블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

쿠버네티스 리소스(CPU/Memory)할당과 관리

조대협

리소스 관리


쿠버네티스에서 Pod를 어느 노드에 배포할지를 결정하는 것을 스케쥴링이라고 한다.

Pod에 대한 스케쥴링시에, Pod내의 애플리케이션이 동작할 수 있는 충분한 자원 (CPU,메모리 등)이 확보되어야 한다. 쿠버네티스 입장에서는 애플리케이션에서 필요한 자원의 양을 알아야, 그 만한 자원이 가용한 노드에 Pod를 배포할 수 있다.


쿠버네티스에서는 이런 컨셉을 지원하기 위해서 컨테이너에 필요한 리소스의 양을 명시할 수 있도록 지원하고 있다.  현재(1.9 버전) 지원되는 리소스 타입은 CPU와 메모리이며, 아직 까지는 네트워크 대역폭이나 다른 리소스 타입은 지원하고 있지 않다.

리소스 단위

리소스를 정의하는데 사용되는 단위는 CPU의 경우에는 ms(밀리 세컨드)를 사용한다. 해당 컨테이너에 얼마만큼의 CPU 자원을 할당할것인가인데, 대략 1000ms가 1 vCore (가상 CPU 코어) 정도가 된다. 클라우드 벤더에 따라 또는 쿠버네티스를 운영하는 인프라에 따라서 약간씩 차이가 있으니 참고하기 바란다.

메모리의 경우에는 Mb를 사용한다.

Request & Limit

컨테이너에 적용될 리소스의 양을 정의하는데 쿠버네티스에서는 request와 limit이라는 컨셉을 사용한다.

request는 컨테이너가 생성될때 요청하는 리소스 양이고, limit은 컨테이너가 생성된 후에 실행되다가 리소스가 더 필요한 경우 (CPU가 메모리가 더 필요한 경우) 추가로 더 사용할 수 있는 부분이다.


예를 들어 CPU request를 500ms로 하고, limit을 1000ms로 하면 해당 컨테이너는 처음에 생성될때 500ms를 사용할 수 있다. 그런데, 시스템 성능에 의해서 더 필요하다면 CPU가 추가로 더 할당되어 최대 1000ms 까지 할당될 수 있다.


리소스를 정의하는 방법은 아래와 같이 Pod spec 부분에서 개별 컨테이너 마다. Resources 파트에 request와 limit으로 필요한 리소스의 최소/최대양을 정의하면 된다.


apiVersion: v1

kind: Pod

metadata:

 name: frontend

spec:

 containers:

 - name: db

   image: mysql

   resources:

     requests:

       memory: "64Mi"

       cpu: "250m"

     limits:

       memory: "128Mi"

       cpu: "500m"

 - name: wp

   image: wordpress

   resources:

     requests:

       memory: "64Mi"

       cpu: "250m"

     limits:

       memory: "128Mi"

       cpu: "500m"


위의 예제에 따라서 정의된 Pod내의 컨테이너 CPU 리소스의 할당은 다음과 같이 된다.


db라는 이름과 wp라는 이름의 컨테이너는 생성시 250ms 만큼의 CPU 리소스를 사용할 수 있도록 생성이 되고, 필요시 최대 CPU를 500ms 까지 늘려서 사용할 수 있다.

모니터링 리소스

그러면 사용할 수 있는 리소스의 양과 현재 사용되고 있는 리소스의 양을 어떻게 모니터링할 수 있을까?

사용할 수 있는 리소스의 양은 쿠버네티스 클러스터를 생성하는데 사용된 node의 스펙을 보면 알 수 있다. 예를 들어 2 코어 VM 5대로 node를 만들었다면 그 총량은 10 코어 = 10,000ms가 된다.

그러나 이 자원을 모두 사용자 애플리케이션에 사용할 수 있는 것이 아니다. 쿠버네티스 클러스터를 유지하는 시스템 자원이나 또는 모니터링등에 자원이 소비되기 때문에 실제로 사용할 수 있는 자원의 양을 확인하는게 좋은데 “kubectl describe nodes” 명령을 이용하면 된다.

아래 예제는 kubectl describe nodes 명령으로 node들의 상세정보중에서 한 node의 자원 상태를 모니터링한 내용이다.



아래 붉은 박스를 보면 총 4 코어 머신으로 현재 request된 CPU는 1081m이고 limit으로 296m를 확보하고 있다. 메모리는 request 된것은 685M가 requested 되었고, 약 1G가 limit으로 확보되어 있다.

실제 사용량은 붉은 박스 위를 보면 되는데, default 네임 스페이스의 client-6bcxxx Pod는 현재 110m의 CPU를 request해서 사용중인것을 확인할 수 있다.


확보된 리소스와 현재 실제로 사용되는 리소스의 양은 다른데, “kubectl top nodes” 명령을 이용하면 실제로 사용되고 있는 리소스의 상태를 확인할 수 있다. 아래는 4개의 노드에서 실제로 사용되고 있는 리소스의 양이다. 붉은 색으로 표시된 노드가 위의 예제와 같은 노드인데, 위에서 requested 된 양은 1081m이었는데, 실제 사용된 cpu는 151m가 사용되고 있다.


Pod들의 리소스 사용량은 “kubectl top pods” 명령으로 확인이 가능하다.


ResourceQuota & LimitRange

이제까지 컨테이너 운영에 필요한 리소스의 양을 명시하여 요청하는 방법을 알아보았다.

만약에 어떤 개발자나 팀이 불필요하게 많은 리소스를 요청한다면, 쿠버네티스 클러스터를 운영하는 입장에서 자원이 낭비가 되고, 다른 팀이 피해를 볼 수 있는 상황이 될 수 있다. 그래서, 쿠버네티스에서는 네임스페이스별로 사용할 수 있는 리소스의 양을 정하고, 컨테이너마다 사용할 수 있는 리소스의 양을 지정할 수 있는 기능을 제공한다.

Resource Quota

Resource Quota는 네임스페이스별로 사용할 수 있는 리소스의 양을 정한다.

아래는 예는 demo 네임스페이스에, CPU 는 500m ~ 700m 까지, 메모리는 100M~500M까지 할당한 예제이다.



이 용량안에서 demo 네임스페이스내에 컨테이너를 자유롭게 만들어서 사용할 수 있다.

Limit Range

Resource Quota가 네임 스페이스 전체의 리소스양을 정의한다면, Limit Range는 컨테이너 개별 자원의 사용 가능 범위를 지정한다.

아래 예제를 보자.



  • default 로 정의된 부분은 컨테이너에 limit을 지정하지 않았을 경우 디폴트로 지정되는 limit이다. 여기서는 cpu 600m, 메모리 100m로 정의되었다.

  • defaultRequest 로 정의된 부분은 컨테이너의 request를 지정하지 않았을 경우 디폴트로 지정되는 request의 양이다.

  • max : 컨테이너에 limit을 지정할 경우, 지정할 수 있는 최대 크기이다.

  • min : 컨테이너에 limit을 지정할 경우, 지정할 수 있는 최소 크기이다.  

Overcommitted 상태

이  request와 limit의 개념이 있기 때문에 생기는 문제인데, request 된 양에 따라서 컨테이너를 만들었다고 하더라도, 컨테이너가 운영이되다가 자원이 모자르면 limit 에 정의된 양까지 계속해서 리소스를 요청하게 된다.

컨테이너의 총 Limit의 양이 실제 시스템이 가용한 resource의 양보다 많을 수 있는 경우가 발생한다. 이를 overcommitted 상태라고 한다.

Overcommitted 상태가 발생하면, CPU의 경우에는 실제 사용량을 requested 에 정의된 상태까지 낮춘다. 예를 들어 limit이 500, request가 100인 경우, 현재 500으로 가동되고 있는 컨테이너의 CPU할당량을 100으로 낮춘다. 그래도 Overcommitted 상태가 해결되지 않는 경우, 우선 순위에 따라서 운영중인 컨테이너를 강제 종료 시킨다.  

메모리의 경우에는 할당되어 사용중인 메모리의 크기를 줄일 수 는 없기 때문에, 우선 순위에 따라서 운영 중인 컨테이너를 강제 종료 시킨다.  Deployment,RS/RC에 의해 관리되고 있는 컨테이너는 다시 리스타트가 되고 초기 requested 상태의 만큼만 자원 (메모리/CPU)를 요청해서 사용하기 때문에, overcommitted  상태가 해제된다.

Best practice

구글 문서에 따르면 데이타 베이스등 아주 무거운 애플리케이션이 아니면, 일반적인 경우에는 CPU request를 100m 이하로 사용하기를 권장한다.

또한 세밀하게 클러스터를 운영하기 어려운 경우에는 request와 limit의 사이즈를 같게 하는 것을 권장한다. limit이 request보다 클 경우 overcommitted 상태가 발생할 수 있는데, 이때 CPU가 throttle down 되면, 실제 필요한 CPU양 보다 작은 CPU양으로 줄어들기 때문에 성능저하가 발생할 수 있다.  




쿠버네티스 보안 Best Practice


조대협 (http://bcho.tistory.com)


지금까지 여러가지 보안 기능에 대해서 알아보았다. 그러면 이러한 보안 기능을 어떻게 잘 사용할지 베스프 프렉틱스에 대해서 알아보자. 쿠버네티스 보안 베스트 프렉틱스는 쿠버네티스 공식 블로그 https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment/ 에 2016년 8월에 포스팅과 https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/ 에 2018년 7월에 포스팅된 내용을 기반으로 한다. 쿠버네티스는 새버전 릴리즈가 빠른 편이고 버전마다 기능이나 아키텍쳐의 변화가 심하기 때문에, 항상 새로운 베스트 프렉틱스를 찾아서 참고하기 바란다.

이 글에서는 쉽지만 중요한 보안 정책을 위주로 설명한다.

Control plan security

TLS (SSL) 사용

쿠버네티스를 설치하면 디폴트로 API 통신은 TLS(SSL) 암호화를 이용하도록 되어 있으나, 일부 재배포판의 경우는 REST API통신을 HTTPS를 사용하지 않고, HTTP를 사용하는 경우가 있기 때문에, 이를 확인할 필요가 있다.


인증

쿠버네티스는 앞에서 설명한데로 여러가지 인증 방식을 제공하고 있는데, 그중에 BASIC_AUTH를 사용하는 방식등은, 비밀 번호가 그냥 네트워크를 통해서 전송되기 때문에, 중간에 패킷을 가로 채는 방식등으로 탈취가 가능하다.

쿠버네티스는 이외에도 Bootstrap token, static token, X509 인증서, Open ID 연동등 다양한 인증 방식이 있는데, 가급적이면 Open ID 인증 방식을 사용하는 것이 안전하다.

RBAC 사용

쿠버네티스의 기본 인증 방법은 ABAC(Attirbute-Based control) 이다.  사용자마다 기능에 대해서 권한을 배정하는 방법인데,

RBAC은 1.6에서 소개되었고, 1.8 부터는 디폴트이다. 1.6~1.8 버전은 RBAC 설정을 따로 하기 바라고, 1.6 이하 버전은 1.8 이상 버전으로 업그레이드 하는 것을 권장한다.

대쉬 보드 사용 금지

쿠버네티스 대쉬 보드는 편리하고 강력한 기능을 가지고 있지만, 별도의 접근 통제 기능이 디폴트로 탑재되어 있지 않다. 1.8 이전 버전에는 클러스터에 대한 모든 억세스가 가능한 서비스 어카운트가 바인딩되어 있기 때문에, 클러스터에 대한 모든 접근이나 보안 정보(토큰)등의 탈취가 가능하다.

실제로 테슬라의 경우에 쿠버네티스 대쉬보드 접근을 통해서, 해킹을 당한 사례가 유명하다. https://redlock.io/blog/cryptojacking-tesla

가급적이면 쿠버네티스 대쉬보드를 사용하지 않도록 하는 것이 좋고 (인스톨하지 않는다.), 사용한다고 해도, 계정 인증과, 내부 인터넷망을 통한 접근만을 허용하는등의 추가적인 보안 조치가 반드시 필요하다.

kubectl 억세스 통제 (마스터 노드 억세스 통제)

kubectl은 쿠버네티스를 통제할 수 있는 매우 강력한 툴이다. 일종의 어드민툴이기 때문에 접근 제어를 하는 것이 좋다. 쿠버네티스 방화벽 설정등을 해서 특정 머신에서만 오는 트래픽만 마스터 노드가 받아 드리도록 설정하는 방법이다.  태그 기반으로 k8s-controller로 가는 트래픽을 특정 머신에서 오는 트래픽만을 수용하게 하거나 또는 bastion을 놓고, bastion에서 들어온 API 호출만 수용하도록 하는 방법이 있다.

서비스 어카운트 토큰 마운트을 자동으로 마운트 하지 않게 한다.

Pod는 기본적으로 서비스 어카운트를 사용하게 되어 있다. 만약 서비스 어카운트를 지정하지 않으면 디폴트로 정의된 서비스 어카운트를 사용하게 되는데, 쿠버네티스에서는 디폴트로 서비스 어카운트를 사용하게 되면 서비스 어카운트의 API 토큰을 볼륨으로 마운트 한다.

서비스 어카운트 볼륨은 /var/run/secrets/kubernetes.io/serviceaccount 디렉토리에 마운트 되는데, 이 디렉토리 안에는 API인증을 위한 인증서와, 토큰이 들어 있다.

만약 이 토큰을 탈취당하게 되면, 토큰을 이용하여 쿠버네티스 API 접근이 가능하다.

일반적인 Pod의 경우에는 애플리케이션을 운영하기 위한 목적으로 사용될뿐, 쿠버네티스 API를 접근할 일이 없기 때문에 사용하지 않는 토큰을 마운트 하는 것은 위험하다. 해커가 컨테이너를 해킹해서  /var/run/secrets/kubernetes.io/serviceaccount 디렉토리를 접근한다면 토큰을 탈취할 수 있다.

이를 막기 위해서, 서비스 어카운트를 사용시 디폴트로 서비스 어카운트 토큰을 마운트하지 않게 하는 것이 좋다.


아래와 같이 서비스 어카운트를 생성할때, 자동으로 토큰을 마운트 하지 않는 옵션을 주거나,

apiVersion: v1

kind: ServiceAccount

metadata:

 name: nonroot-sa

automountServiceAccountToken: false


또는 아래와 같이 Pod 정의 부분에서 서비스 어카운트에 디폴트로 토큰을 마운트 하지 않게 정의하면 된다.


apiVersion: apps/v1

kind: Deployment

metadata:

 name: nonroot-deploy

spec:

 replicas: 3

 selector:

   matchLabels:

     app: nonroot

 template:

   metadata:

     name: nonroot-pod

     labels:

       app: nonroot

   spec:

     serviceAccountName: nonroot-sa

     automountServiceAccountToken: false

     securityContext:

       runAsUser: 1001

       fsGroup: 2001

     containers:

     - name: nonroot

       image: gcr.io/terrycho-sandbox/security-context:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080


반대로 토큰을 사용하고 싶을때는 Pod 정의 부분에서 automountServiceAccountToken: true 옵션을 주면된다.


감사 로깅 (Audit)

쿠버네티스 클러스터에 대한 각종 명령어 (Pod 생성, Service 생성 삭제 등)에 대한 내용을 추적하기 위해서 모든 로그를 남겨서 정상적인 접근 여부를 판단하고, 비정상적인 접근이 발생하였을때, 이를 감지하고 추적할 수 있는 기반을 마련해야 한다. 모니터링/로깅 시스템 구축시 감사 로깅은 별도로 분리해서 감사에 대한 내용만을 따로 추적할 수 있도록 하는것이 좋다.

노드 시큐리티

컨테이너를 호스팅하는 노드에 대해서도 보안 조치가 필요하다. 다음 항목은 필수적으로 적용하기를 권장되는 항목이다.

노드에 Private IP 만 사용 (Public IP 사용 금지)

노드 서버의 IP를  Private IP만을 사용하여, 외부 인터넷으로 부터 노드 서버를 접속할 수 있는 경로를 원천적으로 차단한다.

Minimal OS 사용

노드 서버의 OS는 필요한 기능만을 가지고 있는 OS만을 설치하는 것이 좋다. OS에 따라서 디폴트로 메일 서버, FTP등 사용하지 않는 서비스가 디폴트로 제공됨으로써, 노드 서버로 접근할 수 있는 채널을 제공할 수 있다.

정기적인 패치

또한 노드 OS에 대해서 정기적인 보안 패치를 적용함으로써, 새롭게 발견되는 보안 위협에 대해 사전 봉쇄 조치를 취해야 한다

컨테이너 시큐리티

마지막으로 컨테이너에 대한 보안을 강화하는 방법이다.

컨테이너 이미지 관리

가장 중요한 것중의 하나가 컨테이너 이미지를 잘 관리하는 것인데, 일반적으로 도커로 이미지를 만들때, 베이스 이미지 (OS등이 깔려있는)를 외부 컨테이너 레파지토리에서 가져다가 사용하는 경우가 많다. 이 경우 공인되지 않는 이미지등을 사용해서, 해킹 프로그램이 깔려있는 이미지가 베이스 이미지로 사용되거나, 또는 최신 보안 패치가 되어 있지 않은 이미지로 전환하지 않고 계속 오래된 이미지를 사용해서, 보안에 헛점을 들어내는 경우가  많다.

베이스 이미지 사용은 반드시, 보안이 검증된 이미지를 사용하되, 지속적으로 최신 OS 패치를 적용한 이미지를 사용해야 한다.

베이스 이미지를 포함하여 실제 쿠버네티스에 배포되는 애플리케이션 컨테이너 이미지는 신뢰할 수 있는 이미지 저장 서비스를 이용하고, 해당 클러스터 및 허가된 IP나 사용자만 접근할 수 있도록 하는 것이 좋다.


또는 상용 서비스 중에는 컨테이너 저장소에 저장된 이미지를 스캔해서 보안에 위협이 되는 항목을 자동으로 검출하여 알려주는 서비스들이 있다.

아래 그림은 구글 클라우드의 컨테이너 저장소 서비스로, 컨테이너에 저장된 이미지에 대해서 보안 위협을 자동으로 스캔해서 리포팅 해주는 기능이다.




Security Context 사용

Pod를 정의할때, 불필요한 root나 커널 접근 권한을 최대한 제외하는 것이 좋다.

Security context를 이용해서 이런 권한을 통제할 수 있다.

  • 컨테이너는 꼭 필요하지 않는 이상 root 사용자 권한이 아니라 일반 사용자로 실행하도록 한다. securityContext에서 runAsUser와 fsGroup을 이용해서 사용자와 그룹을 지정할 수 있다.

  • Root 권한으로 실행할 수 없도록 securityContext에서 runAsNonRoot 를 true로 설정한다.

  • 꼭 필요한 경우가 아니라면 root 권한으로 생성된 파일이나 디렉토리에 대해서는 읽기만을 할 수 있도록 SecurityContext에서 readOnlyRootFilesystem 를 true로 설정한다.

  • 마지막으로 필요한 경우가 아니라면 호스트 커널에 대한 접근을 막기 위해서 securityContext에서 privileged를 false로 설정한다.

PodSecurityPolicy를 이용한 Pod Security Context 통제

SecurityContext를 위와 같이 설정하도록 권고하지만, 이를 빼먹을 수 있기 때문에,  PodSecurityPolicy (PSP)를 정의하여, Security context를 강제할 필요가 있다.

Network Policy를 이용한 트래픽 통제

마지막으로 Network policy를 정의해서, Pod로의 네트워크 접근을 통제하여 불필요한 접근을 막는다. 예를 들어 MySQL DB서버로의 접근은 label이 app=apiserver인 서버들만 3306으로 inbound 트래픽만 들어올 수 있도록 통제하는 등의 예를 들 수 있다.



ESP01 (ESP8266)을 이용한 HTTP 통신


조대협 (http://bcho.tistory.com)


하드웨어 시리얼과 소프트웨어 시리얼

앞의 글에서 ESP01을 연결해봤는데, ESP01 연결시에 포트를 2,3번 포트를 사용하고, 코드는 SoftSerial 라이브러리를 이용하였다. 아두이노 우노의 0,1 번포트는 시리얼 통신을 위한 RX,TX 포트이다. 이를 Hardware Serial 이라고 한다. 그러면 하드웨어 시리얼 포트를 사용하지 않고 2,3번 포트를 사용한 후에 소프트웨어 시리얼 처리를 한 이유는 무엇을까?


하드웨어 시리얼 포트는 PC와 연결되어 있을때 PC와 통신을 목적으로 사용된다. 그래서 하드웨어 시리얼을 사용하지 않은것인데, ESP8266 관련 라이브러리들을 살펴보니, 대부분 하드웨어 시리얼을 사용하는 것으로 보인다. 그러면 이 문제를 어떻게 해결할것일까?


아두이오 우노 기판을 보면 TX와 RX라고 써있는 LED 가 있는데, 하드웨어 시리얼 통신을 할때만 깜빡 거린다.




PC에 연결이 되어 있을 때, AT 명령을 실행할때는 이 LED가 빛나지 않고, 코드를 업로드 할때만 빛이 난다. 즉 코드 업로드 시에만 하드웨어 시리얼을 PC가 사용한다는 것이기 때문에, 코드를 업로드한후에 ESP01 보드를 TX,RX 단자에 연결하면 하드웨어 시리얼을 사용할 수 있다.

아두이노를 이용한 HTTP 통신

아두이노에 ESP01 모듈을 연결했으면, HTTP 통신을 해보도록 한다. ESP01 (ESP8266 계열)은 TCP/UDP 스택이 이미 들어가 있기 때문에, TCP 통신은 가능하다. HTTP 통신을 하려면 TCP 프로토콜을 이용하여 HTTP 메세지를 보내주면 되는데, AT 명령어를 사용하면 된다.

AT 명령어 레퍼런스는 https://www.electrodragon.com/w/ESP8266_AT-Command_firmware 를 참고하기 바란다. AT명령을 이용하여 WIFI 네트워크에 연결하는 방법은 http://bcho.tistory.com/1283 에 설명되어 있다. WIFI 네트워크에 연결되어 있다고 가정하고 AT명령을 이용해서 HTTP 명령을 보내는 방법을 보자


HTTP  서버 연결

HTTP 요청을 보내기 위해서 먼저 웹서버에 TCP 커넥션을 연결해야 한다. TCP 커넥션 연결 명령어는 AT+CIPSTART로 다음과 같다.


AT+CIPSTART={TCP 연결 번호},”TCP”,”웹서버IP”,{포트번호}


이 명령은 해당 웹서버 IP의 포트로 연결을 하고 연결 번호(이름)를  “0”으로 지정한것이다.

210.118.92.89 서버의 80 포트로 연결하려면 Serial 콘솔에서 AT+CIPSTART=0,”TCP”,”210.118.92.89”,80 명령어를 실행하면 된다. 이 연결의 연결 번호는 0 번이 된다.

명령어 전달

서버로 연결이 되었으면, HTTP 명령어를 보내야 하는데, 명령어 전달은 AT+CIPSEND 명령어를 사용하면 된다. 명령어의 형식은 다음과 같다.


AT+CPISEND={TCP 연결번호},{보내고자 하는 메세지 길이}


예를 들어 “GET /index.html” 명령을 0번 TCP 연결로 보내고자 하면, 메세지의 길이가 15자이기 때문에,

AT+CPISEND=0,15 로 실행하고, 그 다음에

> 가 나오면 GET /index.html 을 전송하면 된다.

예제

실제 개발에서는 콘솔에서 AT 명령을 직접 입력해서 사용하는 것이 아니기 때문에, 이를 코드화 해야 하는데, 아래는 코드화 한 예제이다. (실제 개발에서는 사용하지 않을것이기 때문에 테스트는 하지 않았다)

#include <SoftwareSerial.h>


SoftwareSerial esp(2,3); //TX,RX

String SSID="{Wifi SSID}";

String PASSWORD="{Wifi password}";


void connectWifi(){

 String cmd = "AT+CWMODE=1";

 esp.println(cmd);

 cmd ="AT+CWJAP=\""+SSID+"\",\""+PASSWORD+"\"";

 esp.println(cmd);

 delay(1000);

 if(esp.find("OK")){

   Serial.println("Wifi connected");

 }else{

   Serial.println("Cannot connect to Wifi"+esp);

 }

}


void httpGet(String server,String uri){

 String connect_server_cmd = "AI+CIPSTART=4,\"TCP\",\""+server+"\",80";

 esp.println(connect_server_cmd);

 String httpCmd = "GET "+uri;

 String cmd = "AT+CIPSEND=4,"+httpCmd.length();

 esp.println(cmd);

 esp.println(httpCmd);


}

void setup() {

 // put your setup code here, to run once:

 esp.begin(9600);

 Serial.begin(9600);

 connectWifi();

 httpGet("210.192.111.122","/index.html");

}


void loop() {

 // put your main code here, to run repeatedly:


}


위의 붉은 색으로 표시된 부분을 보면 번호 4번으로 TCP연결을 열고, 4번 채널에 AT+CIPSEND 명령을 이용하여 GET /index.html 을 실행하였다.

SDK의 활용

HTTP 통신의 기본 원리를 이해하였으면, 이제 실제로 HTTP 호출을 해보자. AT 명령을 이용해도 되지만,  HTTP 명령어 종류가 많고, 연결, 메세지 전송/받기등 다양한 명령을 AT 명령으로 직접 코딩하기에는 코딩양이 많고 복잡해진다. 그래서 이런 명령을 잘 추상화하여 단순화 해놓은 SDK를 사용하는 것이 좋은데, 아두이노가 오픈 소스인 만큼, 오픈소스 기반의 SDK가 많다. 장점이기도 하지만 반대로 단점도 되는데, 아두이노나 ESP8266 펌웨어의 버전이 낮으면 동작하지 않는 경우도 있고, 또한 많은 라이브러리들이 아두이노 WIFI 실드를 기준으로 개발되었거나 또는 아두이노 → ESP8266으로 통신하는 용도가 아닌 ESP8266 기반의 아두이노 보드를 기준으로 개발된 라이브러리가 많다.

아두이노 라이브러리 추가하기

우리가 사용할 라이브러리는 WiFiESP라는 라이브러리 (https://github.com/bportaluri/WiFiEsp) 로 소프트웨어 시리얼과 하드웨어 시리얼 통신 양쪽을 모두 지원하며, HTTP 형태로 라이브러리가 잘 패키징 되어 있다. 또한 예제가 비교적 잘 정리되어 있어서 사용하기 좋다.

이런 오픈소스 라이브러리를 사용하려면 라이브러리를 설치해야 하는데, 설치 방법은 다음과 같다.

github에 배포된 코드의 경우, 해당 코드를 아래 그림과 같이 download 버튼을 이용하여 zip 파일로 다운로드 받는다.




다음 Sketch에서 Sketch > Include Library > Add .Zip Library 를 선택해서 앞에서 다운 받은 ZIP 파일을 선택하면 라이브러리로 등록되어 사용이 가능하다.




SDK를 이용하여 HTTP 호출


아래코드는 라이브러리를 추가한후에, 예제에 나온 코드를 그대로 사용한 예이다. 아두이노 2,3번 핀을 ESP01의 TX,RX 핀에 연결해서 소프트웨어 시리얼로 통신하였다. 그래서 코드 부분을 보면 SoftwareSerial Serial1(2,3)으로 소프트웨어 시리얼로 선언되어 있는 것을 확인할 수 있다.


#include "WiFiEsp.h"


// Emulate Serial1 on pins 6/7 if not present

#ifndef HAVE_HWSERIAL1

#endif

#include "SoftwareSerial.h"

SoftwareSerial Serial1(2, 3); // RX, TX


char ssid[] = "{WIFI SSID}";            // your network SSID (name)

char pass[] = "{WIFI Password}";        // your network password

int status = WL_IDLE_STATUS;     // the Wifi radio's status


char server[] = "arduino.cc";


// Initialize the Ethernet client object

WiFiEspClient client;


void setup()

{

 // initialize serial for debugging

 Serial.begin(9600);

 // initialize serial for ESP module

 Serial1.begin(9600);

 // initialize ESP module

 WiFi.init(&Serial1);


 // check for the presence of the shield

 if (WiFi.status() == WL_NO_SHIELD) {

   Serial.println("WiFi shield not present");

   // don't continue

   while (true);

 }


 // attempt to connect to WiFi network

 while ( status != WL_CONNECTED) {

   Serial.print("Attempting to connect to WPA SSID: ");

   Serial.println(ssid);

   // Connect to WPA/WPA2 network

   status = WiFi.begin(ssid, pass);

 }


 // you're connected now, so print out the data

 Serial.println("You're connected to the network");

 

 printWifiStatus();


 Serial.println();

 Serial.println("Starting connection to server...");

 // if you get a connection, report back via serial

 if (client.connect(server, 80)) {

   Serial.println("Connected to server");

   // Make a HTTP request

   client.println("GET /asciilogo.txt HTTP/1.1");

   client.println("Host: arduino.cc");

   client.println("Connection: close");

   client.println();

 }

}


void loop()

{

 // if there are incoming bytes available

 // from the server, read them and print them

 while (client.available()) {

   char c = client.read();

   Serial.write(c);

 }


 // if the server's disconnected, stop the client

 if (!client.connected()) {

   Serial.println();

   Serial.println("Disconnecting from server...");

   client.stop();


   // do nothing forevermore

   while (true);

 }

}



void printWifiStatus()

{

 // print the SSID of the network you're attached to

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());


 // print your WiFi shield's IP address

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);


 // print the received signal strength

 long rssi = WiFi.RSSI();

 Serial.print("Signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

}


접속하고자하는 서버의 주소는

char server[] = "arduino.cc";

에 arduino.cc 로 정의되어 있고


   client.println("GET /asciilogo.txt HTTP/1.1");

   client.println("Host: arduino.cc");

   client.println("Connection: close");

   client.println();


명령어를 이용해서 arduino.cc/asciilogo.txt 파일을 HTTP GET으로 읽어오게 되어있다.

읽어온 응답값을

 while (client.available()) {

   char c = client.read();

   Serial.write(c);

 }


코드를 이용해서 client.read를 통해서 한글자씩 읽어온후 화면에 출력하기 위해서 Seirial.write(c)를 이용하여 한글자씩 콘솔에 출력하였다.

실행 결과는 다음과 같다.



결론

테스트를 하면서 가장 어려웠던 점이 아두이노 우노에서 ESP01 로 소프트웨어 시리얼 통신을 하는 경우 HTTP나 WIFI SDK를 찾기가 어려웠다. 대부분 ESP8266을 MCU로 하는 보드 (예를 들어 nodeMCU, ESP12,Wemo D1/D1 mini)를 베이스로 하는 경우가 많았는데, 그도 그럴것이 개발이나 테스트 용도가 아니라 실제 디바이스로 만들어서 사용하려면 우노 + ESP01 조합은 크기도 크고 연결도 복잡해서 효용성이 없다. 네트워크 통신을 하는 시나리오등은 IOT와 같이 센서 데이타를 얻어서 서버에 전송하는 케이스이기 때문에,  하나의 소형 디바이스로 처리가 가능하다면 하나의 디바이스를 사용하는 것이 훨씬 효율적이다. (가격이나 배터리 용량면등).

다음 글에서는 실제로 센서에서 데이타를 읽어서 HTTP를 이용해서 서버에 전송하는 부분을 고민해보도록 하겠다.

참고자료



ESP01 (ESP8266) 사용하기

프로그래밍/아두이노 | 2018.09.30 00:00 | Posted by 조대협

아두이노 ESP01 모듈 사용하기

조대협 (http://bcho.tistory.com)

아두이노 WIFI 모듈

아두이노 WIFI 모듈은 여러가지가 있는데, 아두이노용으로 나온 와이파이 실드의 경우에는 가격이 비싸다. (아두이노에서 WIFI 연결하는 방법은 http://bcho.tistory.com/1280 자료 참고) 그래서 가장 범용적으로 사용되는 칩셋은 ESP8266 칩셋인데, ESP8266 칩셋으로 나온 보드는 여러가지가 있다. ESP01~ESP14 모듈등이 있고, 조금더 사용이 편한 모듈로는 nodemcu와 같은 모듈이 있다.




ESP8266 모듈 시리즈 https://en.wikipedia.org/wiki/ESP8266

오늘 다루는 모듈은 이중에서 가장 저렴한 ESP01 모듈이다.

아두이노에서 이모듈을 사용하기에는 몇가지 넘어야할 산이 있다.

전원

ESP 01은 3V로 동작을 하는데, 전류 소모량이 많다. 그래서 아두이노 보드의 3.3V 단자에 연결하게 되면 전력양이 낮아서 오작동하는 경우가 많고 GND와 전원으로 들어가는 선이 많아서, 아래와 같이 배선이 복잡해진다.


<출처 : https://m.blog.naver.com/roboholic84/221261124179>

통신속도와 펌웨어 업그레이드

그리고 가장 난관중 하나가, 아두이노의 시리얼 통신의 경우 9600bps를 사용하는데, 불행하게도 ESP01의 기본 통신속도는 115200bps로 설정되어 있기 때문에 펌웨어 업그레이드를 통해서 디폴트 통신 속도를 9600 bps로 변경해줘야 한다. 이 과정에 여러 배선 설계를 해야 하고 별도의 펌웨어 업그레이드 프로그램을 설치해야하기 때문에 그 과정이 까다롭다.



<그림 USB to ESP01 연결 아답터>

그래서 아두이노 보드를 거치지 않고 바로 PC USB에서 ESP01로 연결을해서 쉽게 펌웨어를 업데이트할 수 있게 해주는 USB to ESP01 아답터가 있기는 하지만 여전히 펌웨어 업데이트가 필요하다.


ESP01 아답터

그래서 검색을 하다 찾은 아답터가 ESP01 아답터 이다.


이렇게 아답터 위에 ESP01 보드를 설치하면 되는 형태이다. (구매 링크)

https://m.blog.naver.com/roboholic84/221261124179 글에 상세한 소개와 설명이 잘 나와 있는데, 따라해보니 ESP01의 펌웨어 자체가 업그레이드 되어 있어서, 명령어가 동작하지 않는 부분이 있어서 몇가지 수정을 하였다. 포스팅 내용을 참고하여 몇가지 부분을 수정하였다.

배선 작업은 아래와 같다.


대략 빵판에 연결하면 다음과 같은 모습이된다.



레큘레이터가 내장되어 있기 때문에 아두이노 5V에 VCC를 연결하면 되고, RX와 TX를 각각 3번과 2번 포트에 연결한다.

다음에 아래와 같은 코드를 작성하여 실행한다.

#include <SoftwareSerial.h>


SoftwareSerial mySerial(2, 3); // RX, TX


void setup() {

 Serial.begin(9600);

 mySerial.begin(115200);

}


void loop() {

 if (mySerial.available()) {

   Serial.write(mySerial.read());

 }

 if (Serial.available()) {

   mySerial.write(Serial.read());

 }

}


위의 예제는 아두이노 콘솔에서 받은 명령을 ESP01 시리얼 포트로 전송하고 ESP01 에서 나온 결과값을 아두이노 콘솔에 출력하도록 하는 코드이다. ESP01의 디폴트 통신속도가 115200이기 때문에 mySerial.begin에서 통신 속도를 115200으로 설정하였다. (추후 바꿀것이다.)


를 실행해서 AT 명령을 실행해보자. 연결이 제대로 되었으면 아래와 그림과 같이 OK 응답이 오는 것을 볼 수 있다.



다음 ESP01 보드의 통신 속도를 변경해보자,원본 문서에는 AT+CIOBAUD=9600 명령으로 변경하도록 되어 있는데, 이 명령은 최신 펌웨어에서는 동작하지 않고 AT+IPR이라는 명령을 사용해야 하는데, 이 명령은 연결되어 있는 동안만 통신 속도를 변경하고 다시 ESP01 디바이스를 뺐다가 다시 끼면 원래 통신속도로 돌아간다.

ESP01의 통신속도를 영구적으로 바꿔줄 수 있는 명령이 있는데, AT_UART_DEF라는 명령을 사용하면 된다. (참고 : https://www.esp8266.com/viewtopic.php?f=13&t=718)

사용법 : AT+ UART_DEF=<baudrate>,<databits>,<stopbits>,<parity>,<flow control>


통신속도를 9600으로 영구적으로 변경하기 위해서는 아래 명령을 수행한다.

AT+UART_DEF=9600,8,1,0,0



통신 속도를 9600으로 변경하였기 때문에 코드상에서도 ESP01로 통신하는 속도를 9600으로 변경해줘야 한다.

 mySerial.begin(115200);

부분을

 mySerial.begin(9600);

으로 변경하여 실행하자


WIFI 연결 테스트

네트워크 모드

ESP8266은 네트워크 연결에 대해 3가지 모드를 제공한다.

  • 1 : Stand alone

  • 2 : AP

  • 3 : AP + Standalone

Stand alone 모드는 클라이언트로 작동하는 모드로 AP에 붙어서 네트워크 통신을 할 수 있다.

AP 모드는 ESP8266이 서버가 되는 모드로 다른 단말이 ESP8266에 Wifi로 연결될 수 있게 한다. 그리고 AP+Stand alone 모드는 서버와 클라이언트를 동시에 지원하는 모드이다. 여기서는 1번 AP+Standalone 모드를 사용하도록 하겠다.

모드 전환은 AT+CWMODE={모드 번호}로 가능하다


WIFI 연결하기

클라이언트 모드로 연결을 하였으면 WIFI에 연결해보자.

WIFI 목록을 찾는 명령은 AT+CWLAP 이다. 명령을 실행하면 아래 그림과 같이 연결 가능한 WIFI 목록이 출력된다.


다음 AT+CWJAP=”SSID”,”비밀번호" 명령을 이용하여 연결하고자 하는 WIFI 네트워크에 연결이 가능하다. 여기서는 U+NetC070 네트워크에 연결해보도록 하겠다

AT+CWJAP="U+NetC070","WIFI비밀번호"


명령을 실행하면 아래와 같이 WIFI에 연결이 된것을 확인할 수 있다.



연결이 완료 되었으면

AT+CIFSR

명령을 이용하면 연결된 IP 주소를 읽어낼 수 있다.


이렇게 연결이 된 상태에서는 아두이노의 전원을 껐다가 켜도 다시 같은 네트워크로 자동으로 붙기 때문에, 연결을 명시적으로 끊으려면

AT+CWQAP

명령을 이용하여 명시적으로 연결을 끊어줘야 한다.

다음글에서는 ESP01 모듈을 이용하여 서버와 HTTP 통신을 하는 방법에 대해서 알아보도록 한다.



서보 모터 제어

프로그래밍/아두이노 | 2018.09.28 00:11 | Posted by 조대협


서보 모터 컨트롤 하기


아두이노에서 컨트롤 할 수 있는 모터중 한 종류인 서보 모터를 제어해봤다.

서보 모터는  (Servo Motor) DC 모터와는 다르게 정밀한 컨트롤이 가능한 모터이다.

정확한 각도나 속도로 회전을 할 수 있다. 


테스트에 사용한 모터는 저렴한 서보 모터를 사용했는데, 그래서 그런지 90도, 180도로 각도를 돌려봐도 정확하게 90도, 180도로 돌지는 않았다.


서보 모터는 종류에 따라서 180도만 회전하는 모터, 360 회전하는 모터등으로 최대 회전 각이 다르다.




이런 모양으로 생겼는데, 붉은 선은 5V, 갈색선은 GND, 오렌지 선이 컨트롤 선이다.

이 선을 아래 그림과 같이 9번 핀에 연결하였다.



그리고 아래와 같은 예제 코드를 사용하였다.


#include<Servo.h>


Servo servo;

int value = 0;

void setup() {

  // put your setup code here, to run once:

  servo.attach(9);

  servo.write(0);

  delay(3000);

  servo.write(90);

  delay(3000);

  servo.write(0);

}


void loop() {

  // put your main code here, to run repeatedly:


  servo.write(value);

  value+=10;

  delay(500);

  if(value > 180)

    value = 0;

    

}


Servo.h 라이브러리를 사용해야 하는데, 이클립스에서는 include 에러가 난다. C/C++ 컴파일러 경로 설정을 변경해야 하는데, 귀찮아서 패스. 그냥 아두이노 IDE를 사용하였다.


servo.write에 각도를 인자를 주면 그 각도로 회전이 된다.





쿠버네티스 #19

보안 4/4 - Pod Security Policy

조대협 (http://bcho.tistory.com)



SecurityContext가 컨테이너나 Pod의 보안 기능을 정의 하는 것이라면, Pod Security Policy (이하 PSP)는 보안 기능에 대한 정책을 정의 하는 것이다.

예를 들어, 정책으로 Pod를 생성할때는 반드시 root 사용자를 사용하지 못하도록 강제한다던지, Privileged 모드를 사용못하도록 강제할 수 있다. 현재는 (2018년9월1일) 베타 상태이기 때문에 다소의 기능 변경이 있을 수 있음을 염두하고 사용하도록 하자.

개념

개념이 복잡하기 때문에 먼저 기본적인 개념을 이해한 후에, 각 상세를 살펴보도록 하자.

먼저 아래 그림을 보자 PSP는 생성후에, 사용자에게 지정이 된다.

그리고 Pod를 생성할때, Pod의 보안 요건을 SecurityContext를 이용해서 Pod 설정에 정의한다.

Pod를 생성하려고 할때, 생성자(사용자)의 PSP를 레퍼런스 하는데, Pod의 보안 요건이 사용자에게 정의되어 있는 PSP 요건을 만족하면, Pod가 생성된다.



반대로, Pod를 생성할때, Pod의 보안 요건 (SecurityContext)가 Pod를 생성하고자하는 사용자의 PSP요건을 만족하지 않으면, Pod 생성이 거부된다. 아래 그림은 사용자의 PSP에서 Privileged 모드를 사용할 수 없도록 설정하였으나, Pod를 생성할때 Privileged 모드를 Pod 가 사용할 수 있도록 설정하였기 때문에, Pod를 생성에 실패하는 흐름이다.




Pod Security Policy

Pod Security Policy는 Security Context와 달리 클러스터 리소스 (Cluster Resource)이다.

즉 적용하는 순간 클러스터 전체에 적용이 된다는 이야기이다.


정책 종류

Pod Security Policy를 통해서 통제할 수 있는 정책은 다음과 같다.

(출처 https://kubernetes.io/docs/concepts/policy/pod-security-policy/) 자세한 내용은 원본 출처를 참고하기 바란다.


Control Aspect

Field Names

Running of privileged containers

privileged

Usage of host namespaces

hostPID, hostIPC

Usage of host networking and ports

hostNetwork, hostPorts

Usage of volume types

volumes

Usage of the host filesystem

allowedHostPaths

White list of Flexvolume drivers

allowedFlexVolumes

Allocating an FSGroup that owns the pod’s volumes

fsGroup

Requiring the use of a read only root file system

readOnlyRootFilesystem

The user and group IDs of the container

runAsUser, supplementalGroups

Restricting escalation to root privileges

allowPrivilegeEscalation, defaultAllowPrivilegeEscalation

Linux capabilities

defaultAddCapabilities, requiredDropCapabilities, allowedCapabilities

The SELinux context of the container

seLinux

The AppArmor profile used by containers

annotations

The seccomp profile used by containers

annotations

The sysctl profile used by containers

annotations



포맷

PSP의 포맷을 이해하기 위해서 아래 예제를 보자

apiVersion: extensions/v1beta1

kind: PodSecurityPolicy

metadata:

 name: nonroot-psp

spec:

 seLinux:

   rule: RunAsAny

 supplementalGroups:

   rule: RunAsAny

 runAsUser:

   rule: MustRunAsNonRoot

 fsGroup:

   rule: RunAsAny

 volumes:

 - '*'


nonroot-psp 라는 이름으로 PSP를 정의하였고, seLinux,supplementalGroup,fsGroup과 volumes(디스크)에 대한 권한은 모두 허용하였다. runAsUser에 rule (규칙)을 MustRunAsNonRoot로 지정해서, 이 정책을 적용 받은 사용자는 Pod를 생성할때 Pod가 반드시 root 사용자가 아닌 다른 사용자를 지정하도록 정의했다.

PSP 사용자 적용

PSP 를 정의하고 실행한다고 해도, 실제로 적용되지 않는다. PSP를 적용하기 위해서는 생성한 PSP를 RBAC을 이용하여 ClusterRole을 만들고, 이 ClusterRole을 사용자에게 부여해야 실제로 정책이 적용되기 시작한다. 사용자에게 PSP를 적용하는 부분은 뒤의 예제에서 살펴보자

이때 주의할점은 사용자의 정의인데, 쉽게 생각하면 사용자를 사람으로만 생각할 수 있는데, 쿠버네티스의 사용자는 사람이 될 수 도 있지만 서비스 어카운트 (Service account)가 될 수 도 있다.

쿠버네티스에서 Pod를 생성하는 주체는 사용자가 kubectl 등으로 Pod를 직접생성할 경우, 사람이 사용자가 되지만, 대부분의 경우 Pod의 생성과 관리는 Deployment나 ReplicaSet과 같은 컨트롤러를 이용하기 때문에, 이 경우에는 컨트롤러들이 사용하는 서비스 어카운트가 사용자가 되는 경우가 많다.

그래서, PSP를 적용하는 대상은 일반 사용자가 될 수 도 있지만 서비스 어카운트에 PSP를 적용해야 하는 경우가 많다는 것을 반드시 기억해야 한다.

PSP 활성화

PSP는 쿠버네티스 클러스터에 디폴트로는 비활성화 되어 있다. PSP 기능을 사용하기 위해서는 이를 활성화 해야 하는데, PSP는 admission controller에 의해서 컨트롤 된다.

구글 클라우드

구글 클라우드에서 PSP를 활성화 하는 방법은 아래와 같이 gcloud 명령을 이용하면 된다.


%gcloud beta container clusters update {쿠버네티스 클러스터 이름} --enable-pod-security-policy --zone={클러스터가 생성된 구글 클라우드 존}


만약에 활성화된 PSP 기능을 비활성화 하고 싶으면 아래와 같이 gcloud 에서 --no-enable-pod-security-policy  옵션을 사용하면 된다.


gcloud beta container clusters update {쿠버네티스 클러스터 이름}  --no-enable-pod-security-policy --zone={클러스터가 생성된 구글 클라우드 존}

Minikube

minikube start --extra-config=apiserver.GenericServerRunOptions.AdmissionControl=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,PodSecurityPolicy


주의할점은 PSP 기능이 활성화된후에, PSP가 적용되지 않은 사용자(사람과, 서비스어카운트 모두)의 경우에는 Pod를 생성할 수 없기 때문에, 기존에 잘 생성되던 Pod가 갑자기 생성되지 않는 경우가 많기 때문에, 반드시 기능을 활성화하기 전에 반드시, 사용자마다 적절한 PSP를 생성해서 적용하기 바란다. (PSP기능을 활성화하지 않더라도 기본적으로 PSP 정의및, PSP를 사용자에게 적용하는 것은 가능하다.)

예제

개념에 대한 이해가 끝났으면 이제 실제 예제를 통해서 어떻게 PSP를 생성 및 적용하는지를 알아보도록 하자. 예제는 다음 순서로 진행하도록 한다.

  1. PSP 정의 : Root 권한을 사용이 불가능한 PSP를 생성한다.

  2. 서비스 어카운트 생성 : PSP를 생성할 서비스 어카운트를 생성한다. Pod를 바로 생성하는 것이 아니라 Deployment를 통해서 생성할것이기 때문에 Deployment에서 이 서비스 어카운트를 사용할것이다.

  3. ClusterRole 생성 : 다음 1에서 만든 PSP를 2에서 만든 서비스 어카운트에 적용하기 위해서, PSP를 가지고 있는 ClusterRole을 생성한다.

  4. ClusterRoleBinding을 이용하여 서비스 어카운트에 PSP 적용 : 3에서 만든 ClusterRole을 2에서 만든 서비스 어카운트에 적용한다.

  5. Admission controller 활성화 : PSP를 사용하기 위해서 Admission controller를 활성화 한다.

  6. Pod 정의 및 생성 : 2에서 만든 서비스 어카운트를 이용하여 Deployment 를 정의한다.

  7. 테스트 : 테스트를 위해서, root user를 사용하는 deployment와, root user를 사용하지 않는 deployment 두개를 각각 생성해서 psp 가 제대로 적용되는지를 확인한다.

PSP 정의

PSP를 정의해보자. 아래와 같이 nonroot-psp.yaml 을 작성한다. 이 PSP는 runAsUser에서 MustRunAsNotRoot 규칙을 추가해서, Root 권한으로 컨테이너가 돌지 않도록 하는 정책이다.


# nonroot-psp.yaml

apiVersion: extensions/v1beta1

kind: PodSecurityPolicy

metadata:

 name: nonroot-psp

spec:

 seLinux:

   rule: RunAsAny

 supplementalGroups:

   rule: RunAsAny

 runAsUser:

   rule: MustRunAsNonRoot

 fsGroup:

   rule: RunAsAny

 volumes:

 - '*'


파일을 nonroot-psp.yaml 파일로 저장한후에,

%kubectl create -f nonroot-psp.yaml

명령어를 이용하여 PSP를 생성한후에,

%kubectl get psp

명령을 이용하여, PSP가 생성된것을 확인하자




서비스 어카운트 생성

서비스 어카운트 생성을 위해서 아래 yaml 파일을 작성하고, 서비스 어카운트를 생성하여 확인하자


#nonroot-sa.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: nonroot-sa



ClusterRole 생성 및 적용

서비스 어카운트를 생성하였으면, 앞에 만든 PSP nonroot-psp 를 사용하는 ClusterRole nonroot-clusterrole을 생성하고, 이 롤을 nonroot-clusterrole-bindings를 이용하여, 앞서 만든 서비스 어카운트 nonroot-sa 에 연결한다.


아래와 같이 ClusterRole을 생성하는데, resouces 타입을 podsecuritypolicies 로 정의하고, 리소스 이름은 앞에서 생성한 PSP인 nonroot-psp로 지정한다. 그리고, 이 psp를 사용하기 위해서 verb는 “use”로 지정한다

#nonroot-clusterbinding.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: nonroot-clusterrole

rules:

- apiGroups:

 - policy

 resources:

 - podsecuritypolicies

 resourceNames:

 - nonroot-psp

 verbs:

 - use


%kubectl create -f nonroot-clusterrole.yaml

명령어를 이용하여 위의 ClusterRole을 생성한후에, 이 ClusterRole을 서비스 어카운트 nonroot-sa 에 적용하자.

아래와 같이 nonroot-clusterrolebinding.yaml 를 생성한후,


#nonroot-clusterrolebinding.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: nonroot-clusterrole-bindings

subjects:

- kind: ServiceAccount

 name: sa-nonroot

 namespace: default

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: nonroot-clusterrole


%kubectl create -f nonroot-clusterrolebinding.yaml

명령어를 이용하여 ClusterRole nonroot-clusterrole을 서비스 어카운트 sa-nonroot에 적용한다.

도커 컨테이너 생성

이제 PSP가 생성되었고, 이 PSP를 사용하는 서비스 어카운트 nonroot-sa 가 완성되었으면, 이를 실제로 배포에 적용해보자. 배포에 앞서서 컨테이너 이미지를 만든다.

아래는 Docker 파일인데, 앞의 보안 컨텍스트 설명때 사용한 컨테이너와 동일하다.


#Dockerfile

FROM node:carbon

EXPOSE 8080

RUN groupadd -r -g 2001 appuser && useradd -r -u 1001 -g appuser appuser

RUN mkdir /home/appuser && chown appuser /home/appuser

USER appuser

WORKDIR /home/appuser

COPY --chown=appuser:appuser server.js .

CMD node server.js > /home/appuser/log.out

생성된 도커이미지를 gcr.io/terrycho-sandbox/nonroot-containe:v1 이름으로 docker push 명령을 이용해서  컨테이너 레지스트리에 등록한다.

PSP 기능 활성화

이미지까지 준비가 되었으면, 이제 Pod를 생성할 모든 준비가 되었는데, PSP를 사용하려면, 쿠버네티스 클러스터에서 PSP 기능을 활성화 해야 한다.

다음 명령어를 이용해서 PSP를 활성화한다.

%gcloud beta container clusters update {쿠버네티스 클러스터 이름} --enable-pod-security-policy --zone={클러스터가 생성된 구글 클라우드 존}


아래 그림과 같이 PSP 기능이 활성화 되는 것을 확인한다.


Deployment 생성

기능 활성화가 끝났으면, 이제 Pod를 deploy해보자.

아래는 nonroot-deploy.yaml 파일이다.


#nonroot-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nonroot-deploy

spec:

 replicas: 3

 selector:

   matchLabels:

     app: nonroot

 template:

   metadata:

     name: nonroot-pod

     labels:

       app: nonroot

   spec:

     serviceAccountName: nonroot-sa

     securityContext:

       runAsUser: 1001

       fsGroup: 2001

     containers:

     - name: nonroot

       image: gcr.io/terrycho-sandbox/security-context:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080


우리가 nonroot-psp를 사용하기 위해서, 이 psp가 정의된 서비스 어카운트 nonroot-sa를 사용하도록 하였다. 그래고 nonroot-psp에 정의한데로, 컨테이너가 root 권한으로 돌지 않도록 securityContext에 사용자 ID를 1001번으로 지정하였다.

%kubectl create -f nonroot-deploy.yaml

을 실행한후,

%kubectl get deploy 명령어를 실행해보면 아래와 같이 3개의 Pod가 생성된것을 확인할 수 있다.


보안 정책에 위배되는 Deployment 생성

이번에는 PSP 위반으로, Pod 가 생성되지 않는 테스트를 해보자.

아래와 같이 root-deploy.yaml 이라는 이름으로, Deployment 스크립트를 작성하자.


#root-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: root-deploy

spec:

 replicas: 3

 selector:

   matchLabels:

     app: root

 template:

   metadata:

     name: root-pod

     labels:

       app: root

   spec:

     serviceAccountName: nonroot-sa

     containers:

     - name: root

       image: gcr.io/terrycho-sandbox/nonroot-containe:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080


이 스크립트는 앞에서 작성한 nonroot-deploy.yaml 과 거의 유사하지만 Security Context에서 사용자 ID를 지정하는 부분이 없기 때문에, 디폴트로 root로 컨테이너가 기동된다. 그래서 PSP에 위반되게된다.


%kubectl create -f root-deploy.yaml

을 실행하면 결과가 아래와 같다.



맨 아래 root-deploy-7895f57f4를 보면, Current 가 0으로 Pod가 하나도 기동되지 않았음을 확인할 수 있다.

원인을 파악하기 위해서 Pod를 만드는 ReplicaSet을 찾아보자

%kubectl get rs

명령을 아래와 같이 ReplicaSet 리스트를 얻을 수 있다.

%kubectl describe rs root-deploy-7895f57f4

명령을 실행해서 ReplicaSet의 디테일과 로그를 확인해보면 다음과 같다.



그림과 같이 Pod 생성이 정책 위반으로 인해서 실패한것을 확인할 수 있다.



쿠버네티스 #13

모니터링 1/2


조대협 (http://bcho.tistory.com)


시스템을 운영하는데 있어서 운영 관점에 있어서 가장 중요한 기능중의 하나는 시스템에 대한 모니터링이다. 시스템 자원의 사용량이나 에러등에 대한 모니터링을 통해서, 시스템을 안정적으로 운영하고 문제 발생시 원인 파악과 대응을 할 수 있다.

이번 글에서는 쿠버네티스 모니터링 시스템에 대한 개념과, 아키텍쳐 그리고 구축 방법에 대해서 소개하고자 한다.

쿠버네티스 모니터링 컨셉

쿠버네티스에 대한 모니터링을 보면 많은 툴과 지표들이 있어서 혼돈하기 쉬운데, 먼저 모니터링 컨셉에 대한 이해를 할 필요가 있다.

쿠버네티스 기반의 시스템을 모니터링하기 위해서는 크게 아래와 같이 4가지 계층을 모니터링해야 한다.



1. 호스트 (노드)

먼저 쿠버네티스 컨테이너를 실행하는 하드웨어 호스트 즉 노드에 대한 지표 모니터링이 필요하다. 노드의 CPU,메모리, 디스크, 네트워크 사용량과, 노드 OS와 커널에 대한 모니터링이 이에 해당한다.

2. 컨테이너

다음은 노드에서 기동되는 각각의 컨테이너에 대한 정보이다. 컨테이너의 CPU,메모리, 디스크, 네트워크 사용량등을 모니터링 한다.

3. 애플리케이션

컨테이너안에서 구동되는 개별 애플리케이션의 지표를 모니터링 한다. 예를 들어, 컨테이너에서 기동되는 node.js 기반의 애플리케이션의 응답시간, HTTP 에러 빈도등을 모니터링한다.

4. 쿠버네티스

마지막으로, 컨테이너를 컨트롤 하는 쿠버네티스 자체에 대한 모니터링을한다. 쿠버네티스의 자원인 서비스나 POD, 계정 정보등이 이에 해당한다.

쿠버네티스 기반의 시스템 모니터링에 대해서 혼돈이 오는 부분중의 하나가 모니터링이라는 개념이 포괄적이기 때문이다. 우리가 여기서 다루는 모니터링은 자원에 대한 지표 대한 모니터링이다. 포괄적인 의미의 모니터링은 로그와, 에러 모니터링등 다양한 내용을 포괄한다.  

쿠버네티스 로깅

지표 모니터링과 함께 중요한 모니터링 기능중 하나는 로그 수집 및 로그 모니터링이다.

로그 수집 및 로그 모니터링 방법은 여러가지 방법이 있지만, 오픈소스 로그 수집 및 모니터링 조합인 EFK (Elastic search + FluentD + Kibina) 스택을 이용하는 경우가 대표적이다.

Fluentd 에이전트를 이용하여, 각종 로그를 수집하여, Elastic search에 저장하고, 저장된 지표를 Kibana 대쉬 보들르 이용하여 시작화 해서 나타내는 방법이 있다.

이에 대한 자세한 설명을 생략한다.

쿠버네티스 모니터링 시스템 구축

그러면 이러한 모니터링 시스템을 어떻게 구축할 것인가?

쿠버네티스 모니터링은 버전업 과정에서 많은 변화를 겪고 있다. 기존 모니터링 시스템의 아키텍쳐는 cAdvisor,Heapster를 이용하는 구조였으나, 이 아키텍쳐는 곧 deprecated 될 예정이고, Prometheus등 다양한 모니터링 아키텍쳐가 후보로 고려 되고 있다.

아래 그래프를 보면 재미있는 통계 결과가 있는데, cAdvisor,Heapster,Promethus 를 이용하는 방법도 있지만, 클라우드의 경우에는 클라우드 벤더에서 제공하는 쿠버네티스 모니터링 솔루션을 그대로 사용하거나 (18%) 또는 데이타독이나 뉴렐릭 (Datadog, newRelic)과 같이 전문화된 모니터링 클라우드을 사용하는 비율 (26%) 도 꽤 높다.



<그림. 쿠버네티스 모니터링 솔루션 분포 >

출처 :  https://thenewstack.io/5-tools-monitoring-kubernetes-scale-production/


개인적인 의견으로는 직접 모니터링 솔루션을 구축해서 사용하는 것보다는 비용은 약간 들지만 클라우드 벤더에서 제공되는 모니터링 도구나 또는 데이타독과 같은 전문 모니터링 솔루션을 이용하는 것을 추천한다.


직접 모니터링 솔루션을 구축할 경우 구축과 운영에 드는 노력도 꽤 크고, 또한 어떠한 지표를 모니터링해야할지 등에 대한 추가적인 노하우가 필요하다. 또한 cAdvisor,Heapster,Promethues 조합은 호스트와 컨테이너 그리고 쿠버네티스에 대한 모니터링은 제공하지만 애플리케이션 지표에 대한 모니터링과 로깅 기능은 제공하지 않기 때문에 별도의 구축이 필요하다. 이런 노력을 들이는 것 보다는 모든 기능이 한번에 제공되고 운영을 대행해주는 데이타독이나 클라우드에서 제공해주는 모니터링 솔루션을 사용하는 것을 추천한다.

Heapster 기반 모니터링 아키텍처

이러한 모니터링 요건을 지원하기 위해서, 쿠버네티스는 자체적인 모니터링 컴포넌트를 가지고 있는데, 그 구조는 다음과 같다.



<그림. 쿠버네티스 모니터링 시스템 아키텍쳐>

출처 Source : https://www.datadoghq.com/blog/how-to-collect-and-graph-kubernetes-metrics/


cAdvisor

cAdvisor는 모니터링 에이전트로, 각 노드마다 설치되서 노드에 대한 정보와 컨테이너 (Pod)에 대한 지표를 수집하여, Kubelet으로 전달한다.

Heapster

cAdvisor에 의해 수집된 지표는 Heapster 라는 중앙 집중화된 지표 수집 시스템에 모이게 되고, Heapster는 수집된 지표를 스토리지 백앤드에 저장한다.

Storage backend

Heapster가 지표를 저장하는 데이타베이스를 스토리지 백앤드라고 하는데, Heapster는 확장성을 위해서 다양한 스토리지 백앤드를 플러그인 구조를 선택하여 연결할 수 있다.

현재 제공되는 대표적인 스토리지 백앤드는 구글 클라우드의 모니터링 시스템인 스택드라이버 (stackdriver), 오픈 소스 시계열 데이타베이스인 인플럭스 디비 (InfluxDB) 등을 지원한다.

그래프 대쉬 보드

이렇게 저장된 모니터링 지표는 그래프와 같은 형태로 시각화 될필요가 있는데, 스토리지 백앤드를 지원하는 다양한 시각화 도구를 사용할 수 있다. 구글의 모니터링 시스템인 스택드라이버의 경우에는 자체적인 대쉬보드 및 그래프 인터페이스가 있고, 인플럭스 디비나 프로메테우스의 경우에는 오픈소스 시각화 도구인 그라파나(Grafana)를 사용할 수 있다.


<그림. 그라파나와 프로메테우스를 연결하여, 지표 모니터링을 시각화 한 예제>


그러나 이 아키텍쳐는 deprecation 계획이 시작되서 1.13 버전 부터는 완전히 제거될 예정이다.

https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md


쿠버네티스 대시보드

다른 방법으로는 쿠버네티스를 모니터링 하고 관리할 수 있는 쉬운 방법이 하나 있는데, 쿠버네티스 대시보드를 사용하는 방법이다. 쿠버네티스는 기본적으로 kubectl이라는 커맨드 라인 인터페이스 (이하 CLI : Command Line Interface)를 사용하지만, 추가적으로 웹 기반의 관리 콘솔을 제공한다. 이를 쿠버네티스 대시보드라고 한다. (https://github.com/kubernetes/dashboard)

대시 보드 설치

쿠버네티스 대시 보드 설치 방법은 간단하다. 아래와 같이 대시보드 설정 yaml 파일을 이용하면 간단하게 대시 보드를 쿠버네티스 클러스터에 설치할 수 있다.


% kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml


일반적인 경우에는 위의 스크립트로 설치가 가능하지만, 구글 클라우드 쿠버네티스 엔진의의 경우에는 설치 중에 권한 관련 에러가 나올 수 있는데, 구글 클라우드 쿠버네티스 엔진의 경우에는 보안을 이유로 일반적인 쿠버네티스보다 권한 설정 레벨이 높게 설정되어 있기 때문이다. 구글 클라우드 쿠버네티스 엔진에서 대시보드를 설치하고자할때에는 위의 스크립트를 실행하기 전에 먼저 아래 명령어를 이용해서, 현재 사용자 계정에 대해서 cluster-admin 롤을 부여해줘야 한다.  


%kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole cluster-admin --user $(gcloud config get-value account)

대시 보드 접속

대시보드 설치가 끝났으면, 대시보드를 접속해보자

대시보드는 외부 서비스로 제공되지 않고, 내부 IP로만 접속이 가능한데, 클러스터 외부에서 접근하려면 kubectl proxy를 이용하면, 간단하게 접근이 가능하다.

kubectl proxy는 로컬 머신 (예를 들어 노트북)과 쿠버네티스 클러스터간의 통신을 프록싱해줘서, 로컬 머신에서 쿠버네티스 클러스터내의 HTTP 서비스를 접근할 수 있도록 해준다.

사용 방법은 로컬 머신에서 간단하게

%kubectl proxy

명령을 실행해주면 localhost:8001 포트를 통해서 쿠버네티스 클러스터로 트래픽을 프록시 해준다.

위와 같이 proxy를 실행한후에,  아래 URL로 접근을 하면, 대시보드 콘솔에 접근할 수 있다.

http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/


URL에 접근하면 아래와 같이 로그인 창이 나타난다.



사용자 계정 및 토큰등에 대해서는 보안 부분에서 별도로 다루기로 하겠다.

대쉬보드를 사용하기 위해서는 사용자 인증이 필요한데, 간단하게 인증을 위한 토큰을 사용하는 방법을 이용하도록 하겠다.

토큰은 쿠버네티스 API 인증 메커니즘중의 하나로, 여기서는 admin-user라는 계정을 하나 만든후에, 그 계정에, 클러스터 관리자롤을 부여한 후에, 그 사용자의 토큰을 사용하는 방법을 사용하겠다.


먼저 아래 스크립트를 이용해서 admin-user 라는 사용자를 생성한다.

admin-user.yaml 파일

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kube-system


다음 아래 스크립트를 이용해서 cluster-admin 롤을 앞에서 생성한 admin-user에 부여한다.

admin-rolebinding.yaml 파일

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: admin-user

 namespace: kube-system


다음 아래 명령어를 이용하면 admin-user의 토큰 값을 알 수 있다.

% kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')


명령을 실행하면 아래와 같이 토큰이 출력된다.


이 토큰 값을 앞의 로그인 창에 입력하면, 대시보드에 로그인할 수 있다.

대시 보드에 로그인하면 아래와 같이 노드나, Pod, 서비스등 쿠버네티스의 자원의 대부분의 정보에 대한 모니터링이 가능하다.




또한 kubectl CLI 명령을 사용하지 않고도 손쉽게 Deployment 등 각종 자원을 생성할 수 있다.


로그 부분에 들어가면 아래와 같이 로그 정보를 볼 수 있다



재미있는 기능중 하나는 아래 그림과 같이 특정 Pod의 컨테이너를 선택하면, 웹콘솔상에서 해당 컨테이너로 SSH 로그인이 가능하다.



여기서 다룬 쿠버네티스 대시보드 설정 및 로그인 부분은 프록시 사용, 로그인을 토큰을 사용하는 등, 운영환경에는 적절하지 않은 방법이다. 개발환경이나 테스트 용도로만 사용하도록 하고, 운영 환경에서는 사용자 계정 시스템 생성과 적절한 권한 배정을 한 후에, 적절한 보안 인증 시스템을 마련한 후에 적용하도록 하자.



쿠버네티스 #12

Secret


조대협 (http://bcho.tistory.com)


Secret

configMap이 일반적인 환경 설정 정보나 CONFIG정보를 저장하도록 디자인 되었다면, 보안이 중요한 패스워드나, API 키, 인증서 파일들은 secret에 저장할 수 있다. Secret은 안에 저장된 내용을 지키기 위해서 추가적인 보안 기능을 제공한다. 예를 들어 secret의 값들은 etcd에 저장될때 암호화된 형태로 저장되고 API server나 node의 파일에는 저장되지 않고, 항상 메모리에 저장되어 있기 때문에 상대적으로 접근이 어렵다.

하나의 secret의 사이즈는 최대 1M까지 지원되는데, 메모리에 지원되는 특성 때문에, secret을 여러개 저장하게 되면 API Server나 노드에서 이를 저장하는 kubelet의 메모리 사용량이 늘어나서 Out Of Memory와 같은 이슈를 유발할 수 있기 때문에, 보안적으로 꼭 필요한 정보만 secret에 저장하도록 하는게 좋다.


사용 방법에 있어서는 secret와 configmap은 기본적으로 거의 유사하다. 기본적으로 키/밸류 형태의 저장구조를 가지고 있으며, 사용시 환경 변수를 통해서 Pod에 그 값을 전달하거나, 또는 디스크 볼륨으로 마운트가 가능한데, secret은 정의하는 방법이 다소 차이가 있다.

예를 들어 language라는 키로 java라는 값을 저장하고자 할때, configmap의 경우에는 이를 language:java 식으로 일반 문자열로 저장했지만 secret의 경우에는 값에 해당하는 부분을 base64 포맷으로 인코딩해야 한다.

즉 java라는 문자열을 base64로 인코딩을 하면, amF2YQo= 가 된다.

문자열을 base64포맷으로 인코딩 하려면 맥이나 리눅스에서 다음과 같은 명령을 이용하면 된다.

%echo java | base64

이렇게 인코딩 된 문자열을 이용해서 secret을 정의해보면 다음과 같다.


hello-secret.yaml 파일

apiVersion: v1
kind: Secret
metadata:
 name: hello-secret
data:
 language: amF2YQo=

base64로 인코딩이 되어 있지만 이를 환경변수로 넘길때나 디스크볼륨으로 마운트해서 읽을 경우에는 디코딩이되서 읽어진다. base64는 단순 인코딩이지 암호화가 아닌데, 왜 궂이 base64로 인코딩을 하는 것일까? secret에 저장되는 내용은 패스워드와 같은 단순 문자열의 경우에는 바로 저장이 가능 하지만, SSL 인증서와 같은 바이너리 파일의 경우에는 문자열로 저장이 불가능하다. 그래서 이러한 바이너리 파일 저장을 지원하기 위해서 secret의 경우에는 저장되는 값을 base64로 인코딩을 하여 저장하도록 되어 있다.


그러면 앞에서 작성한 secret을 테스트하기 위해서 node.js로 간단한 server.js 애플리케이션을 만들어보자.


var os = require('os');


var http = require('http');

var handleRequest = function(request, response) {

 response.writeHead(200);

 response.end(" my prefered secret language is "+process.env.LANGUAGE+ "\n");


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 코드는 LANGUAGE라는 환경 변수에서 값을 읽어서 출력하는 코드이다. (앞의 configmap 코드와 동일)

이 파일을 도커 컨테이너 이미지로 만든후에 gcr.io/terrycho-sandbox/hello-secret:v1 이름으로 등록한 후에, 아래와 같이 Deployment 코드를 작성해보자


hello-secret-literal-deployment.yaml 파일


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: hello-secret-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: hello-secret-literal

 template:

   metadata:

     name: hello-secret-literal-pod

     labels:

       app: hello-secret-literal

   spec:

     containers:

     - name: cm

       image: gcr.io/terrycho-sandbox/hello-secret:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       env:

       - name: LANGUAGE

         valueFrom:

           secretKeyRef:

              name: hello-secret

              key: language


Deployment 파일은 configMap과 크게 다를 것이 없다. configMapKeyRef를 secrectKeyRef로 변경하였고, configMap과 마찬가지로 secret의 이름(hello-secret)을 정하고, 키 이름 (language)을 지정하였다. Deployment를 배포한후에, 서비스를 배포해서 웹으로 접속하면 아래와 같이 secret에 base64로 저장된 “java”라는 문자열이 디코딩되서 출력되는 것을 확인할 수 있다.



파일로 마운트 하기

secret도 configMap과 마찬가지로, 설정 값들을 환경변수 뿐만 아니라, 파일로도 넘길 수 있다. 환경변수로 넘기는 방법과 마찬가지로 파일을 base64로 인코딩해서 secret을 생성해야 하며, 인코딩된 secret을 Pod에 파일로 마운트될때는 디코딩된 상태로 마운트가 된다.


이번에는 secret을 파일에서 부터 만들어보자 사용자 ID를 저장한 user.property 파일과, 비밀 번호를 저장한 password.property 파일 두개가 있다고 하자.각 파일의 내용은 다음과 같다.



Filename : user.property

terry



Filename : password.property

mypassword


이 두개의 파일을 secret에 저장을 할것이다. 명령은 다음과 같다.

% kubectl create secret generic db-password --from-file=./user.property  --from-file=./password.property


db-password라는 secret을 생성하고, user.property, password.property에서 secret을 생성하게 된다. 생성된 secret은 user.property, password.property라는 파일명을 각각 키로하여 파일의 내용이 저장된다.

이때 파일을 통해서 secret을 만들경우에는 별도로 base64 인코딩을 하지 않더라도 자동으로 base64로 인코딩 되어 저장된다.


위의 명령을 보면 kubectl create secret 명령어 뒤에 generic 이라는 키워드를 붙였는데, 이는 secret을 generic이라는 타입으로 생성하기 위함이다. secret의 타입에 대해서는 뒤에서 설명하도록 한다.


이렇게 생성된 secret을 확인해보면 아래와 같이 user.property, password.property 두개의 키로 데이타를 저장하고 있는 것을 확인할 수 있다.




시크릿을 디스크로 마운트해서 읽는 것을 테스트해보기 위해서 간단하게 node.js로 server.js 라는 코드를 아래와 같이 작성한다. 아래 코드는 /tmp/db-password 디렉토리에서 user.property와 password.property 파일을 읽어서 화면에 출력하는 코드이다.


var os = require('os');

var fs = require('fs');

var http = require('http');


var handleRequest = function(request, response) {

 fs.readFile('/tmp/db-password/user.property',function(err,userid){

   response.writeHead(200);

   response.write("user id  is "+userid+" \n");

   fs.readFile('/tmp/db-password/password.property',function(err,password){

     response.end(" password is "+password+ "\n");

   })

 })


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


다음 이 코드에서 user.property와 password.property 를 /tmp/db-password 디렉토리에서 읽어올 수 있도록, 앞에서 만든 db-password 라는 시크릿을 /tmp/db-password  디렉토리에 마운트 하도록 deployment를 정의한다.

hello-secret-file-deployment.yaml


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: hello-serect-file-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: hello-secret-file

 template:

   metadata:

     name: hello-secret-file

     labels:

       app: hello-secret-file

   spec:

     containers:

     - name: hello-secret-file

       image: gcr.io/terrycho-sandbox/hello-secret-file:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       volumeMounts:

         - name: db-password

           mountPath: "/tmp/db-password"

           readOnly: true

     volumes:

     - name: db-password

       secret:

         secretName: db-password

         defaultMode: 0600


configMap과 차이가 거의 없다.  configMap이 secret으로만 바뀐건데, 이번에는 마운트 되는 파일의 퍼미션을 지정하였다. (configMap도 지정이 가능하다.) defaultMode로 파일의 퍼미션을 정의해놓으면, 파일 생성시, 해당 퍼미션으로 파일이 생성된다. 여기서는 0600으로 정의했기 때문에, rw-------으로 파일이 생성될것이다. 만약에 퍼미션을 지정하지 않았을 경우에는 디폴트로 0644 퍼미션으로 파일이 생성된다.


위의 스크립트로 생성한 Pod에 SSH로 들어가 보면 아래와 같이 /tmp/db-password에 user.property파일과 password.property 파일이 생성된것을 확인할 수 있다.




그런데 파일 퍼미션을 보면 우리가 지정한 0600이 아닌데, 잘 보면 user.property와 password.property는 링크로 ..data/user.property 와  ..data/password.property 파일로 연결이 되어 있다.




Deployment 배포가 끝났으면, 서비스를 배포해서 웹으로 접속해보자


위와 같이 마운트된 시크릿 파일에서 데이타를 읽어와서 제대로 출력한것을 확인할 수 있다.

시크릿 타입

시크릿은 configMap과는 다르게 타입




쿠버네티스 #11

ConfigMap


조대협 (http://bcho.tistory.com)



애플리케이션을 배포하다 보면, 환경에 따라서 다른 설정값을 사용하는 경우가 있다. 예를 들어, 데이타베이스의 IP, API를 호출하기 위한 API KEY, 개발/운영에 따른 디버그 모드, 환경 설정 파일들이 있는데, 애플리케이션 이미지는 같지만, 이런 환경 변수가 차이가 나는 경우 매번 다른 컨테이너 이미지를 만드는 것은 관리상 불편할 수 밖에 없다.

이러한 환경 변수나 설정값들을 변수로 관리해서 Pod가 생성될때 이 값을 넣어줄 수 있는데, 이러한 기능을 제공하는 것이 바로 Configmap과 Secret이다.


아래 그림과 같이 설정 파일을 만들어놓고, Pod 를 배포할때 마다 다른 설정 정보를 반영하도록 할 수 있다.



Configmap이나 secret에 정의해놓고, 이 정의해놓은 값을 Pod로 넘기는 방법은 크게 두가지가 있다.

  • 정의해놓은 값을 Pod의 환경 변수 (Environment variable)로 넘기는 방법

  • 정의해놓은 값을 Pod의 디스크 볼륨으로 마운트 하는 방법

ConfigMap

configmap은 앞서 설명한것과 같이 설정 정보를 저장해놓는 일종의 저장소 역할을 한다.

configmap은 키/밸류 형식으로 저장이된다.

configmap을 생성하는 방법은 literal (문자)로 생성하는 방법과 파일로 생성하는 방법 두가지가 있다.

Literal

먼저 간단하게 문자로 생성하는 방법을 알아보자

키가 “language”로 하고 그 값이 “java”인 configMap을 생성해보자

Kubectl create configmap [configmap 이름] --from-literal=[키]=[값] 식으로 생성하면 된다.

아래 명령을 이용하면, hello-cm 이라는 이름의 configMap에 키는 language, 값은 java인 configMap이 생성된다.

% kubectl create configmap hello-cm --from-literal=language=java


또는 아래와 같이 YAML파일로도 configMap을 생성할 수 있다.

hello-cm.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: hello-cm

data:

 language: java


데이타 항목에 [키]:[값] 형식으로 라인을 추가하면 여러개의 값을 하나의 configMap에 저장할 수 있다.

configmap이 생성되었으면 이 값을 Pod에서 환경 변수로 불러서 사용해보도록 하자.

node.js로 간단한 웹 애플리케이션을 만든후에 “LANGUAGE”라는 환경 변수의 값을 읽어서 출력하도록 할것이다.

아래와 같이 server.js node.js 애플리케이션을 만든다.


var os = require('os');


var http = require('http');

var handleRequest = function(request, response) {

 response.writeHead(200);

 response.end(" my prefered language is "+process.env.LANGUAGE+ "\n");


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 파일을 컨테이너로 패키징한 후에, 아래와 같이 Deployment를 정의한다

apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: cm-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: cm-literal

 template:

   metadata:

     name: cm-literal-pod

     labels:

       app: cm-literal

   spec:

     containers:

     - name: cm

       image: gcr.io/terrycho-sandbox/cm:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       env:

       - name: LANGUAGE

         valueFrom:

           configMapKeyRef:

              name: hello-cm

              key: language


configMap에서 데이타를 읽는 부분은 맨 아래에 env 부분인데, env 부분에 환경 변수를 정의하는데, name은 LANGUAGE라는 이름으로 정의하고 데이타는 valueFrom을 이용해서 configMap에서 읽어오도록 하였다. name에는 configMap의 이름인 hello-cm을, 그리고 읽어오고자 하는 데이타는 키 값이 “language”인 값을 읽어오도록 하였다. 이렇게 하면, LANGUAGE 환경 변수에, configMap에 “language” 로 저장된 “java”라는 문자열을 읽어오게 된다.


이 스크립트를 이용하여 Deployment를 생성한 후에, 이 Deployment 앞에 Service (Load balancer)를 붙여 보자.


apiVersion: v1

kind: Service

metadata:

 name: cm-literal-svc

spec:

 selector:

   app: cm-literal

 ports:

   - name: http

     port: 80

     protocol: TCP

     targetPort: 8080

 type: LoadBalancer


서비스가 생성이 되었으면 웹 브라우져에서 해당 Service의 URL을 접속해보자.



위와 같이 환경 변수에서 “java”라는 문자열을 읽어와서 출력한것을 확인할 수 있다.

File

위와 같이 개개별 값을 공유할 수 도 있지만, 설정을 파일 형태로 해서 Pod에 공유하는 방법도 있다.

예제를 보면서 이해하도록 하자.

profile.properties라는 파일이 있고 파일 내용이 아래와 같다고 하자

myname=terry

email=myemail@mycompany.com

address=seoul


파일을 이용해서 ConfigMap을 만들때는 아래와 같이 --from-file 을 이용해서 파일명을 넘겨주면 된다.

kubectl create configmap cm-file --from-file=./properties/profile.properties

이렇게 파일을 이용해서 configMap을 생성하면, 아래와 같이 키는 파일명이 되고, 값은 파일 내용이 된다.


환경변수로 값을 전달하기

생성된 configMap 내의 값을 Pod로 전달하는 방법은,앞에서 예를 든것과 같이 환경 변수로 넘길 수 있다.

아래 Deployment 예제를 보면


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: cm-file-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: cm-file

 template:

   metadata:

     name: cm-file-pod

     labels:

       app: cm-file

   spec:

     containers:

     - name: cm-file

       image: gcr.io/terrycho-sandbox/cm-file:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       env:

       - name: PROFILE

         valueFrom:

           configMapKeyRef:

              name: cm-file

              key: profile.properties


cm-file configMap에서 키가 “profile.properties” (파일명)인 값을 읽어와서 환경 변수 PROFILE에 저장한다. 저장된 값은 파일의 내용인 아래 문자열이 된다.

myname=terry

email=myemail@mycompany.com

address=seoul


혼동하지 말아야 하는 점은, profile.properties 파일안에 문자열이 myname=terry 처럼 키/밸류 형식으로 되어 있다고 하더라도, myname 을 키로 해서 terry라는 값을 가지고 오는 것처럼 개개별 문자열을 키/밸류로 인식하는 것이 아니라 전체 파일 내용을 하나의 문자열로 처리한다는 점이다.


디스크 볼륨으로 마운트하기

configMap의 정보를 pod로 전달하는 방법은 앞에 처럼 환경 변수를 사용하는 방법도 있지만, Pod의 디스크 볼륨으로 마운트 시키는 방법도 있다.

앞의 cm-file configMap을 /tmp/config/에 마운트 해보도록 하자.

아래와 같이 Deployment 스크립트를 작성한다.


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: cm-file-deployment-vol

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: cm-file-vol

 template:

   metadata:

     name: cm-file-vol-pod

     labels:

       app: cm-file-vol

   spec:

     containers:

     - name: cm-file-vol

       image: gcr.io/terrycho-sandbox/cm-file-volume:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       volumeMounts:

         - name: config-profile

           mountPath: /tmp/config

     volumes:

       - name: config-profile

         configMap:

           name: cm-file


configMap을 디스크 볼륨으로 마운트해서 사용하는 방법은 volumes 을 configMap으로 정의하면 된다. 위의 예제에서 처럼 volume을 정의할때, configMap으로 정의하고 configMap의 이름을 cm-file로 정의하여, cm-file configMap을 선택하였다. 이 볼륨을 volumeMounts를 이용해서 /tmp/config에 마운트 되도록 하였다.

이때 중요한점은 마운트 포인트에 마운트 될때, 파일명을 configMap내의 키가 파일명이 된다.


다음 테스트를 위해서 server.js 애플리케이션에 /tmp/config/profile.properties 파일을 읽어서 출력하도록 아래와 같이 코드를 작성한다.

var os = require('os');

var fs = require('fs');


var http = require('http');

var handleRequest = function(request, response) {

 fs.readFile('/tmp/config/profile.properties',function(err,data){

   response.writeHead(200);

   response.end("Read configMap from file  "+data+" \n");

 });


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 server.js를 도커로 패키징해서 배포한후, service를 붙여서 테스트해보면 다음과 같은 결과를 얻을 수 있다.



파일 내용이 출력되는 것을 확인할 수 있다

디스크에 마운트가 제대로 되었는지를 확인하기 위해서 Pod에 쉘로 로그인해서 확인해보자


그림과 같이 /tmp/config/profile.properties 파일이 생성된것을 확인할 수 있다.



쿠버네티스 #9

Health Check


조대협 (http://bcho.tistory.com)


쿠버네티스는 각 컨테이너의 상태를 주기적으로 체크해서, 문제가 있는 컨테이너를 자동으로 재시작하거나 또는 문제가 있는 컨테이너(Pod를) 서비스에서 제외할 수 있다. 이러한 기능을 헬쓰 체크라고 하는데, 크게 두가지 방법이 있다.

컨테이너가 살아 있는지 아닌지를 체크하는 방법이 Liveness probe 그리고 컨테이너가 서비스가 가능한 상태인지를 체크하는 방법을 Readiness probe 라고 한다.


Probe types

Liveness probe와 readiness probe는 컨테이너가 정상적인지 아닌지를 체크하는 방법으로 다음과 같이 3가지 방식을 제공한다.

  • Command probe

  • HTTP probe

  • TCP probe


그럼 각각에 대해서 살펴보자

Command probe

Command probe는 컨테이너의 상태 체크를 쉘 명령을 수행하고 나서, 그 결과를 가지고 컨테이너의 정상여부를 체크한다. 쉘 명령어를 수행한 후, 결과값이 0 이면 성공, 0이 아니면 실패로 간주한다.

아래는 command probe 를 사용한 예이다.

apiVersion: v1

kind: Pod

metadata:

 name: liveness-pod

spec:

 containers:

 - name: liveness

   image: gcr.io/terrycho-sandbox/liveness:v1

   imagePullPolicy: Always

   ports:

   - containerPort: 8080

   livenessProbe:

     exec:

       command:

       - cat

       - /tmp/healthy


Readiness probe 또는 liveness probe 부분에 exec: 으로 정의하고, command: 아래에 실행하고자 하는 쉘 명령어에 대한 인자를 기술한다.

이 쉘명령이 성공적으로 실행되서 0을 리턴하면, probe를 정상으로 판단한다.


HTTP probe

가장 많이 사용하는 probe 방식으로 HTTP GET을 이용하여, 컨테이너의 상태를 체크한다.

지정된 URL로 HTTP GET 요청을 보내서 리턴되는 HTTP 응답 코드가 200~300 사이면 probe를 정상으로 판단하고, 그 이외의 값일 경우에는 비정상으로 판단한다.

아래는 HTTP probe를 이용한 readiness probe를 정의한 예제이다.


metadata:

 name: readiness-rc

spec:

 replicas: 2

 selector:

   app: readiness

 template:

   metadata:

     name: readiness-pod

     labels:

       app: readiness

   spec:

     containers:

     - name: readiness

       image: gcr.io/terrycho-sandbox/readiness:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       readinessProbe:

         httpGet:

           path: /readiness

           port: 8080


liveness 또는 readinessProbe  항목 아래에 httpGet이라는 이름으로 정의하고, path에  HTTP GET을 보낼 URL을 그리고, port에는 HTTP GET을 보낼 port 를 지정한다.

일반적인 HTTP 서비스를 보내는 port와 HTTP readiness를 서비스 하는 포트를 분리할 수 있는데, HTTP GET 포트가 외부에 노출될 경우에는 DDos 공격등을 받을 수 있는 가능성이 있기 때문에, 필요하다면 서비스 포트와 probe 포트를 분리해서 구성할 수 있다.

TCP probe

마지막으로 TCP probe는 지정된 포트에 TCP 연결을 시도하여, 연결이 성공하면, 컨테이너가 정상인것으로 판단한다. 다음은 tcp probe를 적용한 liveness probe의 예제이다.


apiVersion: v1

kind: Pod

metadata:

 name: liveness-pod-tcp

spec:

 containers:

 - name: liveness

   image: gcr.io/terrycho-sandbox/liveness:v1

   imagePullPolicy: Always

   ports:

   - containerPort: 8080

   livenessProbe:

     tcpSocket:

       port: 8080

     initialDelaySeconds: 5

     periodSeconds: 5


Tcp probe는 간단하게, livenessProbe나 readinessProbe 아래 tcpSocket이라는 항목으로 정의하고 그 아래 port 항목에 tcp port를 지정하면 된다. 이 포트로 TCP 연결을 시도하고, 이 연결이 성공하면 컨테이너가 정상인것으로 실패하면 비정상으로 판단한다.


그러면 실제로 Liveness Probe와 Readiness Probe를 예제를 통해서 조금 더 상세하게 살펴보도록 하자.

Liveness Probe

Liveness probe는 컨테이너의 상태를 주기적으로 체크해서, 응답이 없으면 컨테이너를 자동으로 재시작해준다. 컨테이너가 정상적으로 기동중인지를 체크하는 기능이다.


Liveness probe는 Pod의 상태를 체크하다가, Pod의 상태가 비정상인 경우 kubelet을 통해서 재 시작한다.



이해를 돕기 위해서 예제를 하나 살펴보자.

node.js 애플리케이션을 기동하는 컨테이너를 만들어서 배포 하도록 한다. node.js는 앞에서 사용한 애플리케이션과 동일한 server.js  애플리케이션을 사용한다.

헬쓰 체크를 하는 방법은 여러가지가 있지만, 컨터이너에서 “cat /tmp/healthy” 명령어를 실행해서 성공하면 컨테이너를 정상으로 판단하고 실패하면 비정상으로 판단하도록 하겠다.

이를 위해서 컨테이너 생성시에 /tmp/ 디렉토리에 healthy 파일을 복사해 놓도록 한다.

heatlhy 파일의 내용은 아래와 같다.

i'm healthy


파일만 존재하면 되기 때문에 내용은 크게 중요하지 않다.

다음 Dockerfile을 다음과 같이 작성하자

FROM node:carbon

EXPOSE 8080

COPY server.js .

COPY healthy /tmp/

CMD node server.js > log.out


앞서 작성한 healthy 파일을 /tmp 디렉토리에 복사하였다.


이제 pod를 정의해보자 다음은 liveness-pod.yaml 파일이다.

여기에 cat /tmp/healthy 명령을 이용하여 컨테이너의 상태를 체크하도록 하였다.


apiVersion: v1

kind: Pod

metadata:

 name: liveness-pod

spec:

 containers:

 - name: liveness

   image: gcr.io/terrycho-sandbox/liveness:v1

   imagePullPolicy: Always

   ports:

   - containerPort: 8080

   livenessProbe:

     exec:

       command:

       - cat

       - /tmp/healthy

     initialDelaySeconds: 5

     periodSeconds: 5



컨테이너가 기동 된후 initialDelaySecond에 설정된 값 만큼 대기를 했다가 periodSecond 에 정해진 주기 단위로 컨테이너의 헬스 체크를 한다. initialDelaySecond를 주는 이유는, 컨테이너가 기동 되면서 애플리케이션이 기동될텐데, 설정 정보나 각종 초기화 작업이 필요하기 때문에, 컨테이너가 기동되자 마자 헬스 체크를 하게 되면, 서비스할 준비가 되지 않았기 때문에 헬스 체크에 실패할 수 있기 때문에, 준비 기간을 주는 것이다. 준비 시간이 끝나면, periodSecond에 정의된 주기에 따라 헬스 체크를 진행하게 된다.


헬스 체크 방식은 여러가지가 있는데, HTTP 를 이용하는 방식 TCP를 이용하는 방식 쉘 명령어를 이용하는 방식 3가지가 있다. 이 예제에서는 쉘 명령을 이용하는 방식을 사용하였다.

“cat /tmp/healty” 라는 명령을 사용하였고, 이 명령 실행이 성공하면 이 컨테이너를 정상이라고 판단하고, 만약 이 명령이 실패하면 컨테이너가 비정상이라고 판단한다.


앞서 작성한 Dockerfile을 이용해서 컨테이너를 생성한 후, 이 컨테이너를 리파지토리에 등록하자.

다음 앞에서 작성한 liveness-prod.yaml 파일을 이용하여 Pod를 생성해보자.




다음, 테스트를 위해서 /tmp/healthy 파일을 인위적으로 삭제해보자



파일을 삭제하면 위의 그림과 같이 cat /tmp/healthy 는 exit code 1 을 내면서 에러로 종료된다.

수초 후에, 해당 컨테이너가 재 시작되는데, kubectl get pod 명령을 이용하여 pod의 상태를 확인해보면 다음과 같다.


liveness-pod는 정상적으로 실행되고는 있지만, RESTARTS 항목을 보면 한번 리스타트가 된것을 볼 수 있다.

상세 정보를 보기 위해서 kubectl describe pod liveness-pod 명령을 실행해보면 다음과 같다.


위의 그림과 같이 중간에, “Killing container with id docker://liveness:Container failed liveness probe.. Container will be killed and recreated.” 메세지가 나오면서 liveness probe 체크가 실패하고, 컨테이너를 재 시작하는 것을 확인할 수 있다.

Readiness probe

컨테이너의 상태 체크중에 liveness의 경우에는 컨테이너가 비정상적으로 작동이 불가능한 경우도 있지만, Configuration을 로딩하거나, 많은 데이타를 로딩하거나, 외부 서비스를 호출하는 경우에는 일시적으로 서비스가 불가능한 상태가 될 수 있다. 이런 경우에는 컨테이너를 재시작한다 하더라도 정상적으로 서비스가 불가능할 수 있다. 이런 경우에는 컨테이너를 일시적으로 서비스가 불가능한 상태로 마킹해주면 되는데, 이러한 기능은 쿠버네티스의 서비스와 함께 사용하면 유용하게 이용할 수 있다.


예를 들어 쿠버네티스 서비스에서 아래와 같이 3개의 Pod를 로드밸런싱으로 서비스를 하고 있을때, Readiness probe 를 이용해서 서비스 가능 여부를 주기적으로 체크한다고 하자. 이 경우 하나의 Pod가 서비스가 불가능한 상태가 되었을때, 즉 Readiness Probe에 대해서 응답이 없거나 실패 응답을 보냈을때는 해당 Pod를 사용 불가능한 상태로 체크하고 서비스 목록에서 제외한다.



Liveness probe와 차이점은 Liveness probe는 컨테이너의 상태가 비정상이라고 판단하면, 해당 Pod를 재시작하는데 반해, Readiness probe는 컨테이너가 비정상일 경우에는 해당 Pod를 사용할 수 없음으로 표시하고, 서비스등에서 제외한다.


간단한 예제를 보자. 아래 server.js 코드는 /readiness 를 호출하면 파일 시스템내에  /tmp/healthy라는 파일이 있으면 HTTP 응답코드 200 정상을 리턴하고, 파일이 없으면 HTTP 응답코드 500 비정상을 리턴하는 코드이다.


server.js 파일

var os = require('os');

var fs = require('fs');


var http = require('http');

var handleRequest = function(request, response) {

 if(request.url == '/readiness') {

   if(fs.existsSync('/tmp/healthy')){

     // healthy

     response.writeHead(200);

     response.end("Im ready I'm  "+os.hostname() +" \n");

   }else{

     response.writeHead(500);

     response.end("Im not ready I'm  "+os.hostname() +" \n");

   }

 }else{

   response.writeHead(200);

   response.end("Hello World! I'm  "+os.hostname() +" \n");

 }


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


다음은 replication controller를 다음과 같이 정의한다.


readiness-rc.yaml 파일

apiVersion: v1

kind: ReplicationController

metadata:

 name: readiness-rc

spec:

 replicas: 2

 selector:

   app: readiness

 template:

   metadata:

     name: readiness-pod

     labels:

       app: readiness

   spec:

     containers:

     - name: readiness

       image: gcr.io/terrycho-sandbox/readiness:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       readinessProbe:

         httpGet:

           path: /readiness

           port: 8080

         initialDelaySeconds: 5

         periodSeconds: 5


앞의 Liveness probe와 다르게,  이번에는 Command probe가 아니라 HTTP 로 체크를 하는 HTTP Probe를 적용해보자 HTTP Probe는 , HTTP GET으로 /readiness URL로 5초마다 호출을 해서 HTTP 응답 200을 받으면 해당 컨테이너를 정상으로 판단하고 200~300 범위를 벗어난 응답 코드를 받으면 비정상으로 판단하여, 서비스 불가능한 상태로 인식해서 쿠버네티스 서비스에서 제외한다.


Replication Controller 로 의해서 Pod들을 생성하였으면 이에 대한 로드 밸런서 역할을할 서비스를 배포한다.


readiness-svc.yaml 파일

apiVersion: v1

kind: Service

metadata:

 name: readiness-svc

spec:

 selector:

   app: readiness

 ports:

   - name: http

     port: 80

     protocol: TCP

     targetPort: 8080

 type: LoadBalancer


서비스가 기동되고 Pod들이 정상적으로 기동된 상태에서 kubectl get pod 명령을 이용해서 현재 Pod 리스트를 출력해보면 다음과 같다.


2개의 Pod가 기동중인것을 확인할 수 있다.


서비스가 기동중인 상태에서 인위적으로 하나의 컨테이너를 서비스 불가 상태로 만들어보자.

앞에서만든 server.js가, 컨테이너 내의 /tmp/healthy 파일의 존재 여부를 체크하기 때문에,  /tmp/healthy 파일을 삭제하면 된다.

아래와 같이

%kubectl exec  -it readiness-rc-5v64f -- rm /tmp/healthy

명령을 이용해서 readiness-rc-5v64f pod의 /tmp/healthy 파일을 삭제해보자

다음 kubectl describe pod readiness-rc-5v64f 명령을 이용해서 해당 Pod의 상태를 확인할 수 있는데, 아래 그림과 같이 HTTP probe가 500 상태 코드를 리턴받고 Readniess probe가 실패한것을 확인할 수 있다.


이 상태에서 kubectl get pod로 pod 목록을 확인해보면 다음과 같다.




Readiness probe가 실패한 readiness-rc-5v64f 의 상태가 Running이기는 하지만 Ready 상태가 0/1인것으로 해당 컨테이너가 준비 상태가 아님을 확인할 수 있다.

이 Pod들에 연결된 서비스를 여러번 호출해보면 다음과 같은 결과를 얻을 수 있다.



모든 호출이 readiness-rc-5v64f 로 가지않고, 하나 남은 정상적인 Pod인 readiness-rc-89d89 로만 가는 것을 확인할 수 있다.  


다음글에서는 Deployment에 대해서 알아보도록 하겠다.



쿠버네티스 #6

Replication Controller를 이용하여 서비스 배포하기

조대협 (http://bcho.tistory.com)


1. 도커 파일 만들기

node.js로 간단한 웹서버를 만들어서 도커로 패키징 해보자.

실습을 진행하기 위해서 로컬 환경에 도커와, node.js 가 설치되어 있어야 한다. 이 두 부분은 생략하도록 한다.

여기서 사용한 실습 환경은 node.js carbon 버전 (8.11.3), 도커 맥용 18.05.0-ce, build f150324 을 사용하였다.

node.js 애플리케이션 준비하기

node.js로 간단한 웹 애플리케이션을 제작해보자 server.js라는 이름으로 아래 코드를 작성한다.

var os = require('os');

 

var http = require('http');

var handleRequest = function(request, response) {

 response.writeHead(200);

 response.end("Hello World! I'm "+os.hostname());

 

 //log

 console.log("["+

               Date(Date.now()).toLocaleString()+

               "] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 코드는 8080 포트로 웹서버를 띄워서 접속하면 “Hello World!” 문자열과 함께, 서버의 호스트명을 출력해준다. 그리고 stdout에 로그로, 시간과 서버의 호스트명을 출력해준다.

코드 작성이 끝났으면, 서버를 실행해보자

%node server.js


다음 브라우저로 접속하면 다음과 같은 결과를 얻을 수 있다.


그리고 콘솔화면에는 아래와 같이 시간과 호스트명이 로그로 함께 출력된다.

도커로 패키징하기

그러면 이 node.js 애플리케이션을 도커 컨테이너로 패키징 해보자

Dockerfile 이라는 파일을 만들고 아래 코드를 작성한다.

FROM node:carbon

EXPOSE 8080

COPY server.js .

CMD node server.js > log.out


이 코드는 node.js carborn (8.11.3) 컨테이너 이미지를 베이스로 한후에,  앞서 작성한 server.js 코드를 복사한후에, node server.js > log.out 명령어를 실행하도록 하는 컨테이너를 만드는 설정파일이다.

설정 파일이 준비되었으면,  도커 컨테이너 파일을 만들어보자


% docker build -t gcr.io/terrycho-sandbox/hello-node:v1 .


docker build  명령은 컨테이너를 만드는 명령이고, -t는 빌드될 이미지에 대한 태그를 정하는 명령이다.

빌드된 컨테이너 이미지는 gcr.io/terrycho-sandbox/hello-node로  태깅되는데, 이는 향후에 구글 클라우드 컨테이너 레지스트리에 올리기 위해서 태그 명을 구글 클라우드 컨테이너 레지스트리의 포맷을 따른 것이다. (참고 https://cloud.google.com/container-registry/docs/pushing-and-pulling)

포맷은 [HOST_NAME]/[GOOGLE PROJECT-ID]/[IMAGE NAME]


gcr.io/terrycho-sandbox는 도커 이미지가 저장될 리파지토리의 경로를 위의 규칙에 따라 정의한 것인데,

  • gcr.io는 구글 클라우드 컨테이너 리파지토리 US 리전을 지칭하며,

  • terrycho-sandbox는 본인의 구글 프로젝트 ID를 나타낸다.

  • 이미지명을 hello-node 로 지정하였다.

  • 마지막으로 콜론(:) 으로 구별되어 정의한 부분은 태그 부분으로, 여기서는 “v1”으로 태깅을 하였다.


이미지는 위의 이름으로 지정하여 생성되어 로컬에 저장된다.




빌드를 실행하면 위와 같이 node:carbon 이미지를 읽어와서 필요한 server.js 파일을 복사하고 컨테이너 이미지를 생성한다.

컨테이너 이미지가 생성되었으면 로컬 환경에서 이미지를 기동 시켜보자


%docker run -d -p 8080:8080 gcr.io/terrycho-sandbox/hello-node:v1


명령어로 컨테이너를 실행할 수 있다.

  • -d 옵션은 컨테이너를 실행하되, 백그라운드 모드로 실행하도록 하였다.

  • -p는 포트 맵핑으로 뒤의 포트가 도커 컨테이너에서 돌고 있는 포트이고, 앞의 포트가 이를 밖으로 노출 시키는 포트이다 예를 들어 -p 9090:8080 이면 컨테이너의 8080포트를 9090으로 노출 시켜서 서비스 한다는 뜻이다. 여기서는 컨테이너 포트와 서비스로 노출 되는 포트를 동일하게 8080으로 사용하였다.


컨테이너를 실행한 후에, docker ps 명령어를 이용하여 확인해보면 아래와 같이 hello-node:v1 이미지로 컨테이너가 기동중인것을 확인할 수 있다.



다음 브라우져를 통해서 접속을 확인하기 위해서 localhost:8080으로 접속해보면 아래와 같이 Hello World 와 호스트명이 출력되는 것을 확인할 수 있다.


로그가 제대로 출력되는지 확인하기 위해서 컨테이너 이미지에 쉘로 접속해보자

접속하는 방법은


% docker exec -i -t [컨테이너 ID] /bin/bash

를 실행하면 된다. 컨테이너 ID 는 앞의 docker ps 명령을 이용하여 기동중인 컨테이너 명을 보면 처음 부분이 컨테이너 ID이다.

hostname 명령을 실행하여 호스트명을 확인해보면 위에 웹 브라우져에서 출력된 41a293ba79a7과 동일한것을 확인할 수 있다. 디렉토리에는 server.js 파일이 복사되어 있고, log.out 파일이 생성된것을 볼 수 있다.  

cat log.out을 이용해서 보면, 시간과 호스트명이 로그로 출력된것을 확인할 수 있다.



2. 쿠버네티스 클러스터 준비

구글 클라우드 계정 준비하기

구글 클라우드 계정 생성은 http://bcho.tistory.com/1107 문서를 참고하기 바란다.

쿠버네티스 클러스터 생성하기

쿠버네티스 클러스터를 생성해보자, 클러스터 생성은 구글 클라우드 콘솔의 Kubernetes Engine > Clusters 메뉴에서 Create 를 선택하면 클러스터 생성이 가능하다.



클러스터 이름을 넣어야 하는데, 여기서는 terry-gke-10 을 선택하였다. 구글 클라우드에서 쿠버네티스 클러스터는 싱글 존에만 사용가능한 Zonal 클러스터와 여러존에 노드를 분산 배포하는 Regional 클러스터 두 가지가 있는데, 여기서는 하나의 존만 사용하는 Zonal 클러스터를 설정한다. (Regional은 차후에 다루도록 하겠다.)

다음 클러스터를 배포한 존을 선택하는데, asia-northeast1-c (일본)을 선택하였다.

Cluster Version은 쿠버네티스 버전인데, 1.10.2 버전을 선택한다.

그리고 Machine type은 쿠버네티스 클러스터의 노드 머신 타입인데, 간단한 테스트 환경이기 때문에,  2 CPU에 7.5 메모리를 지정하였다.

다음으로 Node Image는 노드에 사용할 OS 이미지를 선택하는데, Container Optimized OS를 선택한다. 이 이미지는 컨테이너(도커)를 운영하기 위해 최적화된 이미지이다.

다음으로는 노드의 수를 Size에서 선택한다. 여기서는 3개의 노드를 운용하도록 설정하였다.


아래 부분에 보면  Automatic node upgrades 라는 기능이 있다.


구글 클라우드의 재미있는 기능중 하나인데, 쿠버네티스 버전이 올라가면 자동으로 버전을 업그레이드 해주는 기능으로, 이 업그레이드는 무정지로 진행 된다.


gcloud 와 kubectl 설치하기

클러스터 설정이 끝났으면 gloud (Google Cloud SDK 이하 gcloud)를 인스톨한다.

gcloud 명령어의 인스톨 방법은 OS마다 다른데, https://cloud.google.com/sdk/docs/quickstarts 문서를 참고하면 된다.

별다른 어려운 작업은 없고, 설치 파일을 다운 받아서 압축을 푼후에, 인스톨 스크립트를 실행하면 된다.


kubectl은 쿠버네티스의 CLI (Command Line Interface)로, gcloud를 인스톨한후에,

%gcloud components install kubectl

명령을 이용하면 인스톨할 수 있다.

쿠버네티스 클러스터 인증 정보 얻기

gcloud와 kubectl 명령을 설치하였으면, 이 명령어들을 사용할때 마다 쿠버네티스에 대한 인증이 필요한데, 인증에 필요한 인증 정보는 아래 명령어를 이용하면, 자동으로 사용이 된다.

gcloud container clusters get-credentials CLUSTER_NAME

여기서는 클러스터명이 terry-gke10이기 때문에,

%gcloud container clusters get-credentials terry-gke-10

을 실행한다.


명령어 설정이 끝났으면, gcloud 명령이 제대로 작동하는지를 확인하기 위해서, 현재 구글 클라우드내에 생성된 클러스터 목록을 읽어오는 gcloud container clusters list 명령어를 실행해보자



위와 같이 terry-gke-10 이름으로 asia-northeast1-c 존에 쿠버네티스 1.10.2-gke.3 버전으로 클러스터가 생성이 된것을 볼 수 있고, 노드는 총 3개의 실행중인것을 확인할 수 있다.

3. 쿠버네티스에 배포하기

이제 구글 클라우드에 쿠버네티스 클러스터를 생성하였고, 사용을 하기 위한 준비가 되었다.

앞에서 만든 도커 이미지를 패키징 하여, 이 쿠버네티스 클러스터에 배포해보도록 하자.

여기서는 도커 이미지를 구글 클라우드내의 도커 컨테이너 레지스트리에 등록한 후, 이 이미지를 이용하여 ReplicationController를 통해 총 3개의 Pod를 구성하고 서비스를 만들어서 이 Pod들을 외부 IP를 이용하여 서비스를 제공할 것이다.

도커 컨테이너 이미지 등록하기

먼저 앞에서 만든 도커 이미지를 구글 클라우드 컨테이너 레지스트리(Google Container Registry 이하 GCR) 에 등록해보자.

GCR은 구글 클라우드에서 제공하는 컨테이너 이미지 저장 서비스로, 저장 뿐만 아니라, CI/CD 도구와 연동하여, 자동으로 컨테이너 이미지를 빌드하는 기능, 그리고 등록되는 컨테이너 이미지에 대해서 보안적인 문제가 있는지 보안 결함을 스캔해주는 기능과 같은 다양한 기능을 제공한다.


컨테이너 이미지를 로컬환경에서 도커 컨테이너 저장소에 저장하려면 docker push라는 명령을 사용하는데, 여기서는 GCR을 컨테이너 이미지 저장소로 사용할 것이기 때문에, GCR에 대한 인증이 필요하다.

인증은 한번만 해놓으면 되는데

%gcloud auth configure-docker

명령을 이용하면, 인증 정보가 로컬 환경에 자동으로 저장된다.



인증이 완료되었으면, docker push 명령을 이용하여 이미지를 GCR에 저장한다.

%docker push gcr.io/terrycho-sandbox/hello-node:v1


명령어를 실행하면, GCR에 hello-node 이미지가 v1 태그로 저장된다.


이미지가 GCR에 잘 저장되었는지를 확인하기 위해서 구글 클라우드 콘솔에 Container Registry (GCR)메뉴에서 Images라는 메뉴를 들어가보자




아래와 같이 hello-node 폴더에 v1이라는 태그로 이미지가 등록된것을 확인할 수 있다.

ReplicationController 등록

컨테이너 이미지가 등록되었으면 이 이미지를 이용해서 Pod를 생성해보자,  Pod 생성은 Replication Controller (이하 rc)를 생성하여, rc가 Pod 생성 및 컨트롤을 하도록 한다.


다음은 rc 생성을 위한 hello-node-rc.yaml 파일이다.


apiVersion: v1

kind: ReplicationController

metadata:

 name: hello-node-rc

spec:

 replicas: 3

 selector:

   app: hello-node

 template:

   metadata:

     name: hello-node-pod

     labels:

       app: hello-node

   spec:

     containers:

     - name: hello-node

       image: gcr.io/terrycho-sandbox/hello-node:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080


hello-node-rc 라는 이름으로 rc를 생성하는데, replica 를 3으로 하여, 총 3개의 pod를 생성하도록 한다.

템플릿 부분에 컨테이너 스팩에 컨테이너 이름은 hello-node로 하고 이미지는 앞서 업로드한 gcr.io/terrycho-sandbox/hello-node:v1 를 이용해서 컨테이너를 만들도록 한다. 컨테이너의 포트는 8080을 오픈한다. 템플릿 부분에서 app 이라는 이름의 라벨을 생성하고 그 값을 hello-node로 지정하였다. 이 라벨은 나중에 서비스 (service)에 의해 외부로 서비스될 pod들을 선택하는데 사용 된다.


여기서 imagePullPolicy:Always  라고 설정한 부분이 있는데, 이는 Pod를 만들때 마다 매번 컨테이너 이미지를 확인해서 새 이미지를 사용하도록 하는 설정이다.  컨테이너 이미지는 한번 다운로드가 되면 노드(Node) 에 저장이 되어 있게 되고, 사용이 되지 않는 이미지 중에 오래된 이미지는 Kublet이 가비지 컬렉션 (Garbage collection) 정책에 따라 이미지를 삭제하게 되는데, 문제는 노드에 이미 다운되어 있는 이미지가 있을 경우 컨테이너 생성시 노드에 이미 다운로드 되어 있는 이미지를 사용한다. 컨테이너 리파지토리에 같은 이름으로 이미지를 업데이트 하거나 심지어 그 이미지를 삭제하더라도 노드에 이미지가 이미 다운로드 되어 있으면 다운로드된 이미지를 사용하기 때문에, 업데이트 부분이 반영이 안된다.

이를 방지하기 위해서 imagePullPolicy:Always로 해주면 컨테이너 생성시마다 이미지 리파지토리를 검사해서 새 이미지를 가지고 오기 때문에, 업데이트된 내용을 제대로 반영할 수 있다.


%kubectl create -f hello-node-rc.yaml


명령어를 실행해서 rc와 pod를 생성한다.




위의 그림과 같이 3개의 Pod가 생성된것을 확인할 수 있는데, Pod가 제대로 생성되었는지 확인하기 위해서 hello-node-rc-rsdzl pod에서 hello-node-rc-2phgg pod의 node.js 웹서버에 접속을 해볼 것이다.

아직 서비스를 붙이지 않았기 때문에, 이 pod들은 외부 ip를 이용해서 서비스가 불가능하기 때문에, 쿠버네티스 클러스터 내부의 pod를 이용하여 내부 ip (private ip)간에 통신을 해보기 위해서 pod에서 pod를 호출 하는 것이다. kubectl describe pod  [pod 명] 명령을 이용하면, 해당 pod의 정보를 볼 수 있다. hello-node-rc-2hpgg pod의 cluster ip (내부 ip)를 확인해보면 10.20.1.27 인것을 확인할 수 있다.


kubectl exec 명령을 이용하면 쉘 명령어를 실행할 수 있는데, 다음과 같이 hello-node-rc-rsdzl pod에서 첫번째 pod인 hello-node-rc-2phgg의 ip인 10.20.1.27의 8080 포트로 curl 을 이용해 HTTP 요청을 보내보면 다음과 같이 정상적으로 응답이 오는 것을 볼 수 있다.


Service 등록

rc와 pod 생성이 끝났으면 이제 서비스를 생성해서 pod들을 외부 ip로 서비스 해보자

다음은 서비스를 정의한 hello-node-svc.yaml 파일이다.


hello-node-svc.yaml

apiVersion: v1

kind: Service

metadata:

 name: hello-node-svc

spec:

 selector:

   app: hello-node

 ports:

   - port: 80

     protocol: TCP

     targetPort: 8080

 type: LoadBalancer


Selector 부분에 app:hello-node 로 지정하여, pod들 중에 라벨의 키가 app이고 값이 hello-node인 pod 들만 서비스에 연결하도록 지정하였다. 다음 서비스의 포트는 80으로 지정하였고, pod의 port는 8080으로 지정하였다.


서비스가 배포되면 위와 같은 구조가 된다.

%kubectl create -f hello-node-svc.yaml

명령을 이용하면 서비스가 생성이 된다.


다음 생성된 서비스의 외부 ip를 얻기 위해서 kubectl get svc 명령을 실행해보자

아래 그림과 같이 35.200.40.161 IP가 할당된것을 확인할 수 있다.


이 IP로 접속을 해보면 아래와 같이 정상적으로 응답이 오는 것을 확인할 수 있다.


RC 테스트

rc는 pod의 상태를 체크하다가 문제가 있으면 다시, pod를 기동해주는 기능을 한다.

이를 테스트하기 위해서 강제적으로 모든 pod를 제거해보자. kubectl delete pod --all을 이용하면 모든 pod를 제거할 수 있는데, 아래 그림을 보면, 모든 pod를 제거했더니 3개의 pod가 제거되고 새롭게 3개의 pod가 기동되는 것을 확인할 수 있다.



운영중에 탄력적으로 pod의 개수를 조정할 수 있는데, kubectl scale 명령을 이용하면 된다.

kubectl scale --replicas=[pod의 수] rc/[rc 명] 식으로 사용하면 된다. 아래는 pod의 수를 4개로 재 조정한 내용이다.



자원 정리

테스트가 끝났으면 서비스, rc,pod를 삭제해보자.

  • 서비스 삭제는 kubectl delete svc --all 명령어를 이용한다.

  • rc 삭제는 kubectl delete rc --all

  • pod 삭제는 kubectl delete pod --all

을 사용한다.

삭제시 주의할점은 pod를 삭제하기 전에 먼저 rc를 삭제해야 한다. 아니면, pod가 삭제된 후 rc에 의해서 다시 새로운 pod가 생성될 수 있다.


쿠버네티스 #4

아키텍쳐


조대협 (http://bcho.tistory.com)


쿠버네티스에 대한 개념 이해가 끝났으면, 이제 쿠버네티스가 실제로 어떤 구조로 구현이 되어 있는지 아키텍쳐를 살펴보도록 하자. 아키텍쳐를 이용하면 동작 원리를 이해할 수 있기 때문에, 쿠버네티스의 사용법을 이해하는데 도움이 된다.




<그림. 쿠버네티스 아키텍쳐>

출처 https://kubernetes.io/docs/concepts/architecture/

마스터와 노드

쿠버네티스는 크게 마스터(Master)와 노드(Node) 두 개의 컴포넌트로 분리된다.

마스터는 쿠버네티스의 설정 환경을 저장하고 전체 클러스터를 관리하는 역할을 맏고있고, 노드는 파드나 컨테이너 처럼 쿠버네티스 위에서 동작하는 워크로드를 호스팅하는 역할을 한다.

마스터

쿠버네티스 클러스터 전체를 컨트럴 하는 시스템으로, 크게 다음과 API 서버, 스케쥴러, 컨트롤러 매니져, etcd 로 구성되어 있다.


API 서버

쿠버네티스는 모든 명령과 통신을 API를 통해서 하는데, 그 중심이 되는 서버가 API서버이다.

쿠버네티스의 모든 기능들을 REST API로 제공하고 그에 대한 명령을 처리한다.

Etcd

API 서버가 명령을 주고 받는 서버라면, 쿠버네티스 클러스터의 데이타 베이스 역할이 되는 서버로 설정값이나 클러스터의 상태를 저장하는 서버이다.  etcd라는 분산형 키/밸류 스토어 오픈소스 ()https://github.com/coreos/etcd) 로 쿠버네티스 클러스터의 상태나 설정 정보를 저장한다.

스케쥴러

스케쥴러는 Pod,서비스등 각 리소스들을 적절한 노드에 할당하는 역할을 한다.

컨트롤러 매니져

컨트롤러 매니저는 컨트롤러(Replica controller, Service controller, Volume Controller, Node controller 등)를 생성하고 이를 각 노드에 배포하며 이를 관리하는 역할을 한다.


DNS

그림에는 빠져있는데, 쿠버네티스는 리소스의 엔드포인트(Endpoint)를 DNS로 맵핑하고 관리한다. Pod나 서비스등은 IP를 배정받는데, 동적으로 생성되는 리소스이기 때문에 그 IP 주소가 그때마다 변경이 되기 때문에, 그 리소스에 대한 위치 정보가 필요한데, 이러한 패턴을 Service discovery 패턴이라고 하는데, 쿠버네티스에서는 이를 내부 DNS서버를 두는 방식으로 해결하였다.

새로운 리소스가 생기면, 그 리소스에 대한 IP와 DNS 이름을 등록하여, DNS 이름을 기반으로 리소스에 접근할 수 있도록 한다.

노드

노드는 마스터에 의해 명령을 받고 실제 워크로드를 생성하여 서비스 하는 컴포넌트이다.

노드에는 Kubelet, Kube-proxy,cAdvisor 그리고 컨테이너 런타임이 배포된다.

Kubelet

노드에 배포되는 에이전트로, 마스터의 API서버와 통신을 하면서, 노드가 수행해야 할 명령을 받아서 수행하고, 반대로 노드의 상태등을 마스터로 전달하는 역할을 한다.

Kube-proxy

노드로 들어오거는 네트워크 트래픽을 적절한 컨테이너로 라우팅하고, 로드밸런싱등 노드로 들어오고 나가는 네트워크 트래픽을 프록시하고, 노드와 마스터간의 네트워크 통신을 관리한다.

Container runtime (컨테이너 런타임)

Pod를 통해서 배포된 컨테이너를 실행하는 컨테이너 런타임이다. 컨테이너 런타임은 보통 도커 컨테이너를 생각하기 쉬운데, 도커 이외에도 rkt (보안이 강화된 컨테이너), Hyper container 등 다양한 런타임이 있다.

cAdvisor

cAdvisor는 각 노드에서 기동되는 모니터링 에이전트로, 노드내에서 가동되는 컨테이너들의 상태와 성능등의 정보를 수집하여, 마스터 서버의 API 서버로 전달한다.

이 데이타들은 주로 모니터링을 위해서 사용된다.


전체적인 구조 자체는 복잡하지 않다. 모듈화가 되어 있고, 기능 확장을 위해서 플러그인을 설치할 수 있는 구조로 되어 있다. 예를 들어 나중에 설명하겠지만 모니터링 정보를 저장하는 데이타베이스로는 많이 사용되는 Influx 데이타 베이스 또는 Prometheus 와 같은 데이타 베이스를 선택해서 설치할 수 있고 또는 커스텀 인터페이스 개발을 통해서, 알맞은 저장소를 개발하여 연결이 가능하다.






쿠버네티스 #3

개념이해 (2/2) : 고급 컨트롤러


조대협 (http://bcho.tistory.com)



고급 컨트롤러

RC,RS,Deployment는 웹서버와 같은 일반적인 워크로드에 대해 Pod를 관리하기 위한 컨트롤러이다. 실제 운영환경에서는 웹서버와 같은 일반적인 워크로드 이외에,  데이타베이스,배치 작업, 데몬 서버와 같이 다양한 형태의 워크로드 모델이 존재하는데 이를 지원하기 위해서 쿠버네티스는 다양한 컨트롤러를 제공함으로써, Pod의 운영을 다양한 시나리오에 맞게 지원하고 있다.

DaemonSet

DaemonSet (이하 DS) 은 Pod가 각각의 노드에서 하나씩만 돌게 하는 형태로 Pod를 관리하는 컨트롤러이다. 아래 그림을 보자


RC나 RS에 의해서 관리되는 Pod 는 여러 노드의 상황에 따라서 일반적으로 비균등적으로 배포가 되지만,  DS에 의해 관리되는 Pod는 모든 노드에 균등하게 하나씩만 배포 된다.

이런 형태의 워크로드는 서버의 모니터링이나 로그 수집 용도로 많이 사용되는데, DS의 다른 특징중 하나는, 특정 Node들에만 Pod가 하나씩만 배포 되도록 설정이 가능하다.

앞에서 언급한 로그나 모니터링 시나리오에서 특정 장비에 대한 모니터링을 하고자 할 때 이런 시나리오가 유효하다. 예를 들어 특정 장비(노드)에만 Nvme SSD를 사용하거나 GPU를 사용할 경우에는 그 장비가 설치된 노드만을 모니터링하면 된다.



DS는 특정 노드에만 Pod를 배포할 수 있도록 , Pod의 “node selector”를 이용해서 라벨을 이용하여 특정 노드만을 선택할 수 있게 지원한다.

Job

워크로드 모델중에서 배치나 한번 실행되고 끝나는 형태의 작업이 있을 수 있다.

예를 들어 원타임으로 파일 변환 작업을 하거나, 또는 주기적으로 ETL 배치 작업을 하는 경우에는 웹서버 처럼 계속 Pod가 떠 있을 필요없이 작업을 할때만 Pod 를 띄우면 된다.

이러한 형태의 워크로드 모델을 지원하는 컨트롤러를 Job이라고 한다.


Job에 의해서 관리되는 Pod는 Job이 종료되면, Pod 를 같이 종료한다.

Job을 정의할때는 보통 아래와 같이 컨테이너 스펙 부분에 image 뿐만 아니라, 컨테이너에서 Job을 수행하기 위한 커맨드(command) 를 같이 입력한다.


apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 template:
   spec:
     containers:
     - name: pi
       image: perl
       command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
     restartPolicy: Never
 backoffLimit: 4



Job 컨트롤러에 의해서 실행된 Pod 는 이 command의 실행 결과에 따라서 Job이 실패한지 성공한지를 판단한다. (프로세스의 exit 코드로 판단한다.)  Job이 종료되었는데, 결과가 실패라면,이 Job을 재 실행할지 또는 그냥 끝낼지를 설정에 따라서 결정한다.


Job이 끝나기 전에 만약에 비정상적으로 종료된다면 어떻게 될것인가?

아래 그림을 보자 쿠버네티스 클러스터에서 특정 노드가 장애가 났다고 가정하자, RC/RS에 의해서 관리되고 있는 Pod 는 자동으로 다른 노드에서 다시 자동으로 생성되서 시작될것이고, 컨트롤러에 의해 관리되고 있지 않은 Pod 는 다시 다른 노드에서 기동되지 않고 사라질것이다.

그렇다면 Job 에 의해서 관리되는 Pod는 어떻게 될것인가?



두가지 방법으로 설정할 수 있는데, 장애시 다시 시작하게 하거나 또는 장애시 다시 시작하지 않게 할 수 있다.

다시 시작의 개념은 작업의 상태가 보장되는것이 아니라, 다시 처음부터 작업이 재 시작되는 것이기 때문에 resume이 아닌 restart의 개념임을 잘 알아야하고, 다시 시작 처음부터 작업을 시작하더라도 데이타가 겹치거나 문제가 없는 형태라야 한다.


배치 작업의 경우 작업을 한번만 실행할 수 도 있지만, 같은 작업을 연속해서 여러번 수행하는 경우가 있다. (데이타가 클 경우 범위를 나눠서 작업하는 경우) 이런 경우를 위해서 Job 컨트롤러는 같은 Pod를 순차적으로, 여러번 실행할 수 있도록 설정이 가능하다. Job 설정에서 completion에 횟수를 주면, 같은 작업을 completion 횟수만큼 순차적으로 반복한다.


만약에 여러 작업을 처리해야 하지만 순차성이 필요없고 병렬로 처리를 하고 싶다면, Job설정에서 parallelism 에 동시 실행할 수 있는 Pod의 수를 주면, 지정된 수 만큼 Pod를 실행하여 completion 횟수를 병렬로 처리한다. 아래 그림은 completion이 5, parallelism이 2일때, 하나의 노드에서 모든 Pod가 실행된다고 가정했을때, 실행 순서를 보여주는 그림이다.



Cron jobs

Job 컨트롤러에 의해서 실행되는 배치성 작업들에 대해서 고려할 점중 하나는 이런 배치성 작업을 메뉴얼로 실행하는 것이 아니라, 주기적으로 자동화해서 실행할 필요가 있는데, 이렇게 주기적으로 정해진 스케쥴에 따라 Job 컨트롤러에 의해 작업을 실행해주는 컨트롤러로 cron jobs 컨트롤러가 있다.

cron jobs 컨트롤러는 Unix cron 명령어처럼, 시간에 따른 실행조건을 정의해놓을 수 있고, 이에 따라 Job 컨트롤러를 실행하여, 정의된 Pod를 실행할 수 있게 한다.


아래는 cron jobs 컨트롤러의 예제인데, job 컨트롤러와 설정이 다르지 않다.


apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: hello
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
   spec:
     template:
       spec:
         containers:
         - name: hello
           image: busybox
           args:
           - /bin/sh
           - -c
           - date; echo Hello from the Kubernetes cluster
         restartPolicy: OnFailure



다른 점은 CronJob 스펙 설정 부분에 “schedule”이라는 항목이 있고 반복 조건을 unix cron과 같이 설정하면 된다.

StatefulSet

마지막으로, 1.9에 정식으로 릴리즈된 StatefulSet이 있다.

RS/RC나 다른 컨트롤러로는 데이타베이스와 같이 상태를 가지는 애플리케이션을 관리하기가 어렵다.

그래서 이렇게 데이타 베이스등과 같이 상태를 가지고 있는 Pod를 지원하기 위해서 StatefulSet 이라는 것이 새로 소개되었는데, 이를 이해하기 위해서는 쿠버네티스의 디스크 볼륨에 대한 이해가 필요하기 때문에 다음에 볼륨과 함께 다시 설명하도록 한다.


2회에 걸쳐서 쿠버네티스의 컴포넌트 개념들에 대해서 살펴보았고, 다음글에서는 쿠버네티스의 아키텍쳐에 대해서 간략하게 살펴보도록 하겠다.

Circuit breaker 패턴을 이용한 장애에 강한 MSA 서비스 구현하기 #2

Spring을 이용한 Circuit breaker 구현


조대협 (http://bcho.tistory.com)


앞의 글에서는 넷플릭스 Hystrix를 이용하여 Circuit break를 구현해보았다.

실제 개발에서 Hystix로 개발도 가능하지만, 보통 자바의 경우에는 Spring framework을 많이 사용하기 때문에 이번 글에서는 Spring framework을 이용한 Circuit breaker를 구현하는 방법을 알아보도록 한다.


다행이도 근래에 Spring은 넷플릭스의 MSA 패턴들을 구현화한 오픈 소스들을 Spring 오픈 소스 프레임웍안으로 활발하게 합치는 작업을 진행하고 있어서 어렵지 않게 구현이 가능하다.


구현하고자 하는 시나리오는 앞의 글에서 예제로 사용한 User service에서 Item Service를 호출하는 구조를 구현하고, User service에 circuit breaker를 붙여보도록 하겠다.

User service 코드 전체는 https://github.com/bwcho75/msa_pattern_sample/tree/master/user-spring-hystrix 에 그리고 Item Service 코드 전체는 https://github.com/bwcho75/msa_pattern_sample/tree/master/item-spring-hystrix 에 있다


Spring Circuit breaker 구현

User service pom.xml 정의

Hystrix circuit breaker를 사용하기 위해서는 pom.xml에 다음과 같이 hystrix 관련 라이브러리에 대한 의존성을 정의해줘야 한다.

<dependency>

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter-hystrix</artifactId>

<version>1.4.4.RELEASE</version>

</dependency>

<dependency>

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>

<version>1.4.4.RELEASE</version>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-actuator</artifactId>

<version>1.5.11.RELEASE</version>

</dependency>


spring-cloud-starter-hystrix 는 Hystrix circuit breaker를 이용한 의존성이고 hystrix-dashboard와 actuator 는 hystix dash 보드를 띄우기 위한 의존성이다.



User service 구현

UserApplication

Circuit breaker를 이용하기 위해서는 User Service의 메인 함수인 UserApplication 에 Annotation으로 선언을 해준다.



package com.terry.circuitbreak.User;




import org.springframework.boot.SpringApplication;


import org.springframework.boot.autoconfigure.SpringBootApplication;


import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;


import org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashboard;




@SpringBootApplication


@EnableCircuitBreaker


@EnableHystrixDashboard


public class UserApplication {





public static void main(String[] args) {


SpringApplication.run(UserApplication.class, args);


}


}


위의 코드와 같이 @EnableCircuitBreaker Annotation을 추가해주면 Circuit breaker를 사용할 수 있고, 그리고 추가적으로 Hystrix 대쉬 보드를 사용할것이기 때문에, @EnableHystrixDashboard Annotation을 추가한다.

Item Service를 호출

그러면 UserSerivce에서 ItemService를 호출하는 부분을 구현해보도록 하자. Hystrix와 마찬가지로 Spring Hystrix에서도 타 서비스 호출은 Command로 구현한다.  아래는 Item Service에서 Item 목록을 가지고 오는 GetItemCommand 코드이다.

GetItemCommand

Hystrix Command와 거의 유사하지만 Command를  상속 받아서 사용하지 않고, Circuit breaker를 적용한 메서드에 간단하게  @HystrixCommand Annotation만을 추가하면 된다.


아래 코드를 자세하게 보자. 주의할점은 Item Service 호출을 RestTemplate API를 통해서하는데, RestTemplate 객체인 resetTemplate는 Autowrire로 생성한다.



@Service


public class GetItemCommand {



@Autowired


RestTemplate restTemplate;



  @Bean


  public RestTemplate restTemplate() {


      return new RestTemplate();


  }





// GetItem command


@HystrixCommand(fallbackMethod = "getFallback")


public List<User> getItem(String name)  {


List<User> usersList = new ArrayList<User>();



List<Item> itemList = (List<Item>)restTemplate.exchange("http://localhost:8082/users/"+name+"/items"


,HttpMethod.GET,null


,new ParameterizedTypeReference<List<Item>>() {}).getBody();


usersList.add(new User(name,"myemail@mygoogle.com",itemList));



return usersList;


}



// fall back method


// it returns default result


@SuppressWarnings("unused")


public List<User> getFallback(String name){


List<User> usersList = new ArrayList<User>();


usersList.add(new User(name,"myemail@mygoogle.com"));



return usersList;


}


}


Item Service를 호출하는 코드는 getItem(String name) 메서드이다. 여기에 Circuit breaker를 적용하기 때문에, 메서드 앞에  @HystrixCommand(fallbackMethod = "getFallback") Annotation을 정의하였다. 그리고 Item Service 장애시 호출한 fallback 메서드는 getFallback 메서드로 지정하였다.

getItem안에서는 ItemService를 RestTemplate을 이용하여 호출하고 그 결과를 List<User> 타입으로 반환한다.


앞서 정의한 Fallback은 getFallback() 메서드로 Circuit breaker를 적용한 원래 함수와 입력 (String name)과 출력 (List<User>) 인자가 동일하다.

Circuit breaker 테스트


User service와 Item Service를 기동한 상태에서 user service를 호출하면 아래와 같이 itemList에 Item Service가 리턴한 내용이 같이 반환 되는 것을 확인할 수 있다.


terrycho-macbookpro:~ terrycho$ curl localhost:8081/users/terry

[  

  {  

     "name":"terry",

     "email":"myemail@mygoogle.com",

     "itemList":[  

        {

           "name":"computer",

           "quantity":1

        },

        {

           "name":"mouse",

           "quantity":2

        }

     ]

  }

]


Item Service를 내려놓고 테스트를 해보면 지연 응답 없이 User service로 부터 응답이 리턴되고, 앞서 정의한 fallback 메서드에 의해서 itemList에 아무 값이 없인할 수 있다.


terrycho-macbookpro:~ terrycho$ curl localhost:8081/users/terry

[  

  {  

     "name":"terry",

     "email":"myemail@mygoogle.com",

     "itemList":[]