블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 

'클라우드 컴퓨팅 & NoSQL/HBase'에 해당되는 글 2

  1. 2017.12.20 HBase와 구글의 빅테이블 #2 - 설치 및 기본 사용 방법
  2. 2017.12.20 HBase와 구글의 빅테이블 #1 - 아키텍쳐 (2)
 

HBase와 구글의 빅테이블

#2 설치와 기본 사용 방법

조대협 (http://bcho.tistory.com)

HBase 설치

HBase를 개발 또는 운영환경에서 사용하기 위해서는 직접 HBase를 다운 받아서 설치하거나 또는 구글 클라우드의 빅테이블을 사용하면 된다 각각 설치 방법은 다음과 같다.


로컬 환경에 HBase 설치하기

설치 방법은 https://hbase.apache.org/book.html#quickstart 를 참고하도록 한다. 운영 환경용은 주키퍼등 여러 환경 설치가 뒤따라야 하기 때문에 여기서는 자세하게 설명하지 않는다.

$JAVA_HOME 환경 변수를 설정한 후에, HBase를 다운로드 받고, 압축을 푼다.

다음 ./bin/start-hbase.sh 을 수행하면 Hbase를 가동할 수 있다.

클라우드 빅테이블 이용하기

구글 클라우드에서 빅테이블을 사용하는 방법은 간단하다.

구글 클라우드 콘솔에서 빅테이블 메뉴로 이동한 다음




다음 메뉴에서 CREATE INSTANCE 버튼을 이용하여 빅테이블 클러스터를 생성한다.

이때 Production과 Development 모드를 설정할 수 있는데, Production 모드는 최소 3개의 노드를 사용해야 하며, Development 모드는 하나의 노드만 설정할 수 있기 때문에 개발시에는 Development 모드를, 운영시에는 Production 모드를 설정하기 바란다.


다음 데이타를 저장할 디스크 타입을 결정한다.




SSD의 경우 노드당 읽기,쓰기 각 10,000QPS (초당 쿼리 처리)를 보장하며, 쿼리 시간은 일반 put/get 쿼리의 경우에는 6ms 정도가 나온다. 테이블 스캔을 할경우, 노드당 220MB를 초당 스캔할 수 있다.


HDD의 경우에는 노드당 읽기 500 QPS, 읽기 속도는 쿼리당 200ms, 쓰기는 노드당 5000 QPS, 쓰기 속도는 50ms 가 나오며, 스캔은 초당 180MB를 스캔할 수 있다.


고속 데이타 조회가 필요한 경우에는 SSD를 사용하도록 하고 저속 (저속이라고는 하지만, 쓰기 50ms면 느린 속도가 아니다. )에 저비용을 선호하는 경우에는 HDD를 사용한다. 한번 디스크 타입을 정하면 클러스터를 새로 만들때 까지는 변경이 불가능하니 주의하기 바란다.

HBASE CLI 명령어 사용해보기

HBase는 Hbase CLI명령을 이용하여 데이타를 접근할 수 있으며, 빅테이블 역시 HBase CLI 명령을 이용하여 접근이 가능하다.

로컬 환경

로컬 환경에서 설치한 Hbase CLI명령을 사용하려면 $HBASE_HOME/bin/hbase shell 명령을 입력하면 CLI를 사용할 수 있다.

간단한 예제를 통하여 사용법을 알아보도록 하자

테이블 생성

테이블 생성은 create ‘테이블명’, ‘컬럼패밀리1’,’컬럼패밀리2’,... 형태로 지정하면된다.

아래는 컬럼패밀리 ‘cf1’만을 가지고 있는 ‘my-table’ 이라는 테이블 하나를 생성한 예이다.



데이타 입력

데이타 입력은 put 명령어를 사용하면 되며, put ‘테이블명',’로우키’,’컬럼패밀리명:컬럼명’,’값' 형태로 사용한다. 아래는 my-table이라는 테이블에 rowkey1이라는 키로 컬럼패밀리 cf1, 컬럼 c1에 “test-value”라는 값을 저장한 결과이다.


조회

조회는 get을 사용하면 되고 get ‘테이블명',’로우키' 로 조회를 하면 된다.


테이블 삭제

테이블 삭제는 drop ‘테이블명' 으로 하면 되고, 테이블 사용 정지는 disable ‘테이블명'을 하면 된다.




명령어들을 간단하게 설명하기는 했지만, get에서 특정 timestamp 범위만 쿼리한다던지, scan을 통해서 특정 범위의 특정 조건 데이타만 쿼리한다던지 다양한 기능이 가능하다.  자세한 내용은 HBase 메뉴얼을 참고하기 바랍니다.

구글 클라우드 환경

빅테이블은 HBase 호환이기 때문에, hbase shell 명령어를 그대로 사용할 수 있다. 단 접속 방식이 다르기 때문에, 별도로 빅테이블용 hbase shell 클라이언트를 다운 받아서 컴파일 하여 사용해야 한다.


구글 클라우드 환경에 접속하기 위해서는 gcloud CLI 명령어가 필요한데, 다운로드 및 인스톨 방법은 https://cloud.google.com/sdk/downloads 를 참고하기 바란다.

다음 빅테이블에 접근하기 위해서는 사용자 인증 과정이 필요한데,  다음 명령어를 실행하면, 웹브라우져가 자동으로 열리면서 구글 클라우드 계정을 입력하여 인증하게 되며, 향후에 gcloud 명령어 및 hbase shell 명령어는 여기서 로그인한 계정의 권한으로 수행되게 된다.

gcloud auth application-default login

이제 빅테이블용 Hbase 클라이언트를 인스톨하고자 하는 환경에, maven과 JDK를 설치한 후에,

다음 명령어를 이용하여 소스코드를 다운 받는다.

git clone https://github.com/GoogleCloudPlatform/cloud-bigtable-examples.git

코드가 다운되었으면, 다운로드된 디렉토리로 들어가서 ./quickstart.sh 명령어를 실행하면, 실행에 필요한 파일들을 자동으로 받아서 컴파일 하고, 자동으로 hbase shell을 수행해준다.




Hbase shell 이 수행되면, 사용 방법은 앞에서 설명한 로컬 환경의 HBase에 접속하는 방법과 다르지 않다.


빅테이블 CLI 명령 사용하기

빅테이블의 경우에는 HBase shell을 이용하지 않고, 별도의 전용 클라이언트를 사용할 수 있다.

앞에서 설치한 gcloud 명령어를 이용하면 되는데, 현재는 베타 상태이기 때문에 gcloud 명령어를 베타 명령어를 지원할 수 있도록 업데이트 해야 한다.

다음 명령어를 이용하여 gcloud를 업데이트하고, cbt (Cloud BigTable) 명령어를 추가하도록 한다.

gcloud components update
gcloud components install cbt

다음, gcloud 명령으로 빅테이블을 사용할때 구글 클라우드 상의 어떤 빅테이블 인스턴스인지를 정해줘야 하는데, 사용자 홈 디렉토리에 .cbtrc에 구글 프로젝트ID와 빅테이블 인스턴스 ID를 적어주면 된다.

홈 디렉토리에서 아래 명령을 이용하면 .cbtrc에 프로젝트 ID와 빅테이블 인스턴스 ID를 지정할 수 있다.

echo project = [PROJECT_ID] > ~/.cbtrc
echo instance = [INSTANCE_ID] >> ~/.cbtrc

PROJECT_ID는 본인의 구글 프로젝트 ID이며, INSTANCE_ID는 생성한 구글 빅테이블의 인스턴스 ID이다.

빅테이블 CLI명령어를 사용할 준비가 모두 끝났다. 하나씩 명령어를 실행해보도록 하자.

앞의 Hbase 의 명령과 거의 유사하기 때문에 별도의 설명은 자세하게 하지 않는다.

테이블 생성


생성된 테이블 확인



컬럼 패밀리 추가

my-table 테이블에 컬럼 패밀리 cf1추가


추가된 컬럼 패밀리 확인


데이타 삽입

my-table 테이블의 컬럼패밀리 cf1에 mycolumn이라는 컬럼에 test-value 라는 값을 추가


삽입된 데이타 확인


테이블 삭제


다음글에서는 마지막으로 JAVA API를 이용하여 HBase와 빅테이블에 대한 프로그래밍을 하는 방법을 알아보도록 한다.


HBase 와 구글의 빅테이블

#1 아키텍쳐


조대협 (http://bcho.tistory.com)

HBase

HBase 는 아파치 오픈소스 NoSQL 솔루션으로 구글의 빅테이블  (https://research.google.com/archive/bigtable.html) 논문을 기반으로 개발되었다.

Key/Value Store 기반의 NoSQL이며, 대용량 데이타를 빠르게 처리할 수 있는 기능을 가지고 있다.

데이타 모델

HBase는 컬럼 패밀리라는 데이타 모델을 사용하는데, 대략적인 구조를 보면 다음과 같다.

각 행은 하나의 로우키(rowkey)를 가지고 있다. 이 키는 RDBMS의 프라이머리 키와 같은 키라고 보면 된다.

각각의 행에는 컬럼이 정의되어 있는데, RDBMS 테이블의 일반 컬럼과 같은 개념이라고 보면 된다. 특이 사항은 이 컬럼들이 컬럼 패밀리 (Column family)라는 것으로 묶이게 되는데, 이렇게 컬럼 패밀리로 묶인 컬럼의 데이타는 물리적으로 같은곳에 저장이 된다. 그래서, 데이타 접근시에 한꺼번에 접근되는 데이타의 경우에는 컬럼 패밀리로 묶는 것이 유리하다.

위의 그림은 name과 contact, 그리고 company라는 컬럼 패밀리를 가지고 있고,

  • name 컬럼 패밀리는 lastname,firstname 컬럼

  • contact 컬럼 패밀리는 phone, mobile, email 컬럼

  • company 컬럼 패밀리는 company라는 컬럼

을 가지고 있다.

내부적으로 데이타는 rowkey에 의해서 오름차순으로 정렬이 되서 저장이 된다.



각 컬럼의 값을 셀이라고 하는데, 데이타 셀에는 timestamp가 있어서 이전의 값이 같이 저장되며, 일정 기간까지 그 값을 유지하도록 한다.


조인이나 인덱스등을 지원하지는 않지만 대용량 데이타를 안전하고 빠르게 저장 및 억세스가 가능하기 때문에, 광고 클릭 데이타나, 사용자 행동 데이타 수집, 로그 수집, IOT의 센서 데이타, 금융에서 시계열 데이타 등을 저장하는데 유용하게 사용할 수 있다.

아키텍쳐

아래 아키텍쳐는 HBase의 원조인 빅테이블의 아키텍쳐이다.




주키퍼등 몇몇 시스템들이 빠져 있지만, 큰 구조는 유사하다고 보면 된다.

데이타 노드에 SSTable 이라는 파일 형태로 데이타가 저장되어 있고, 위에 연산 노드가 붙어서 클러스터를 이룬다. 각 노드는 데이타를 저장하고 있는데, 로우키에 따라서 그 데이타가 분산되어 저장된다. 예를 들어 키가 1~3000의 범위를 가지고 노드가 3개이면 1번 노드는 1~1000, 2번은 2~2000, 3번은 3~3000 데이타를 저장하고 처리하게 된다.


각 노드의 구조는 다음과 같다.

쓰기 연산이 들어오면, 쓰기에 대한 로그를 tablet log 라는 파일에 남긴다. RDBMS의 백로그와 같은 개념으로 보면 되는데, 장애가 나더라도, tablet log가 남아 있기 때문에 이를 통해서 디스크에 쓰여지지 않은 데이타를 복구할 수 있게 된다.




데이타 로그를 쓰고 나면, 실제 데이타는 memtable 이라는 메모리 기반의 중간 저장소에 저장이 되고, 이 memtable이 꽉차게 되면, 데이타를 SSTable로 플러슁하고, tablet log에 있는 데이타를 지우게 된다. 이 과정을 Minor compaction이라고 한다.


읽기 연산이 들어오면, 먼저 memtable을 뒤져보고, 없을 경우 SSTable을 뒤져서 데이타를 읽게되는데, SSTable은 물리적으로 다음과 같은 모양을 하고 있다.

name,address,gender 라는 컬럼은 실제 SSTable 내에서 각 셀단위로 쪼게 져서 셀단위로 row key와 컬럼패밀리, 컬럼 명을 키로 하고, 그 안에 값을 저장한다. 만약에 같은 키의 셀을 업데이트 하더라도 그 데이타 셀을 업데이트 하는것이 아니라 새로운 시간 timestamp를 달아서, append 하는 방식으로 데이타를 저장한다.


계속 append 만하면, 저장 공간이 부족해지기 때문에, 어느 일정 시간이 되면 오래된 데이타를 지워야 하는데 이를  compaction이라고 하며 주기적으로 이 작업이 일어나게 된다.

핫스팟

아키텍쳐를 이해하면, 데이타가 어떻게 분산되는지를 이해할 수 있는데, 그래서 생기는 문제가 HOTKEY라는 문제가 발생한다.

예를 들어 주민등록 번호를 로우키로 사용하는 서비스가 있는데 98년생~08년생들에게 특히 인기가 있다고 하면, 그 키 범위내에 데이타가 다른 연령대에 비해서 많을 것이고, 98~08년 로우키 범위를 담당하는 노드에 부하가 많이 갈것이기 때문에 제대로 된 성능을 내기 어려워진다. 이와 같이 특정 로우키범위에 데이타가 볼리는 곳을 핫스팟이라고 하는데, 이를 방지하기 위해서는 키의 값을 UUID와 같은 랜덤 스트링이나 해쉬값등을 사용하여 전체적으로 분포가 골고를 키를 사용하는 것이 좋다.

구글 빅테이블

구글의 빅테이블은 HBase의 원조가 되는 서비스로, 구글 내부에서 지메일과 광고플랫폼등 여러 분야에 사용되고 있으며, 현존하는 단일 데이타베이스 시스템중 가장 큰 데이타 시스템이다.

개발 초기 당시에는 GFS (하둡파일 시스템 HDFS의 전신)을 사용하였으나, 콜러서스라는 고속 파일 시스템으로 변경하면서 매우 빠른 성능을 낼 수 있게 되었다.

구글 빅테이블은 구글 클라우드 (http://cloud.google.com)을 통해서 서비스가 제공되며, HBase API와 호환이 되기 때문에, 별도의 변경 없이 기존 HBase 애플리케이션 및 HBase 관련 도구를 사용할 수 있다는 장점이 있다.

성능은 HBase에 비해서, 초당 처리 성능은 대략 2.5배, 응답 시간은 50배 정도 빠르다.


(성능 비교 자료 http://www.i-programmer.info/news/197-data-mining/8594-google-cloud-bigtable-beta.html)


수십 페타의 데이타를 저장하더라도 일반적인 읽기나 쓰기의 경우 한자리 ms (~9ms)내의 응답성을 보장하기 때문에 빅데이타 핸들링에 매우 유리하며, 안정적인 구조로 서비스가 가능하다. 빠른 응답 시간 때문에 앞단에 캐쉬 서버를 두지 않아도 되서 전체 시스템 아키텍쳐를 단순화할 수 있는 장점을 가지고 있다.


빅테이블의 내부 아키텍쳐는 다음과 같은 모양으로 되어 있다.





성능 저하 없는 안정적인 확장

HBase와 유사한 구조이지만, 큰 특징이 데이타 노드와 연산노드 (Bigtable node)가 물리적으로 분리되어 있고, 하단의 파일시스템이 무제한 확장 구조를 갖는 구조를 가지고 있다.


즉 무슨 이야기인가 하면 데이타 파일이 콜로서스 파일 시스템 내에 아래와 같이 배치 되어 있고, 연산 노드는 자기가 관리한 SSTable 파일을 포인팅 하는 구조로 되어 있다.


이게 무슨 장점을 가지냐 하면, 보통 NoSQL이나 분산 시스템은 리밸런성이라는 작업을 하게 되는데, 데이타가 점점 쌓여가면, 그 연산노드와 데이타 노드에 데이타가 부하가 몰리기 때문에 그 데이타 청크를 나눠야 하는 일이 발생을 하게 되는데 이를 리밸런싱이라고 한다. 이때 물리적으로 데이타 노드의 데이타를 다른 노드로 이동해야 하기 때문에, 이 이동/복사 작업이 부하를 일으켜서 전체 시스템의 성능에 영향을 주게 된다.


아래 그림을 예로 들어보자




첫번째 노드에서 데이타 파티션, A,B,C를 관리하고 있다가 데이타가 많아져서 C를 두번째 노드로 이동하고자 하면, C데이타를 물리적으로 복사하여 두번째 노드의 저장소로 옮겨줘야 한다.

그러나 빅테이블의 경우 콜로서스에 파일이 공유 스토리지 형식으로 저장되어 있기 때문에, 물리적인 파일 이동은 필요없고,  연산 노드에서 어떤 데이타 파티션을 처리할지에 대한 포인터만 변경해주면 된다.



이런 이유 때문에, 내부적으로 리밸런싱이 일어나더라도, 리밸런싱에 의한 성능 저하나 충격이 전혀 없다는 장점을 가지고 있다.

마찬가지 원리로 연산 노드가 추가되거나 삭제될때도 HBase의 경우에는 리밸런싱에 의한 실제 데이타 이동 부하가 발생하는데, 빅테이블의 경우에는 새로운 노드를 추가하고, 각 노드에서 처리하는 데이타 포인트만 변경하면 되기 때문에, 성능 저하 없이 안정적으로 확장이 가능하다.


다음글에서는 HBase 를 로컬에 설치하는 방법과, 구글 클라우드 빅테이블을 설정하는 방법을 알아보고 CLI 명령을 이용하여 간단한 테이블 생성 및 데이타를 조작하는 방법에 대해서 알아보겠다.