유효한 모델이 개발이 되면, 일부 데이타가 아니라 전체 데이타를 가지고 학습을 한다. 전체 데이타를 추출해서 모델에 넣어서 학습을 하려면 데이타의 크기가 크면 매번 매뉴얼로 하기가 어렵기 때문에 데이타 추출 및 전처리 부분을 자동화 한다.   

  4. 전체 데이타를 이용한 반복 학습 및 튜닝
    모델 자체가 유효하다고 하더라도 전체 데이타를 가지고 학습 및 검증을 한것이 아니기 때문에 의외의 데이타가 나오거나 전처리에 의해서 필터링되지 않은 데이타가 있을 수 있기 때문에 지속적으로 데이타 추출 및 전처리 모듈을 수정해야 하고, 마찬가지로 모델 역시 정확도를 높이기 위해서 지속적으로 튜닝을 한다. 이 과정에서 전체 데이타를 다루기 때문에 모델 역시 성능을 위해서 분산형 구조로 개선되어야 한다.

  5. 모델 배포
    학습 모델이 완성되었으면 학습된 모델을 가지고 예측을 할 수 있는 시스템을 개발하고 이를 배포한다.

  6. 파이프라인 연결 및 자동화
    머신러닝의 모델은 위의 과정을 통해서 만들었지만, 데이타가 앞으로도 지속적으로 들어올 것이고 지속적인 개선이 필요하기 때문에 이 전과정을 자동화 한다. 이때 중요한것은 데이타 전처리, 학습, 튜닝, 배포등의 각 과정을 물 흐르듯이 연결하고 자동화를 해야 하는데 이렇게 데이타를 흐르는 길을 데이타 플로우라고 한다. (흔히 Luigi, Rundeck, Airflow와 같은 데이타플로우 오케스트레이션 툴을 이용한다)

 

전체적인 프로세스에 대해서 좋은 영상이 있어서 공유한다.


아키텍쳐

위의 프로세스를 기반으로한 머신러닝 파이프라인 아키텍쳐 는 다음과 같다.


 

 

Inputs

머신 러닝 파이프라인의 가장 처음단은 데이타를 수집하고 이 수집된 데이타를 저장하는 부분이다.

데이타 수집은 시간,일,주,월과 같이 주기적으로 데이타를 수집하는 배치 프로세싱과, 실시간으로 데이타를 수집하는 리얼타임 프로세싱 두가지로 나뉘어 진다. 이 두 파이프라인을 통해서 데이타 소스로 부터 데이타를 수집하고 필터링하고 정재하여, 데이타 레이크에 저장한다. 이 구조는 일반적인 빅데이타 분석 시스템의 구조와 유사하다. (참고 자료 http://bcho.tistory.com/984 http://bcho.tistory.com/671 )

 

개인적으로 머신러닝을 위해서 중요한 부분 중 하나는 데이타 레이크를 얼마나 잘 구축하느냐이다. 데이타 레이크는 모든 데이타가 모여 있는 곳으로 보통 데이타 레이크를 구축할때는 많은 데이타를 모으는 데만 집중하는데, 데이타를 잘 모으는 것은 기본이고 가장 중요한 점은 이 모여 있는 데이타에 대한 접근성을 제공하는 것이다.

 

무슨 이야기인가 하면, 보통 머신러닝 학습을 위해서 학습 데이타를 받거나 또는 데이타에 대한 연관성 분석등을 하기 위해서는 데이타 레이크에서 데이타를 꺼내오는데, 데이타 레이크를 개발 운영 하는 사람과 데이타를 분석하고 머신러닝 모델을 만드는 사람은 보통 다르기 때문에, 모델을 만드는 사람이 데이타 레이크를 운영하는 사람에게 “무슨 무슨 데이타를 뽑아서 CSV로 전달해 주세요.” 라고 이야기 하는 것이 보통이다. 그런데 이 과정이 번거롭기도 하고 시간이 많이 걸린다.

가장 이상적인 방법은 데이타를 분석하고 모델링 하는 사람이 데이타 레이크 운영팀에 부탁하지 않고서도 손쉽고 빠르게 데이타에 접근해서 데이타를 읽어오고 분석을 할 수 있어야 한다.

직업 특성상 구글의 빅쿼리를 많이 접하게 되는데, 빅쿼리는 대용량 데이타를 저장할 수 있을 뿐만 아니라 파이썬 노트북이나 R 스튜디오 플러그인을 통해서 바로 데이타를 불러와서 분석할 수 있다.  


<그림 INPUT 계층의 빅데이타 저장 분석 아키텍쳐>

Pre processing & Asset creation

Pre processing은 수집한 데이타를 학습 시스템에 넣기 위해서 적절한 데이타만 필터링하고 맞는 포맷으로 바꾸는 작업을 한다. 작은 모델이나 개발등에서는 샘플링된 데이타를 로컬에서 내려 받아서 R이나 numpy/pandas등으로 작업이 가능하지만, 데이타가 수테라에서 수백테라이상이 되는 빅데이타라면 로컬에서는 작업이 불가능하기 때문에, 데이타 전처리 컴포넌트를 만들어야 한다.

일반적으로 빅데이타 분석에서 사용되는 기술을 사용하면 되는데, 배치성 전처리는 하둡이나 스파크와 같은 기술이 보편적으로 사용되고 실시간 스트리밍 분석은 스파크 스트리밍등이 사용된다.


Train

학습은 전처리된 데이타를 시스템에 넣어서 모델을 학습 시키는 단계이다. 이 부분에서 생각해야 할점은 첫번째는 성능 두번째는 튜닝이다. 성능 부분에서는 GPU등을 이용하여 학습속도를 늘리고 여러대의 머신을 연결하여 학습을 할 수 있는 병렬성이 필요하다. 작은 모델의 경우에는 수시간에서 하루 이틀 정도 소요되겠지만 모델이 크면 한달 이상이 걸리기 때문에 고성능 하드웨어와 병렬 처리를 통해서 학습 시간을 줄이는 접근이 필요하다. 작은 모델의 경우에는 NVIDIA GPU를 데스크탑에 장착해놓고 로컬에서 돌리는 것이 가성비 적으로 유리하고, 큰 모델을 돌리거나 동시에 여러 모델을 학습하고자 할때는 클라우드를 사용하는 것이 절대 적으로 유리하다 특히 구글 클라우드의 경우에는  알파고에서 사용된 GPU의 다음 세대인 TPU (텐서플로우 전용 딥러닝 CPU)를 제공한다. https://cloud.google.com/tpu/ CPU나 GPU대비 최대 15~30배 정도의 성능 차이가 난다.

 

 

학습 단계에서는 세부 변수를 튜닝할 필요가 있는데, 예를 들어 학습 속도나 뉴럴 네트워크의 폭이나 깊이, 드롭 아웃의 수, 컨볼루셔널 필터의 크기등등이 있다. 이러한 변수들을 하이퍼 패러미터라고 하는데, 학습 과정에서 모델의 정확도를 높이기 위해서 이러한 변수들을 자동으로 튜닝할 수 있는 아키텍쳐를 가지는 것이 좋다.

 

텐서플로우등과 같은 머신러닝 전용 프레임웍을 사용하여 직접 모델을 구현하는 방법도 있지만, 모델의 난이도가 그리 높지 않다면 SparkML등과 같이 미리 구현된 모델의 런타임을 사용하는 방법도 있다.

Predict

Predict에서는 학습된 모델을 이용하여 예측 기능을 서비스 하는데, 텐서플로우에서는  Tensorflow Serv를 사용하면 되지만, Tensorflow Serv의 경우에는 bazel 빌드를 이용하여 환경을 구축해야 하고, 대규모 서비를 이용한 분산 환경 서비스를 따로 개발해야 한다. 거기다가 인터페이스가 gRPC이다. (귀찮다.)

구글 CloudML의 경우에는 별도의 빌드등도 필요 없고 텐서 플로우 모델만 배포하면 대규모 서비스를 할 수 있는 런타임이 바로 제공되고 무엇보다 gRPC 인터페이스뿐만 아니라 HTTP/REST 인터페이스를 제공한다. 만약에 Production에서 머신러닝 모델을 서비스하고자 한다면 구글 CloudML을 고려해보기를 권장한다.

Dataflow Orchestration

이 전과정을 서로 유기적으로 묶어 주는 것을 Dataflow Orchestration이라고 한다.

예를 들어 하루에 한번씩 이 파이프라인을 실행하도록 하고, 파이프라인에서 데이타 전처리 과정을 수행하고, 이 과정이 끝나면 자동으로 학습을 진행하고 학습 정확도가 정해진 수준을 넘으면 자동으로 학습된 모델은 서비스 시스템에 배포하는 이 일련의 과정을 자동으로 순차적으로 수행할 수 있도록 엮어 주는 과정이다.

airbnb에서 개발한 Airflow나 luigi 등의 솔루션을 사용하면 된다.

아직도 갈길은 멀다.

얼굴 인식이라는 간단한 모델을 개발하고 있지만, 전체를 자동화 하고, 클라우드 컴퓨팅을 통해서 학습 시간을 단축 시키고 예측 서비스를 할 수 있는 컴포넌트를 개발해야 하고, 향후에는 하이퍼 패러미터 튜닝을 자동으로 할 수 있는 수준까지 가보려고 한다. 그 후에는 GAN을 통한 얼굴 합성들도 도전하려고 하는데, node.js 공부하는데도 1~2년을 투자한후에나 조금이나마 이해할 수 있게 되었는데, 머신러닝을 시작한지 이제 대략 8개월 정도. 길게 보고 해야 하겠다.

 



 

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

연예인 얼굴 인식 서비스를 만들어보자 #1 - 데이타 준비하기

 

CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.

CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다.

 

이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face )

 

얼굴 데이타를 구할 수 있는곳

먼저 얼굴 인식 모델을 만들려면, 학습을 시킬 충분한 데이타가 있어야 한다. 사람 얼굴을 일일이 구할 수 도 없고, 구글이나 네이버에서 일일이 저장할 수 도 없기 때문에, 공개된 데이타셋을 활용하였는데, PubFig (Public Figures Face Database - http://www.cs.columbia.edu/CAVE/databases/pubfig/) 를 사용하였다.


 

이 데이타셋에는 약 200명에 대한 58,000여장의 이미지를 저장하고 있는데, 이 중의 일부만을 사용하였다.

Download 페이지로 가면, txt 파일 형태 (http://www.cs.columbia.edu/CAVE/databases/pubfig/download/dev_urls.txt) 로 아래와 같이

 

Abhishek Bachan 1 http://1.bp.blogspot.com/_Y7rzCyUABeI/SNIltEyEnjI/AAAAAAAABOg/E1keU_52aFc/s400/ash_abhishek_365x470.jpg 183,60,297,174 f533da9fbd1c770428c8961f3fa48950
Abhishek Bachan 2 http://1.bp.blogspot.com/_v9nTKD7D57Q/SQ3HUQHsp_I/AAAAAAAAQuo/DfPcHPX2t_o/s400/normal_14thbombaytimes013.jpg 49,71,143,165 e36a8b24f0761ec75bdc0489d8fd570b
Abhishek Bachan 3 http://2.bp.blogspot.com/_v9nTKD7D57Q/SL5KwcwQlRI/AAAAAAAANxM/mJPzEHPI1rU/s400/ERTYH.jpg 32,68,142,178 583608783525c2ac419b41e538a6925d

 

사람이름, 이미지 번호, 다운로드 URL, 사진 크기, MD5 체크섬을 이 필드로 저장되어 있다.

이 파일을 이용하여 다운로드 URL에서 사진을 다운받아서, 사람이름으로된 폴더에 저장한다.

물론 수동으로 할 수 없으니 HTTP Client를 이용하여, URL에서 사진을 다운로드 하게 하고, 이를 사람이름 폴더 별로 저장하도록 해야 한다.

 

HTTP Client를 이용하여 파일을 다운로드 받는 코드는 일반적인 코드이기 때문에 별도로 설명하지 않는다.

본인의 경우에는 Win이 만든 https://github.com/wwoo/tf_face/blob/master/tf/face_extract/pubfig_get.py 코드를 이용하여 데이타를 다운로드 받았다.

사용법은  https://github.com/wwoo/tf_face 에 나와 있는데,

 

$> python tf/face_extract/pubfig_get.py tf/face_extract/eval_urls.txt ./data

를 실행하면 ./data 디렉토리에 이미지를 다운로드 받아서 사람 이름별 폴더에 저장해준다.

evals_urls.txt에는 위에서 언급한 dev_urls.txt 형태의 데이타가 들어간다.


사람 종류가 너무 많으면 데이타를 정재하는 작업이 어렵고, (왜 어려운지는 뒤에 나옴) 학습 시간이 많이 걸리기 때문에, 약 47명의 데이타를 다운로드 받아서 작업하였다.

학습 데이타 준비에 있어서 경험

쓰레기 데이타 골라내기

데이타를 다운받고 나니, 아뿔사!! PubFig 데이타셋이 오래되어서 없는 이미지도 있고 학습에 적절하지 않은 이미지도 있다.


주로 학습에 적절하지 않은 데이타는 한 사진에 두사람 이상의 얼굴이 있거나, 이미지가 사라져서 위의 우측 그림처럼, 이미지가 없는 형태로 나오는 경우인데, 이러한 데이타는 어쩔 수 없이 눈으로 한장한장 다 걸러내야만 했는데, 이런 간단한 데이타 필터링 처리는 Google Cloud Vision API를 이용하여, 얼굴이 하나만 있는 사진만을 사용하도록 하여 필터링을 하였다.

학습 데이타의 분포

처음에 학습을 시작할때, 분류별로 데이타의 수를 다르게 하였다. 어렵게 모은 데이타를 버리기가 싫어서 모두 다 넣고 학습 시켰는데, 그랬더니 학습이 쏠리는 현상이 발생하였다.

예를 들어 안젤리나 졸리 300장, 브래드피트 100장, 제시카 알바 100장 이런식으로 학습을 시켰더니, 이미지 예측에서 안젤리나 졸리로 예측하는 경우가 많아졌다. 그래서 학습을 시킬때는 데이타수가 작은 쪽으로 맞춰서 각 클래스당 학습 데이타수가 같도록 하였다. 즉 위의 데이타의 경우에는 안젤리나 졸리 100장, 브래드피트 100장, 제시카 알바 100장식으로 데이타 수를 같게 해야했다.

라벨은 숫자로

라벨의 가독성을 높이기 위해서 라벨을 영문 이름으로 사용했는데, CNN 알고리즘에서 최종 분류를 하는 알고리즘은 softmax 로 그 결과 값을 0,1,2…,N식으로 라벨을 사용하기 때문에, 정수형으로 변환을 해줘야 하는데, 텐서 플로우 코드에서는 이게 그리 쉽지않았다. 그래서 차라리 처음 부터 학습 데이타를 만들때는 라벨을 정수형으로 만드는것이 더 효과적이다

얼굴 각도, 표정,메이크업, 선글라스 도 중요하다

CNN 알고리즘을 마법처럼 생각해서였을까? 데이타만 있다면 어떻게든 학습이 될 줄 알았다. 그러나 얼굴의 각도가 많이 다르거나 표정이 심하게 차이가 난 경우에는 다른 사람으로 인식이 되기 때문에 가능하면 비슷한 표정에 비슷한 각도의 사진으로 학습 시키는 것이 정확도를 높일 수 있다.


 

얼굴 각도의 경우 구글 클라우드 VISION API를 이용하면 각도를 추출할 수 있기 때문에 20도 이상 차이가 나는 사진은 필터링 하였고, 표정 부분도 VISION API를 이용하면 감정도를 분석할 수 있기 때문에 필터링이 가능하다. (아래서 설명하는 코드에서는 감정도 분석 부분은 적용하지 않았다)

또한 선글라스를 쓴 경우에도 다른 사람으로 인식할 수 있기 때문에 VISION API에서 물체 인식 기능을 이용하여 선글라스가 검출된 경우에는 학습 데이타에서 제거하였다.

이외에도 헤어스타일이나 메이크업이 심하게 차이가 나는 경우에는 다른 사람으로 인식되는 확률이 높기 때문에 이런 데이타도 가급적이면 필터링을 하는것이 좋다.

웹 크라울링의 문제점

데이타를 쉽게 수집하려고 웹 크라울러를 이용해서 구글 이미지 검색에서 이미지를 수집해봤지만, 정확도는 매우 낮게 나왔다.


 

https://www.youtube.com/watch?v=k5ioaelzEBM

<그림. 설현 얼굴을 웹 크라울러를 이용하여 수집하는 화면>

 

아래는 웹 크라울러를 이용하여 EXO 루한의 사진을 수집한 결과중 일부이다.


웹크라울러로 수집한 데이타는, 앞에서 언급한 쓰레기 데이타들이 너무 많다. 메이크업, 표정, 얼굴 각도, 두명 이상 있는 사진들이 많았고, 거기에 더해서 그 사람이 아닌 사람의 얼굴 사진까지 같이 수집이 되는 경우가 많았다.

웹 크라울링을 이용한 학습 데이타 수집은 적어도 얼굴 인식용 데이타 수집에 있어서는 좋은 방법은 아닌것 같다. 혹여나 웹크라울러를 사용하더라도 반드시 수동으로 직접 데이타를 검증하는 것이 좋다.

학습 데이타의 양도 중요하지만 질도 매우 중요하다

아이돌 그룹인 EXO와 레드벨벳의 사진을 웹 크라울러를 이용해서 수집한 후에 학습을 시켜보았다. 사람당 약 200장의 데이타로 8개 클래스 정도를 테스트해봤는데 정확도가 10%가 나오지를 않았다.

대신 데이타를 학습에 좋은 데이타를 일일이 눈으로 확인하여 클래스당 30장 정도를 수집해서 학습 시킨 결과 60% 정도의 정확도를 얻을 수 있었다.  양도 중요하지만 학습 데이타의 질적인 면도 중요하다.

중복데이타 처리 문제

데이타를 수집해본 결과, 중복되는 데이타가 생각보다 많았다. 중복 데이타를 걸러내기 위해서 파일의 MD5 해쉬 값을 추출해낸 후 이를 비교해서 중복되는 파일을 제거하였는데, 어느정도 효과를 볼 수 있었지만, 아래 이미지와 같이 같은 이미지지만, 편집이나 리사이즈가 된 이미지의 경우에는 다른 파일로 인식되서 중복 체크에서 검출되지 않았다.


연예인 얼굴 인식은 어렵다

얼굴 인식 예제를 만들면서 재미를 위해서 한국 연예인 얼굴을 수집하여 학습에 사용했는데, 제대로 된 학습 데이타를 구하기가 매우 어려웠다. 앞에서 언급한데로 메이크업이나 표정 변화가 너무 심했고, 어렸을때나 나이먹었을때의 차이등이 심했다. 간단한 공부용으로 사용하기에는 좋은 데이타는 아닌것 같다.

그러면 학습에 좋은 데이타는?

그러면 얼굴 인식 학습에 좋은 데이타는 무엇일까? 테스트를 하면서 내린 자체적인 결론은 정면 프로필 사진류가 제일 좋다. 특히 스튜디오에서 찍은 사진은 같은 조명에 같은 메이크업과 헤어스타일로 찍은 경우가 많기 때문에 학습에 적절하다. 또는 동영상의 경우에는 프레임을 잘라내면 유사한 표정과 유사한 각도, 조명등에 대한 데이타를 많이 얻을 수 있기 때문에 좋은 데이타 된다.

얼굴 추출하기

그러면 앞의 내용을 바탕으로 해서, 적절한 학습용 얼굴 이미지를 추출하는 프로그램을 만들어보자

포토샵으로 일일이 할 수 없기 때문에 얼굴 영역을 인식하는 API를 사용하기로한다. OPEN CV와 같은 오픈소스 라이브러리를 사용할 수 도 있지만 구글의 VISION API의 경우 얼굴 영역을 아주 잘 잘라내어주고,  얼굴의 각도나 표정을 인식해서 필터링 하는 기능까지 코드 수십줄만 가지고도 구현이 가능했기 때문에, VISION API를 사용하였다. https://cloud.google.com/vision/

VISION API ENABLE 하기

VISION API를 사용하기 위해서는 해당 구글 클라우드 프로젝트에서 VISION API를 사용하도록 ENABLE 해줘야 한다.

VISION API를 ENABLE하기 위해서는 아래 화면과 같이 구글 클라우드 콘솔 > API Manager 들어간후


 

+ENABLE API를 클릭하여 아래 그림과 같이 Vision API를 클릭하여 ENABLE 시켜준다.

 



 

SERVICE ACCOUNT 키 만들기

다음으로 이 VISION API를 호출하기 위해서는 API 토큰이 필요한데, SERVICE ACCOUNT 라는 JSON 파일을 다운 받아서 사용한다.

구글 클라우드 콘솔에서 API Manager로 들어간후 Credentials 메뉴에서 Create creadential 메뉴를 선택한후, Service account key 메뉴를 선택한다


 

다음 Create Service Account key를 만들도록 하고, accountname과 id와 같은 정보를 넣는다. 이때 중요한것이 이 키가 가지고 있는 사용자 권한을 설정해야 하는데, 편의상 모든 권한을 가지고 있는  Project Owner 권한으로 키를 생성한다.

 

(주의. 실제 운영환경에서 전체 권한을 가지는 키는 보안상의 위험하기 때문에 특정 서비스에 대한 접근 권한만을 가지도록 지정하여 Service account를 생성하기를 권장한다.)

 


 

Service account key가 생성이 되면, json 파일 형태로 다운로드가 된다.

여기서는 terrycho-ml-80abc460730c.json 이름으로 저장하였다.

 

예제 코드

그럼 예제를 보자 코드의 전문은 https://github.com/bwcho75/facerecognition/blob/master/com/terry/face/extract/crop_face.py 에 있다.

 

이 코드는 이미지 파일이 있는 디렉토리를 지정하고, 아웃풋 디렉토리를 지정해주면 이미지 파일을 읽어서 얼굴이 있는지 없는지를 체크하고 얼굴이 있으면, 얼굴 부분만 잘라낸 후에, 얼굴 사진을 96x96 사이즈로 리사즈 한후에,

70%의 파일들은 학습용으로 사용하기 위해서 {아웃풋 디렉토리/training/} 디렉토리에 저장하고

나머지 30%의 파일들은 검증용으로 사용하기 위해서 {아웃풋 디렉토리/validate/} 디렉토리에 저장한다.

 

그리고 학습용 파일 목록은 다음과 같이 training_file.txt에 파일 위치,사람명(라벨) 형태로 저장하고

/Users/terrycho/traning_datav2/training/wsmith.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith061408.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith1.jpg,Will Smith

 

검증용 파일들은 validate_file.txt에 마찬가지로  파일위치와, 사람명(라벨)을 저장한다.

사용 방법은 다음과 같다.

python com/terry/face/extract/crop_face.py “원본 파일이있는 디렉토리" “아웃풋 디렉토리"

(원본 파일 디렉토리안에는 {사람이름명} 디렉토리 아래에 사진들이 쭈욱 있는 구조라야 한다.)

 

자 그러면, 코드의 주요 부분을 살펴보자

 

VISION API 초기화 하기

  def __init__(self):

       # initialize library

       #credentials = GoogleCredentials.get_application_default()

       scopes = ['https://www.googleapis.com/auth/cloud-platform']

       credentials = ServiceAccountCredentials.from_json_keyfile_name(

                       './terrycho-ml-80abc460730c.json', scopes=scopes)

       self.service = discovery.build('vision', 'v1', credentials=credentials)

 

초기화 부분은 Google Vision API를 사용하기 위해서 OAuth 인증을 하는 부분이다.

scope를 googleapi로 정해주고, 인증 방식을 Service Account를 사용한다. credentials 부분에 service account key 파일인 terrycho-ml-80abc460730c.json를 지정한다.

 

얼굴 영역 찾아내기

다음은 이미지에서 얼굴을 인식하고, 얼굴 영역(사각형) 좌표를 리턴하는 함수를 보자

 

   def detect_face(self,image_file):

       try:

           with io.open(image_file,'rb') as fd:

               image = fd.read()

               batch_request = [{

                       'image':{

                           'content':base64.b64encode(image).decode('utf-8')

                           },

                       'features':[

                           {

                           'type':'FACE_DETECTION',

                           'maxResults':MAX_FACE,

                           },

                           {

                           'type':'LABEL_DETECTION',

                           'maxResults':MAX_LABEL,

                           }

                                   ]

                       }]

               fd.close()

       

           request = self.service.images().annotate(body={

                           'requests':batch_request, })

           response = request.execute()

           if 'faceAnnotations' not in response['responses'][0]:

                print('[Error] %s: Cannot find face ' % image_file)

                return None

               

           face = response['responses'][0]['faceAnnotations']

           label = response['responses'][0]['labelAnnotations']

           

           if len(face) > 1 :

               print('[Error] %s: It has more than 2 faces in a file' % image_file)

               return None

           

           roll_angle = face[0]['rollAngle']

           pan_angle = face[0]['panAngle']

           tilt_angle = face[0]['tiltAngle']

           angle = [roll_angle,pan_angle,tilt_angle]

           

           # check angle

           # if face skew angle is greater than > 20, it will skip the data

           if abs(roll_angle) > MAX_ROLL or abs(pan_angle) > MAX_PAN or abs(tilt_angle) > MAX_TILT:

               print('[Error] %s: face skew angle is big' % image_file)

               return None

           

           # check sunglasses

           for l in label:

               if 'sunglasses' in l['description']:

                 print('[Error] %s: sunglass is detected' % image_file)  

                 return None

           

           box = face[0]['fdBoundingPoly']['vertices']

           left = box[0]['x']

           top = box[1]['y']

               

           right = box[2]['x']

           bottom = box[2]['y']

               

           rect = [left,top,right,bottom]

               

           print("[Info] %s: Find face from in position %s and skew angle %s" % (image_file,rect,angle))

           return rect

       except Exception as e:

           print('[Error] %s: cannot process file : %s' %(image_file,str(e)) )

           

 

 

맨 처음에는 얼굴 영역을 추출하기전에, 같은 파일이 예전에 사용되었는지를 확인한다.

           image = Image.open(fd)  

 

           # extract hash from image to check duplicated image

           m = hashlib.md5()

           with io.BytesIO() as memf:

               image.save(memf, 'PNG')

               data = memf.getvalue()

               m.update(data)

 

           if image_hash in global_image_hash:

               print('[Error] %s: Duplicated image' %(image_file) )

               return None

           global_image_hash.append(image_hash)

 

이미지에서 md5 해쉬를 추출한후에, 이 해쉬를 이용하여 학습 데이타로 사용된 파일들의 해쉬와 비교한다. 만약에 중복되는 것이 없으면 이 해쉬를 리스트에 추가하고 다음 과정을 수행한다.

 

VISION API를 이용하여, 얼굴 영역을 추출하는데, 위의 코드에서 처럼 image_file을 읽은후에, batch_request라는 문자열을 만든다. JSON 형태의 문자열이 되는데, 이때 image라는 항목에 이미지 데이타를 base64 인코딩 방식으로 인코딩해서 전송한다. 그리고 VISION API는 얼굴인식뿐 아니라 사물 인식, 라벨인식등 여러가지 기능이 있기 때문에 그중에서 타입을 ‘FACE_DETECTION’으로 정의하여 얼굴 영역만 인식하도록 한다.

 

request를 만들었으면, VISION API로 요청을 보내면 응답이 오는데, 이중에서 response 엘리먼트의 첫번째 인자 ( [‘responses’][0] )은 첫번째 얼굴은 뜻하는데, 여기서 [‘faceAnnotation’]을 하면 얼굴에 대한 정보만을 얻을 수 있다. 이중에서  [‘fdBoundingPoly’] 값이 얼굴 영역을 나타내는 사각형이다. 이 갑ㄱㅅ을 읽어서 left,top,right,bottom 값에 세팅한 후 리턴한다.

 

그리고 얼굴의 각도 (상하좌우옆)를 추출하여, 얼국 각도가 각각 20도 이상 더 돌아간 경우에는 학습 데이타로 사용하지 않고 필터링을 해냈다.

다음은 각도를 추출하고 필터링을 하는 부분이다.

           roll_angle = face[0]['rollAngle']

           pan_angle = face[0]['panAngle']

           tilt_angle = face[0]['tiltAngle']

           angle = [roll_angle,pan_angle,tilt_angle]

           

           # check angle

           # if face skew angle is greater than > 20, it will skip the data

           if abs(roll_angle) > MAX_ROLL or abs(pan_angle) > MAX_PAN or abs(tilt_angle) > MAX_TILT:

               print('[Error] %s: face skew angle is big' % image_file)

               return None

 

 

VISION API에서 추가로 “FACE DETECTION” 뿐만 아니라 “LABEL_DETECTION” 을 같이 수행했는데 이유는 선글라스를 쓰고 있는 사진을 필터링하기 위해서 사용하였다. 아래는 선글라스 있는 사진을 검출하는  코드이다.

           # check sunglasses

           for l in label:

               if 'sunglasses' in l['description']:

                 print('[Error] %s: sunglass is detected' % image_file)  

                 return None

 

얼굴 잘라내고 리사이즈 하기

앞의 detect_face에서 필터링하고 찾아낸 얼굴 영역을 가지고 그 부분만 전체 사진에서 잘라내고, 잘라낸 얼굴을 학습에 적합하도록 같은 크기 (96x96)으로 리사이즈 한다.

이런 이미지 처리를 위해서 PIL (Python Imaging Library - http://www.pythonware.com/products/pil/)를 사용하였다.

   def crop_face(self,image_file,rect,outputfile):

       try:

           fd = io.open(image_file,'rb')

           image = Image.open(fd)  

           crop = image.crop(rect)

           im = crop.resize(IMAGE_SIZE,Image.ANTIALIAS)

           im.save(outputfile,"JPEG")

           fd.close()

           print('[Info] %s: Crop face %s and write it to file : %s' %(image_file,rect,outputfile) )

       except Exception as e:

           print('[Error] %s: Crop image writing error : %s' %(image_file,str(e)) )

image_file을 인자로 받아서 , rect 에 정의된 사각형 영역 만큼 crop를 해서 잘라내고, resize 함수를 이용하여 크기를 96x96으로 조정한후 (참고 IMAGE_SIZE = 96,96 로 정의되어 있다.) outputfile 경로에 저장하게 된다.        

 

실행을 해서 정재된 데이타는 다음과 같다.



  

생각해볼만한점들

이 코드는 간단한 토이 프로그램이기 때문에 간단하게 작성했지만 실제 운영환경에 적용하기 위해서는 몇가지 고려해야 할 사항이 있다.

먼저, 이 코드는 싱글 쓰레드로 돌기 때문에 속도가 상대적으로 느리다 그래서 멀티 쓰레드로 코드를 수정할 필요가 있으며, 만약에 수백만장의 사진을 정재하기 위해서는 한대의 서버로 되지 않기 때문에, 원본 데이타를 여러 서버로 나눠서 처리할 수 있는 분산 처리 구조가 고려되어야 한다.

또한, VISION API로 사진을 전송할때는 BASE64 인코딩된 구조로 서버에 이미지를 직접 전송하기 때문에, 자칫 이미지 사이즈들이 크면 네트워크 대역폭을 많이 잡아먹을 수 있기 때문에 가능하다면 식별이 가능한 크기에서 리사이즈를 한 후에, 서버로 전송하는 것이 좋다. 실제로 필요한 얼굴 크기는 96x96 픽셀이기 때문에 필요없이 1000만화소 고화질의 사진들을 전송해서 네트워크 비용을 낭비하지 않기를 바란다.

 

다음은 이렇게 정재한 파일들을 텐서플로우에서 읽어서 실제로 학습하는 모델을 만들어보겠다.


위의 코드를 멀티 프로세스&멀티쓰레드로 돌리는 아키텍쳐와 코드는 http://bcho.tistory.com/1177 글을 참고하기 바란다.

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

머신러닝 모델 개발 삽질기

빅데이타/머신러닝 | 2017.04.24 14:27 | Posted by 조대협

머신러닝 모델 개발 삽질 경험기


조대협 (http://bcho.tistory.com)


딥러닝을 공부하고 CNN 모델을 기반으로 무언가를 만들어보겠다는 생각에, 해외 유명 연예인 얼굴 사진을 가져다가 분류하는 얼굴 인식 모델을 만들어 보기로 하였다.

아직도 진행중이지만, 많은 시행 착오를 겪었는데 같은 시행 착오를 겪지 않고 경험을 공유하기 위해서 겪었던 시행 착오들을 정리해 본다.

학습 데이타 확보 및 분류

먼저 학습용 데이타를 수집 하는 것이 가장 문제 였다. 인터넷에서 사진을 모아서 학습 데이타로 사용해도 되겠지만, 아무래도 저작권 및 초상권 문제가 있고, 일일이 사진을 하나씩 받아서 수집하거나 또는 별도의 수집기를 만드는 것도 부담이 되었다.

그래서 찾은 것이 pubfig라는 셀럽 얼굴 데이타인데 http://www.cs.columbia.edu/CAVE/databases/pubfig/

상용 목적이 아니라 연구용 목적이면 사용이 가능하다. 이 데이타는 파일 URL, 셀럽 이름 형태로 라벨링이 되어 있기 때문에, 학습에 적합하리라고 생각하고, 이 파일을 기반으로 데이타를 수집하였다.


여기서 생긴 문제는, 이 데이타가 오래된 데이타라서 존재하지 않는 파일이 다수 있었고, 이 경우 파일을 저장하고 있는 사이트에서, 404 Not found와 같은 이미지를 리턴하였기 때문에, 이를 필터링해야 하였고, 같은 사진이 중복되서 오는 문제등이 있었기 때문에,상당량을 일일이 필터링을 해야 했다.


그리고, 사진상에, 여러 얼굴이 있는 이미지가 많았기 때문에, VISION API로 얼굴을 인식해서 얼굴 사진만 잘라낼 요량이었기 때문에, 독사진만을 일일이 보고 골라내야 했다. 나중에 생각해보니 VISION API로 얼굴이 한명만 인식이 되는 사진만 필터링을 했으면 됐을텐데. 불필요한 작업이 많았다.

라벨을 문자열로 쓴 문제

학습 데이타에 대한 라벨을 생성할때, 괜히 가독성을 높힌다고 라벨을 문자열로 해서 각 사람의 이름을 사용하였다.

CNN에서 마지막은 Softmax는 matrix이기 때문에, 라벨 문자열을 나중에 list.indexOf를 이용하여 배열로 변경할 예정이었는데, 파이썬에서는 쉽게 될지 몰라고, 텐서플로우 코드에서는 이 과정이 쉽지 않았다.

그래서..

결국은 라벨 데이타를 문자열이 아니라, 0~44의 int 값으로 재 생성한후에,


   batch_label_on_hot=tf.one_hot(tf.to_int64(batch_label),

       FLAGS.num_classes, on_value=1.0, off_value=0.0)


tf.one_hot 함수를 이용하여, 1*45 행렬로 바뀌어서 사용하였다.

학습용 및 검증용 데이타를 초기에 분류하지 않았던 문제

학습데이타를 준비할때, 학습 데이타를 학습용과 검증용으로 따로 분류를 해놨어야 하는데, 이 작업을 안해서, 결국 모델을 만들다가 다시 학습 데이타를 7:3 비율로 학습 데이타와 검증용 데이타로 분류하는 작업을 진행하였다.

학습 데이타의 분포가 골고르지 못했던 문제

사진을 모으는 과정에서 필터링 되서 버려지는 데이타가 많았고, 원본 데이타 역시 사람별로 사진 수가 고르지 못했기 때문에, 결과적으로 모여진 학습 데이타의 분포가 사람별로 고르지 못했다.

학습데이타가 많은 셀럽은 200~250장, 적은 사람은 50장으로 편차가 컸다.


이로 인해서 첫번째 모델의 학습이 끝난 후에, 모델을 검증해보니, 학습 데이타를 많이 준 사람으로 대부분 분류를 해냈다. 47개의 클래스 약 6000장의 사진으로 5시간 학습 시킨 결과, 예측을 검증하는 과정에서 90%이상을 모두 브래드피트로 인식해내는 문제가 생겼다. (내 맥북이 브레드피트를 좋아하는가??)