블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 

'구글'에 해당되는 글 42

  1. 2017.08.21 Tensorflow Object Detection API를 이용한 물체 인식 #2-동물 사진을 학습 시켜보자 (1)
  2. 2017.08.16 Tensorflow Object Detection API를 이용한 물체 인식 #1-설치와 사용하기
  3. 2017.08.15 얼굴 인식 모델을 만들어보자 #6 - CloudML을 이용하여 예측하기
  4. 2017.06.22 얼굴 인식 모델을 만들어보자 #4 -클라우드를 이용하여 학습 시키기
  5. 2017.05.16 연예인 얼굴 인식 모델을 만들어보자 - #1. 학습 데이타 준비하기 (2)
  6. 2017.03.20 구글 클라우드의 서버리스 서비스 Cloud Functions (1)
  7. 2017.03.14 연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습 데이타 준비하기 (1)
  8. 2017.03.11 텐서플로우 - 파일에서 학습데이타를 읽어보자#2 (Reader와 Decoder) (1)
  9. 2017.03.10 구글의 IOT 솔루션
  10. 2017.01.09 딥러닝을 이용한 숫자 이미지 인식 #2/2-예측 (9)
  11. 2016.12.28 텐서플로우 #3-숫자를 인식하는 모델을 만들어보자 (4)
  12. 2016.12.26 텐서플로우 #2 - 행렬과 텐서플로우 (1)
  13. 2016.12.15 구글 빅쿼리 사용시 count(distinct)의 값이 정확하지 않은 문제
  14. 2016.12.09 텐서플로우-#1 자료형의 이해 (2)
  15. 2016.11.27 딥러닝의 개념과 유례 (2)
  16. 2016.11.26 Docker Kubernetes의 UI
  17. 2016.11.15 파이어베이스를 이용한 유니티 게임 로그 분석 (2)
  18. 2016.09.22 노트7의 소셜 반응을 분석해 보았다. - #3 제플린 노트북을 이용한 상세 데이타 분석
  19. 2016.09.20 노트7의 소셜 반응을 분석해 보았다. - #2 구현하기
  20. 2016.09.20 노트7의 소셜 반응을 분석해 보았다. (3)
 

Object Detection API에 애완동물 사진을 학습 시켜 보자


조대협 (http://bcho.tistory.com)


Object Detection API에 이번에는 애완동물 사진 데이타를 학습시켜 보도록 한다.

애완 동물 학습 데이타의 원본은  Oxford-IIIT Pets lives  http://www.robots.ox.ac.uk/~vgg/data/pets/ 에 있다. 약 37개의 클래스에, 클래스당 200개 정도의 이미지를 가지고 있다.



이번 글에서는 이 애완동물 데이타를 다운 받아서, Object Detection API에 학습 시키는 것까지 진행을 한다.

데이타를 다운로드 받은 후, Object Detection API에 학습 시키기 위해서, 데이타 포맷을 TFRecord 형태로 변환한 후, 학습을 하는 과정을 설명한다.


주의할점 : 이 튜토리얼은 총 37개의 클래스 약 7000장의 이미지를 학습시키는데, 17시간 이상이 소요되며, 구글 클라우 CloudML의 텐서플로우 클러스터에서 분산 러닝을 하도록 설명하고 있는데, 많은 비용이 들 수 있다. 전체 흐름과 과정을 이해하기 위해서는 17시간을 풀 트레이닝 시키지 말고 학습 횟수를 줄이거나 아니면 중간에서 학습을 멈춰서 비용이 많이 나오지 않도록 하는 것을 권장한다.

학습 데이타 다운로드 받기

%curl -O http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz

%curl -O http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

※ 맥이기 때문에, curl -O 를 사용했는데, Linux의 경우에는 wget을 사용하면 된다.

파일을 다운로드 받았으면 압축을 풀어보자

  • images.tar.gz에는 애완동물의 학습용 이미지가 들어가 있다.

  • annotations.tar.gz 는 각 이미지에 대한 메타 데이타가 들어있다. 이미지 마다 나타난 동물의 종류, 사진상 동물의 위치 (박스)

TFRecord 파일 포맷으로  컨버팅 하기

압축을 푼 메타데이타와 이미지 파일을 이용해서 tfrecord 파일 형태로 컨버팅을 해야 한다. Tfrecord 내에는 이미지 바이너리, 이미지에 대한 정보 (이미지 크기, 인식할 물체의 위치, 라벨)등이 들어간다. 상세 데이타 포맷에 대해서는 다음글에서 설명하도록 한다.

이 데이타를 가지고 tfrecord 타입으로 컨버팅 하는 코드는 object_detection/create_pet_tf_record.py

에 이미 작성되어 있다. 아래 코드를 이용해서 실행해주면 자동으로 pet_train.record에 학습용 데이타를 pet_val.record에 테스트용 데이타를 생성해준다.


python object_detection/create_pet_tf_record.py \
   --label_map_path=object_detection/data/pet_label_map.pbtxt \
   --data_dir=`pwd` \
   --output_dir=`pwd`

학습 환경 준비하기

데이타가 준비되었으면 학습을 위한 환경을 준비해야 한다.

학습은 구글 클라우드 플랫폼의 CloudML을 사용한다. CloudML은 구글 클라우드 플랫폼의 Tensorflow managed 서비스로, Tensorflow 클러스터 설치나 운영 필요 없이 간단하게 명령어 만으로 여러대의 머신에서 학습을 가능하게 해준다.

CloudML을 사용하기 위해서는 몇가지 환경 설정을 해줘야 한다.

  • 먼저 학습용 데이타 (tfrecord)파일을 구글 클라우드 스토리지 (GCS)로 업로드 해야 한다.

  • Object Detection API에서 사물 인식에 사용된 모델의 체크 포인트를 업로드 해야 한다.

  • 클라우드에서 학습을 하기 때문에, 텐서플로우 코드를 패키징해서 업로드해야 한다.

학습 데이타 업로드 하기

데이타를 업로드하기전에, 구글 클라우드 콘솔에서 구글 클라우드 스토리지 버킷을 생성한다.

생성된 버킷명을 YOUR_GCS_BUCKET 환경 변수에 저장한다.

export YOUR_GCS_BUCKET=${YOUR_GCS_BUCKET}


다음 gsutil 유틸리티를 이용하여 YOUR_GCS_BUCKET 버킷으로 학습용 데이타와, 라벨맵 데이타를 업로드 한다.


gsutil cp pet_train.record gs://${YOUR_GCS_BUCKET}/data/pet_train.record
gsutil cp pet_val.record gs://${YOUR_GCS_BUCKET}/data/pet_val.record
gsutil cp object_detection/data/pet_label_map.pbtxt gs://${YOUR_GCS_BUCKET}/data/pet_label_map.pbtxt


학습된 모델 다운로드 받아서 업로드 하기

다음은 학습된 모델을 받아서, 그중에서 체크포인트를  GCS에 올린다.


curl -O http://storage.googleapis.com/download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz

tar -xvf faster_rcnn_resnet101_coco_11_06_2017.tar.gz
gsutil cp faster_rcnn_resnet101_coco_11_06_2017/model.ckpt.* gs://${YOUR_GCS_BUCKET}/data/


체크 포인트를 다운받아서 업로드 하는 이유는, 트랜스퍼 러닝 (Transfer Learning)을 하기 위함인데, 하나도 학습이 되지 않은 모델을 학습을 시키는데는 시간이 많이 들어간다. 트랜서퍼러닝은 이미 학습이 되어 있는 모델로 다른 데이타를 학습 시키는 방법인데, 사물을 인식하는 상태로 학습되어 있는 모델을 다른 물체 (여기서는 애완동물)를 학습하는데 사용하면 학습 시간을 많이 줄 일 수 있다. 이런 이유로, 사물 인식용으로 학습된 체크포인트를 로딩해서 이 체크포인트 부터 학습을 하기 위함이다.

설정 파일 변경하기

Object Detection API를 사용하기 위해서는 학습에 대한 설정 정보를 정의해야 한다.

이 설정 파일안에는 학습 데이타의 위치, 클래스의 수 및 각종 하이퍼 패러미터들이 정의되어 있다. 패러미터에 대한 자세한 설명은  https://github.com/tensorflow/models/blob/master/object_detection/g3doc/configuring_jobs.md를 참고하기 바란다. 이 예제에서는 설정 파일을 따로 만들지 않고 애완동물 사진 학습을 위해서 미리 정의되어 있는 템플릿 설정 파일을 이용하도록 한다.  설정 파일은 미리 정의된 모델에 따라 다른데, 여기서는 faster_rcnn_resnet101_pets 모델을 사용하기 때문에 object_detection/samples/configs/faster_rcnn_resnet101_pets.config 파일을 사용한다.


파일의 위치가 PATH_TO_BE_CONFIGURED 문자열로 정의되어 있는데, 이를 앞에서 만든 GCS 버킷명으로 변경해야 하기 때문에, 아래와 같이 sed 명령을 이용하여 해당 문자열을 변경하자


Linux : sed -i "s|PATH_TO_BE_CONFIGURED|"gs://${YOUR_GCS_BUCKET}"/data|g" object_detection/samples/configs/faster_rcnn_resnet101_pets.config


Max : sed -i ‘’ -e "s|PATH_TO_BE_CONFIGURED|"gs://${YOUR_GCS_BUCKET}"/data|g" object_detection/samples/configs/faster_rcnn_resnet101_pets.config


설정 파일 작성이 끝났으면 이를 GCS 버킷에 올린 후에, 학습시에 사용하도록 한다. 다음 명령어는 설정 파일을 GCS 버킷에 올리는 명령이다.

gsutil cp object_detection/samples/configs/faster_rcnn_resnet101_pets.config \
   gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config


텐서플로우 코드 패키징 및 업로드

학습에 사용할 데이타와 체크포인트등을 업로드 했으면, 다음 텐서플로우 코드를 패키징 해야 한다. 이 글에서는 학습을 로컬 머신이 아니라 구글 클라우드의 텐서플로우 메니지드 서비스인 CloudML을 사용하는데, 이를 위해서는 텐서플로우코드와 코드에서 사용하는 파이썬 라이브러리들을 패키징해서 올려야 한다.


Object Detection API 모델 디렉토리에서 다음 명령어를 실행하면, model 디렉토리와 model/slim 디렉토리에 있는 텐서플로우 코드 및 관련 라이브러리를 같이 패키징하게된다.


# From tensorflow/models/
python setup.py sdist
(cd slim && python setup.py sdist)


명령을 실행하고 나면 패키징된 파일들은 dist/object_detection-0.1.tar.gzslim/dist/slim-0.1.tar.gz 에 저장되게 된다.

학습하기

구글 CloudML을 이용하여 학습하기. 그러면 학습을 시작해보자. 학습은 200,000 스탭에 총 17시간 정도가 소요되며, 비용이 3000$ 이상이 소요되니, 비용이 넉넉하지 않다면, 학습을 중간에 중단 시키기를 권장한다. 테스트 목적이라면 약 10~20분 정도면 충분하지 않을까 한다. 아니면 앞의 config 파일에서 trainning step을 작게 낮춰서 실행하기 바란다.


# From tensorflow/models/
gcloud ml-engine jobs submit training `whoami`_object_detection_`date +%s` \
   --job-dir=gs://${YOUR_GCS_BUCKET}/train \
   --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
   --module-name object_detection.train \
   --region asia-east1 \
   --config object_detection/samples/cloud/cloud.yml \
   -- \
   --train_dir=gs://${YOUR_GCS_BUCKET}/train \
   --pipeline_config_path=gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config


학습을 시킬 텐서플로우 클러스터에 대한 정보는 object_detection/samples/cloud/cloud.yml 에 들어 있다. 내용을 보면,

trainingInput:

 runtimeVersion: "1.0"

 scaleTier: CUSTOM

 masterType: standard_gpu

 workerCount: 5

 workerType: standard_gpu

 parameterServerCount: 3

 parameterServerType: standard


scaleTier로 클러스터의 종류를 정의할 수 있는데, 서버 1대에서 부터 여러대의 클러스터까지 다양하게 적용이 가능하다. 여기서는 모델이 크기가 다소 크기 때문에, Custom으로 설정하였다.


역할

서버 타입

댓수

Master server

standard_gpu

1

Worker

standard_gpu

5

Parameter Server

standard

5


각 서버의 스펙은 상세 스펙은 나와있지 않고, 상대값으로 정의되어 있는데 대략 내용이 다음과 같다.



출처 https://cloud.google.com/ml-engine/docs/concepts/training-overview#machine_type_table




학습을 시작하고 나면 CloudML 콘솔에서 실행중인 Job을 볼 수 있고, Job을 클릭하면 자원의 사용 현황을 볼 수 있다. (CPU와 메모리 사용량)



학습을 시작한 후에, 학습된 모델을 Evaluate할 수 있는데, Object Detection API에서는 학습 말고 Evaluation 모델을 별도로 나눠서, 잡을 나눠서 수행하도록 하였다. 학습중에 생성되는 체크포인트 파일을 읽어서 Evaluation을 하는 형태이다.

다음을 Evaluation을 실행하는 명령어인데, 위의 학습 작업이 시작한 후에, 한시간 정도 후부터 실행해도 실행 상태를 볼 수 있다.


# From tensorflow/models/
gcloud ml-engine jobs submit training `whoami`_object_detection_eval_`date +%s` \
   --job-dir=gs://${YOUR_GCS_BUCKET}/train \
   --packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
   --module-name object_detection.eval \
   --region asia-east1 \
   --scale-tier BASIC_GPU \
   -- \
   --checkpoint_dir=gs://${YOUR_GCS_BUCKET}/train \
   --eval_dir=gs://${YOUR_GCS_BUCKET}/eval \
  --pipeline_config_path=gs://${YOUR_GCS_BUCKET}/data/faster_rcnn_resnet101_pets.config


학습 진행 상황 확인하기

학습이 진행중에도, Evaluation을 시작했으면, Tensorboard를 이용하여 학습 진행 상황을 모니터링 할 수 있다. 학습 진행 데이타가 gs://${YOUR_GCS_BUCKET} 에 저장되기 때문에, 이 버킷에 있는 데이타를 Tensorboard로 모니터링 하면 된다.

실행 방법은 먼저 GCS 에 접속이 가능하도록 auth 정보를 설정하고, Tensorboard에 로그 파일 경로를

GCS 버킷으로 지정하면 된다.

gcloud auth application-default login
tensorboard --logdir=gs://${YOUR_GCS_BUCKET}


아래는 실제 실행 결과이다.



Evaluataion이 끝났으면, 테스트된 이미지도 IMAGES 탭에서 확인이 가능하다.



학습된 모델을 Export 하기

학습이 완료되었으면, 이 모델을 예측 (Prediction)에 사용하기 위해서 Export 할 수 있다. 이렇게 Export 된 이미지는 나중에 다시 로딩하여 예측(Prediction)코드에서 로딩을 하여 사용이 가능하다.

${YOUR_GCS_BUCKET}에 가면 체크 포인트 파일들이 저장되어 있는데, 이 체크 포인트를 이용하여 모델을 Export 한다.



GCS 버킷에서 Export 하고자 하는 Check Point 번호를 선택한 후에 Export 하면 된다, 여기서는 200006 Check Point를 Export 해보겠다.


${CHECKPOINT_NUMBER} 환경 변수를

export CHECKPOINT_NUMBER=200006

으로 설정한 다음에 다음 명령어를 실행한다.


# From tensorflow/models
gsutil cp gs://${YOUR_GCS_BUCKET}/train/model.ckpt-${CHECKPOINT_NUMBER}.* .
python object_detection/export_inference_graph.py \

   --input_type image_tensor \

   --pipeline_config_path object_detection/samples/configs/faster_rcnn_resnet101_pets.config \

   --trained_checkpoint_prefix model.ckpt-${CHECKPOINT_NUMBER} \

   --output_directory output_inference_graph.pb


명령을 실행하고 나면 output_inference_graph.pb 디렉토리에 모델이 Export 된것을 확인할 수 있다.

다음 글에서는 직접 자신의 사진 데이타만을 가지고 학습과 예측을 하는 방법에 대해서 알아보겠다.


참고 자료



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


Tensorflow Object Detection API


조대협 ( http://bcho.tistory.com)


Tensorflow Object Detection API는, Tensorflow 를 이용하여 이미지를 인식할 수 있도록 개발된 모델로, 라이브러리 형태로 제공되며, 각기 다른 정확도와 속도를 가지고 있는 5개의 모델을 제공한다. 머신러닝이나 텐서플로우에 대한 개념이 거의 없더라도 라이브러리 형태로 손쉽게 사용할 수 있으며, 직접 사용자 데이타를 업로드해서 학습을 하여, 내 시나리오에 맞는 Object Detection System을 손쉽게 만들 수 있다.


Object Detection API를 설치하기 위해서는 텐서플로우 1.x 와 파이썬 2.7x 버전이 사전 설치되어 있어야 한다. 이 글에서는 파이썬 2.7.13과 텐서플로우 2.7.13 버전을 기준으로 하고, 맥에 설치하는 것을 기준으로 한다. 리눅스나 다른 플랫폼 설치는 원본 설치 문서 https://github.com/tensorflow/models/blob/master/object_detection/g3doc/installation.md 를 참고하기 바란다.


설치 및 테스팅

Protocol Buffer 설치

Object Detection API는 내부적으로 Protocol Buffer를 사용한다. MAC에서 Protocol Buffer를 설치 하는 방법은 https://github.com/google/protobuf/tree/master/pythonhttp://bcho.tistory.com/1182 를 참고하기 바란다.

설치가 되었는지를 확인하려면, 프롬프트 상에서 protoc 명령을 실행해보면 된다.

파이썬 라이브러리 설치

프로토콜 버퍼 설치가 끝났으면, 필요한 파이썬 라이브러리를 설치한다.

% pip install pillow

% pip install lxml

% pip install jupyter

% pip install matplotlib

Object Detection API 다운로드 및 설치

Object Detection API 설치는 간단하게, 라이브러리를 다운 받으면 된다. 설치할 디렉토리로 들어가서 git clone 명령어를 통해서, 라이브러리를 다운로드 받자

% git clone https://github.com/tensorflow/models

Protocol Buffer 컴파일

다음 프로토콜 버퍼를 사용하기 위해서 protoc로 proto 파일을 컴파일 한데, Object Detection API를 설치한 디렉토리에서 models 디렉토리로 들어간 후에, 다음 명령어를 수행한다.


protoc object_detection/protos/*.proto --python_out=.

PATH 조정하기

설치가 끝났으면 Object Detection API를 PATH와 파이썬 라이브러리 경로인 PYTHONPATH에 추가한다. 맥에서는 사용자 홈디렉토리의 .bash_profile 에 추가 하면되낟.

PYTHONPATH 환경 변수에 {Object Detection API 설치 디렉토리}/models/slim 디렉토리와 Object Detection API 설치 디렉토리}/models/models 디렉토리를 추가한다.

같은 디렉토리를 PATH에도 추가해준다.


export PYTHONPATH=$PYTHONPATH:/Users/terrycho/dev/workspace/objectdetection/models:/Users/terrycho/dev/workspace/objectdetection/models/slim

export PATH=$PATH:/Users/terrycho/dev/workspace/objectdetection/models:/Users/terrycho/dev/workspace/objectdetection/models/slim

테스팅

설치가 제대로 되었는지를 확인하기 위해서 {Object Detection API 설치 디렉토리}/models/ 디렉토리에서 다음 명령을 실행해보자


% python object_detection/builders/model_builder_test.py


문제 없이 실행이 되었으면 제대로 설치가 된것이다.


사용하기

설치가 끝났으면 실제로 사용해 보자, Object Detection API를 인스톨한 디렉토리 아래 models/object_detection/object_detection_tutorial.ipynb 에 테스트용 노트북 파일이 있다. 이 파일을 주피터 노트북 (http://jupyter.org/)을 이용하여 실행해보자.
(원본 코드 https://github.com/tensorflow/models/blob/master/object_detection/object_detection_tutorial.ipynb)


실행을 하면 결과로 아래와 같이 물체를 인식한 결과를 보여준다.




이 중에서 중요한 부분은 Model Preparation이라는 부분으로,

여기서 하는 일은 크게 아래 3가지와 같다.

  • Export 된 모델 다운로드

  • 다운로드된 모델 로딩

  • 라벨맵 로딩


Export 된 모델 다운로드

Object Detection API는 여러가지 종류의 미리 훈련된 모델을 가지고 있다.

모델 종류는 https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md 를 보면 되는데,  다음과 같은 모델들을 지원하고 있다.  COCO mAP가 높을 수 록 정확도가 높은 모델인데, 대신 예측에 걸리는 속도가 더 느리다.


Model name

Speed

COCO mAP

Outputs

ssd_mobilenet_v1_coco

fast

21

Boxes

ssd_inception_v2_coco

fast

24

Boxes

rfcn_resnet101_coco

medium

30

Boxes

faster_rcnn_resnet101_coco

medium

32

Boxes

faster_rcnn_inception_resnet_v2_atrous_coco

slow

37

Boxes


모델은 *.gz 형태로 다운로드가 되는데, 이 파일안에는 다음과 같은 내용들이 들어있다.

  • Check point (model.ckpt.data-00000-of-00001, model.ckpt.index, model.ckpt.meta)
    텐서플로우 학습 체크 포인트로, 나중에, 다른 데이타를 학습 시킬때 Transfer Learning을 이용할때, 텐서플로우 그래프에 이 체크포인트를 로딩하여, 그 체크포인트 당시의 상태로 학습 시켜놓을 수 있다. 이 예제에서는 사용하지 않지만, 다른 데이타를 이용하여 학습할때 사용한다.

  • 학습된 모델 그래프 (frozen_inference_graph.pb)
    학습이 완료된 그래프에 대한 내용을 Export 해놓은 파일이다. 이 예제에서는 이 모델 파일을 다시 로딩하여 Prediction을 수행한다.

  • Graph proto (pgrah.pbtxt)


기타 파일들

이외에도 기타 다른 파일들이 있는데, 다른 파일들은 이미 Object Detection API 안에 이미 다운로드 되어 있다.

  • 라벨맵
    라벨맵은 {Object Detection API 설치 디렉토리}/models/object_detection/data  디렉토리 안에 몇몇 샘플 모델에 대한 라벨맵이 저장되어 있다. 라벨맵은 모델에서 사용한 분류 클래스에 대한 정보로 name,id,display_name 식으로 정의되며, name은 텍스트 라벨, id는 라벨을 숫자로 표현한 값 (반드시 1부터 시작해야 한다.), display_name은 Prediction 결과를 원본 이미지에서 인식한 물체들을 박스처리해서 출력하는데 이때 박스에 어떤 물체인지 출력해주는 문자열에 들어가는 텍스트 이다.
    여기서 사용한 라벨맵은 mscoco_label_map.pbtxt 파일이 사용되었다.

  • 학습 CONFIG 파일
    모델 학습과 예측에 사용되는 각종 설정 정보를 저장한 파일로 위에서 미리 정의된 모델별로 각각 다른 설정 파일을 가지고 있으며 설정 파일의 위치는  {Object Detection API 설치 디렉토리}/models/object_detection/samples/configs 에 {모델명}.config 에 저장되어 있다.


다운로드된 모델과 라벨맵 로딩

위에서 많은 파일이 다운되고 언급되었지만 예측 (Prediction)에는 학습된 그래프 모델을 저장한 frozen_inference_graph.pb 파일과, 분류 라벨이 저장된 mscoco_label_map.pbtxt 두 개만 사용된다.


다음 코드 부분에서 모델을 다운 로드 받고, 모델 파일과 라벨 파일의 경로를 지정하였다.


# What model to download.

MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'

MODEL_FILE = MODEL_NAME + '.tar.gz'

DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'


# Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'


# List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')


NUM_CLASSES = 90


그리고 마지막 부분에 분류 클래스의 수를 설정한다. 여기서는 90개의 클래스로 정의하였다.

만약에 모델을 바꾸고자 한다면 PATH_TO_CKPT를 다른 모델 파일로 경로만 변경해주면 된다.


다음으로  frozen_inference_graph.pb  로 부터 모델을 읽어서 그래프를 재생성하였다.


detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.GraphDef()

 with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

   serialized_graph = fid.read()

   od_graph_def.ParseFromString(serialized_graph)

   tf.import_graph_def(od_graph_def, name='')


나머지 부분은 이미지를 읽어서, 로딩된 모델을 이용하여 물체를 Detection 하는 코드이다.


여기까지 간단하게 Tensorflow Object Detection API를 설치 및 사용하는 방법에 대해서 알아보았다.

다음 글에서는 다른 데이타로 모델을 학습해서 예측하는 부분에 대해서 알아보도록 하겠다.


참고 자료





저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

CloudML을 이용하여 예측하기

조대협 (http://bcho.tistory.com)


지난글 (http://bcho.tistory.com/1189) 에서 학습된 모델을 *.pb 파일 포맷으로 Export 하였다. 그러면 이 Export 된 모델을 이용하여 예측 (prediction)을 하는 방법에 대해서 알아보겠다. 앞글에서도 언급했듯이, 예측은 Google CloudML을 이용한다.

전체 코드를 https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/%2528wwoo%2529%2BML%2BEngine%2Bprediction.ipynb 를 참고하기 바란다.

Export된 모델을 CloudML에 배포하기

학습된 모델을 CloudML에 배포하기 위해서는 export된 *.pb 파일과 variables 폴더를 구글 클라우드 스토리지 ( GCS / Google Cloud Storage) 에 업로드해야 한다.

아니면 학습때 모델 Export를 GCS로 시킬 수 도 있다.


아래는 terrycho-face-recog-export 라는 GCS 버킷아래 /export 디렉토리에, export 된 *.pb 파일과 variables 폴더가 저장된 모습이다.


다음 구글 클라우드 콘솔에서 ML Engine을 선택하여, Models 메뉴를 고른다. 이 메뉴는 모델을 배포하고 Prediction을 해주는 기능이다.



Models 화면으로 들어오면 Create Model 버튼이 나온다. 이 버튼을 이용해서 모델을 생성한다.





모델 생성시에 아래와 같이 단순하게 모델이름을 넣어주면된다.




모델 이름을 넣어준후에, 해당 모델에 실제 Export된 모델 파일을 배포해줘야 하는데, CloudML은 버전 기능을 제공한다. 그래서 아래 그림과 같이 Create Version 버튼을 눌러서 새로운 버전을 생성한다.





Create Version 메뉴에서는 Name에 버전명을 쓰고, Source에는 Export된 *.pb 파일과 variables 폴더가 저장된 GCS 경로를 선택한다.



아래는 terrycho-face-recog-export 버킷을 선택한 후, 그 버킷안에 export 폴더를 선택하는 화면이다.



선택을 해서 배포를 하면 아래와 같이 v7 버전이름을 모델이 배포가 된다.


배포된 모델로 예측 (Prediction)하기

그러면 배포된 모델을 사용해서 예측을 해보자. 아래가 전체코드이다.


from googleapiclient import discovery

from oauth2client.client import GoogleCredentials

import numpy

import base64

import logging


from IPython.display import display, Image


cropped_image = "croppedjolie.jpg"

display(Image(cropped_image))


PROJECT = 'terrycho-ml'

MODEL_NAME = 'face_recog'

MODEL_VERSION ='v7'



def call_ml_service(img_str):

   parent = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL_NAME,MODEL_VERSION)

   pred = None


   request_dict = {

       "instances": [

           {

               "image": {

                   "b64": img_str

               }

           }

       ]

   }


   try:

       credentials = GoogleCredentials.get_application_default()

       cloudml_svc = discovery.build('ml', 'v1', credentials=credentials)

       request = cloudml_svc.projects().predict(name=parent, body=request_dict)

       response = request.execute()

       print(response)

       #pred = response['predictions'][0]['scores']

       #pred = numpy.asarray(pred)


   except Exception, e:

       logging.exception("Something went wrong!")


   return pred



# base64 encode the same image

with open(cropped_image, 'rb') as image_file:

   encoded_string = base64.b64encode(image_file.read())


# See what ML Engine thinks

online_prediction = call_ml_service(encoded_string)


print online_prediction


코드를 살펴보면

       credentials = GoogleCredentials.get_application_default()

       cloudml_svc = discovery.build('ml', 'v1', credentials=credentials)


에서 discovery.build를 이용해서 구글 클라우드 API 중, ‘ML’ 이라는 API의 버전 ‘v1’을 불러왔다. CloudML 1.0 이다. 다음 credentials는 get_application_default()로 디폴트 credential을 사용하였다.

다음으로, CloudML에 request 를 보내야 하는데, 코드 윗쪽으로 이동해서 보면


def call_ml_service(img_str):

   parent = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL_NAME,MODEL_VERSION)

   pred = None


   request_dict = {

       "instances": [

           {

               "image": {

                   "b64": img_str

               }

           }

       ]

   }


를 보면 request body에 보낼 JSON을 request_dict로 정의하였다. 이때, 이미지를 “b64”라는 키로 img_str을 넘겼는데, 이 부분은 이미지 파일을 읽어서 base64 스트링으로 인코딩 한 값이다.

request = cloudml_svc.projects().predict(name=parent, body=request_dict)


다음 request 를 만드는데, 앞에서 선언한 cloudml_svc객체를 이용하여 prediction request 객체를 생성한다. 이때 parent 에는 모델의 경로가 들어가고 body에는 앞서 정의한 이미지가 들어있는 JSON 문자열이 된다.


   parent = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL_NAME,MODEL_VERSION)


Parent에는 모델의 경로를 나타내는데, projects/{프로젝트명}/models/{모델명}/versions/{버전명} 형태로 표현되며, 여기서는 projects/terrycho-ml/models/face_recog/versions/v7 의 경로를 사용하였다.


이렇게 request 객체가 만들어지면 이를 request.execute()로 이를 호출하고 결과를 받는다.

       response = request.execute()

       print(response)


결과를 받아서 출력해보면 다음과 같은 결과가 나온다.




2번째 라벨이 0.99% 확률로 유사한 결과가 나온것을 볼 수 있다. 라벨 순서 대로 첫번째가 제시카 알바, 두번째가 안젤리나 졸리, 세번째가 니콜 키드만, 네번째가 설현, 다섯번째가 빅토리아 베컴이다.


이제 까지 여러회에 걸쳐서 텐서플로우를 이용하여 CNN 모델을 구현하고, 이 모델을 기반으로 얼굴 인식을 학습 시키고 예측 시키는 모델 개발까지 모두 끝 맞췄다.


실제 운영 환경에서 사용하기에는 모델이 단순하지만, 여기에 CNN 네트워크만 고도화하면 충분히 사용할만한 모델을 개발할 수 있을 것이라고 본다. CNN 네트워크에 대한 이론 보다는 실제 구현하면서 데이타 전처리 및 학습과, 학습된 모델의 저장 및 이를 이용한 예측 까지 전체 흐름을 설명하기 위해서 노력하였다.


다음은 이 얼굴 인식 모델을 실제 운영환경에서 사용할만한 수준의 품질이 되는 모델을 사용하는 방법을 설명하고자 한다.

직접 CNN 모델을 만들어도 되지만, 얼마전에, 발표된 Tensorflow Object Detection API (https://github.com/tensorflow/models/tree/master/object_detection)는 높은 정확도를 제공하는 이미지 인식 모델을 라이브러리 형태로 제공하고 있다. 다음 글에서는 이 Object Detection API를 이용하여 연예인 얼굴을 학습 시키고 인식하는 모델을 개발하고 학습 및 예측 하는 방법에 대해서 알아보도록 하겠다.



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

얼굴 인식 모델을 만들어보자 #4 클라우드를 이용하여 학습 시키기

(머신러닝 학습 및 예측 시스템의 운영환경화)


조대협 (http://bcho.tistory.com)

앞에서 모델을 만들고 학습도 다했다. 이제, 이 모델을 실제 운영 환경에서 운영할 수 있는 스케일로 포팅을 하고자 한다.


로컬 환경 대비 실제 운영 환경으로 확장할때 고려해야 하는 사항은


  • 대규모 학습 데이타를 저장할 수 있는 공간

  • 대규모 학습 데이타를 전처리하기 위한 병렬 처리 환경
    이 내용은 이미  http://bcho.tistory.com/1177에서 다루었다.

  • 대규모 학습 데이타를 빠르게 학습 시킬 수 있는 컴퓨팅 파워

  • 학습된 데이타를 이용한 대규모 예측 서비스를 할 수 있는 기능


위의 요건을 만족하면서 텐서플로우로 환경을 올리는 방법은 여러가지가 있지만, 클라우드를 선택하기로 한다.

이유는

  • 첫번째 모델 개발에 집중하고, 텐서플로우의 설치 및 운영 등에 신경쓰지 않도록 한다. 단순한 텐서플로우 설치뿐만 아니라 여러 장비를 동시에 이용하여 분산 학습을 하려면, 클러스터 구성 및 유지가 부담이 된다.

  • 클라우드 컴퓨팅 파워를 이용하여, 대규모 데이타에 대한 전처리를 수행하고 개개별 학습 속도를 높이는 것은 물론이고, 모델을 튜닝하여 동시에 여러 모델을 학습 시킬 수 있다.

  • 대용량 학습 데이타를 저장하기 위한 스토리지 인프라에 대한 구성 및 운영 비용을 절감한다.


즉 설정이나 운영은 클라우드에 맏겨 놓고, 클라우드의 무한한 자원과 컴퓨팅 파워를 이용하여 빠르게 모델을 학습하기 위함이다.

구글 클라우드


아무래도 일하는 성격상 구글 클라우드를 먼저 볼 수 밖에 없는데, 구글 클라우드에서는 텐서플로우의 매니지드 서비스인 CloudML을 제공한다.


CloudML은 별도의 설치나 환경 설정 없이 텐서플로우로 만든 모델을 학습 시키거나 학습된 결과로 예측을 하는 것이 가능하다. 주요 특징을 보면 다음과 같다.


  • 학습시에, 별도의 설정 없이 텐서플로우 클러스터 크기 조절이 가능하다. 싱글 머신에서 부터 GPU 머신 그리고 여러대의 클러스터 머신 사용이 가능하다

  • 하이퍼 패러미터 튜닝이 가능하다. DNN의 네트워크의 폭과 깊이도 하이퍼 패러미터로 지정할 수 있으며, CloudML은 이런 하이퍼패러미터의 최적값을 자동으로 찾아준다.

  • 예측 서비스에서는 Tensorflow Serv를 별도의 빌드할 필요 없이 미리 환경 설정이 다되어 있으며 (bazel 빌드의 끔직함을 겪어보신 분들은 이해하실듯) gRPC가 아닌 간단한 JSON 호출로 예측 (PREDICTION) 요청을 할 수 있다

  • 분당 과금이다. 이게 강력한 기능인데, 구글 클라우드는 기본적으로 분당 과금으로 CPU를 사용하던, GPU를 사용하던 정확히 사용한 만큼만 과금하기 때문에, 필요할때 필요한 만큼만 사용하면 된다. 일부 클라우드의 경우에는 시간당 과금을 사용하기 때문에, 8대의 GPU머신에서 1시간 5분을 학습하더라도 8대에 대해서 2시간 요금을 내야하기 때문에 상대적으로 비용 부담이 높다.

  • 가장 큰 메리트는 TPU (Tensorflow Processing Unit)을 지원한다는 것인데, 딥러닝 전용 GPU라고 생각하면 된다. 일반적인 CPU또는 GPU대비 15~30배 정도 빠른 성능을 제공한다.


    현재는 Close Alpha로 특정 사용자에게만 시범 서비스를 제공하고 있지만 곧 CloudML을 통해서 일반 사용자에게도 서비스가 제공될 예정이다.

CloudML을 이용하여 학습하기

코드 수정

CloudML에서 학습을 시키려면 약간의 코드를 수정해야 한다. 수정해야 하는 이유는 학습 데이타를 같이 올릴 수 없기 때문인데, 여기에는 두 가지 방법이 있다.


  • 학습 데이타를 GCS (Google Cloud Storage)에 올려놓은 후, 학습이 시작되기 전에 로컬 디렉토리로 복사해 오거나

  • 또는 학습 데이타를 바로 GCS로 부터 읽어오도록 할 수 있다.


첫번째 방법은 gsutil 이라는 GCS 명령어를 이용하여 학습 시작전에 GCS에서 학습 데이타를 카피해오면 되고,

두번째 방법은 학습 데이타의 파일명을 GCS 로 지정하면 된다.

예를 들어 텐서 플로우 코드에서 이미지 파일을 아래와 같이 로컬 경로에서 읽어왔다면

   image =  tf.image.decode_jpeg(tf.read_file(“/local/trainingdata/”+image_file),channels=FLAGS.image_color)


GCS에서 읽어오려면 GCS 경로로 바꿔 주면 된다. GCS 버킷명이 terrycho-training-data라고 하면

   image =  tf.image.decode_jpeg(tf.read_file(“gs://terrycho-training-data/trainingdata/”+image_file),channels=FLAGS.image_color)


첫번째 방법의 경우에는 데이타가 아주 많지 않고, 분산 학습이 아닌경우 매우 속도가 빠르다. 두번째 방법의 경우에는 데이타가 아주아주 많아서 분산 학습이 필요할때 사용한다. 아무래도 로컬 파일 억세스가 GCS 억세스 보다 빠르기 때문이다.


다음은 첫번째 방식으로 학습 데이타를 로컬에 복사해서 학습하는 방식의 코드이다.


https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/model_localfile.py

코드 내용은 앞서 만들 모델 코드와 다를것이 없고 단지 아래 부분과, 파일 경로 부분만 다르다

def gcs_copy(source, dest):

   print('Recursively copying from %s to %s' %

       (source, dest))

   subprocess.check_call(['gsutil', '-q', '-m', 'cp', '-R']

       + [source] + [dest]


gcs_copy 함수는 GCS의 source 경로에서 파일을 dest 경로로 복사해주는 명령이다.


def prepare_data():

   # load training and testing data index file into local

   gcs_copy( 'gs://'+DESTINATION_BUCKET+'/'+TRAINING_FILE,'.')

   gcs_copy( 'gs://'+DESTINATION_BUCKET+'/'+VALIDATION_FILE,'.')

   

   # loading training and testing images to local

   image_url = 'gs://'+DESTINATION_BUCKET+'/images/*'


   if not os.path.exists(FLAGS.local_image_dir):

        os.makedirs(FLAGS.local_image_dir)

   gcs_copy( image_url,FLAGS.local_image_dir)

   

prepare_data()    

main()


그리고 prepare_data를 이용해서, 학습과 테스트용 이미지 목록 파일을 복사하고, 이미지들도 로컬에 복사한다.

로컬에 데이타 복사가 끝나면 main()함수를 호출하여 모델을 정의하고 학습을 시작한다.



디렉토리 구조

코드를 수정하였으면, CloudML을 이용하여 학습을 하려면, 파일들을 패키징 해야 한다. 별 다를것은 없고


[작업 디렉토리]

  • __init__.py

  • {모델 파일명}.py


식으로 디렉토리를 구성하면 된다.

얼굴 학습 모델을 model_localfile.py라는 이름으로 저장하였다


명령어

이제 학습용 모델이 준비되었으면, 이 모델을 CloudML에 집어 넣으면 된다.

명령어가 다소 길기 때문에, 쉘 스크립트로 만들어놓거나 또는 파이썬 노트북에 노트 형식으로 만들어 놓으면 사용이 간편하다. 다음은 파이썬 노트북으로 만들어놓은 내용이다.


import google.auth

import os

import datetime


os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/Users/terrycho/keys/terrycho-ml.json"

job_name = 'preparefacedata'+ datetime.datetime.now().strftime('%y%m%d%H%M%S')


리모트로 구글 클라우드의 CloudML을 호출하기 때문에, GOOGLE_APPLICATION_CREDIENTIALS에 서비스 어카운트 파일을 지정한다.

그리고 CloudML에 학습을 실행하면, 각 학습은 JOB으로 등록되는데, 손쉽게 JOB을 찾아서 모니터링 하거나 중지할 수 있도록, JOB ID를 현재 시간으로 생성한다.



print job_name

# Job name whatever you want

JOB_NAME=job_name

# the directory of folder that include your source and init file

PACKAGE_PATH='/Users/terrycho/anaconda/work/face_recog/face_recog_model'

# format: folder_name.source_file_name

MODULE_NAME='face_recog_model.model_localfile'

# bucket you created

STAGING_BUCKET='gs://terrycho-face-recog-stage'

# I recommand "europe-west1" region because there are not enough GPUs in US region for you.....

REGION='us-east1'

# Default is CPU computation. set BASIC_GPU to use Tesla K80 !

SCALE_TIER='BASIC_GPU'


# Submit job with these settings

!gcloud ml-engine jobs submit training $JOB_NAME \

--package-path=$PACKAGE_PATH \

--module-name=$MODULE_NAME \

--staging-bucket=$STAGING_BUCKET \

--region=$REGION \

--scale-tier=$SCALE_TIER \


다음은 cloudml 명령어를 실행하면 된다. 각 인자를 보면

  • JOB_NAME은 학습 JOB의 이름이다.

  • package-path는 __init__.py와 학습 모델 및 관련 파일들이 있는 디렉토리가 된다.

  • module-name은 package-path안에 있는 학습 실행 파일이다.

  • staging-bucket은 CloudML에서 학습 코드를 올리는 임시 Google Cloud Storage로, Google Cloud Storage 만든 후에, 그 버킷 경로를 지정하면 된다.

  • region은 CloudML을 사용한 리전을 선택한다.

  • 마지막으로 scale-tier는 학습 머신의 사이즈를 지정한다.

스케일 티어

설명

BASIC

싱글 머신. CPU

BASIC_GPU

싱글 머신 + K80 GPU

STANDARD_1

분산 머신

PREMIUM_1

대규모 분산 머신

CUSTOM

사용자가 클러스터 크기를 마음대로 설정


일반적인 모델은 BASIC_GPU를 사용하면 되고, 모델이 분산 학습이 가능하도록 개발되었으면 STANDARD_1 이나 PREMIUM_1을 사용하면 된다.


이렇게 명령을 수행하면 모델코드가 CloudML로 전송되고, 전송된 코드는 CloudML에서 실행된다.

학습 모니터링

학습이 시작되면 JOB을 구글 클라우드 콘솔의 CloudML 메뉴에서 모니터링을 할 수 있다.




다음은 CloudML에서의 JOB 목록이다.  (진짜 없어 보인다…)




실행중인 JOB에서 STOP 버튼을 누르면 실행중인 JOB을 정지시킬 수도 있고, View Logs 버튼을 누르면, 학습 JOB에서 나오는 로그를 볼 수 있다. ( 텐서플로우 코드내에서 print로 찍은 내용들도 모두 여기 나온다.)




여기까지 간단하게나마 CloudML을 이용하여 모델을 학습하는 방법을 알아보았다.

본인의 경우 연예인 인식 모델을 MAC PRO 15” i7 (NO GPU)에서 학습한 경우 7000 스텝가지 약 8시간이 소요되었는데, CloudML의 BASIC_GPU를 사용하였을때는 10,000 스탭에 약 1시간 15분 정도 (GCS를 사용하지 않고 직접 파일을 로컬에 복사해놓고 돌린 경우) 가 소요되었다. (빠르다)


여기서 사용된 전체 코드는 https://github.com/bwcho75/facerecognition/tree/master/CloudML%20Version 에 있다.


  • model_gcs.py 는 학습데이타를 GCS에서 부터 읽으면서 학습하는 버전이고

  • model_localfile.py는 학습데이타를 로컬 디스크에 복사해놓고 학습하는 버전이다.


다음 글에서는 학습된 모델을 배포하여 실제로 예측을 실행할 수 있는 API를 개발해보도록 하겠다.

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

연예인 얼굴 인식 서비스를 만들어보자 #1 - 데이타 준비하기

 

CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.

CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다.

 

이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face )

 

얼굴 데이타를 구할 수 있는곳

먼저 얼굴 인식 모델을 만들려면, 학습을 시킬 충분한 데이타가 있어야 한다. 사람 얼굴을 일일이 구할 수 도 없고, 구글이나 네이버에서 일일이 저장할 수 도 없기 때문에, 공개된 데이타셋을 활용하였는데, PubFig (Public Figures Face Database - http://www.cs.columbia.edu/CAVE/databases/pubfig/) 를 사용하였다.


 

이 데이타셋에는 약 200명에 대한 58,000여장의 이미지를 저장하고 있는데, 이 중의 일부만을 사용하였다.

Download 페이지로 가면, txt 파일 형태 (http://www.cs.columbia.edu/CAVE/databases/pubfig/download/dev_urls.txt) 로 아래와 같이

 

Abhishek Bachan 1 http://1.bp.blogspot.com/_Y7rzCyUABeI/SNIltEyEnjI/AAAAAAAABOg/E1keU_52aFc/s400/ash_abhishek_365x470.jpg 183,60,297,174 f533da9fbd1c770428c8961f3fa48950
Abhishek Bachan 2 http://1.bp.blogspot.com/_v9nTKD7D57Q/SQ3HUQHsp_I/AAAAAAAAQuo/DfPcHPX2t_o/s400/normal_14thbombaytimes013.jpg 49,71,143,165 e36a8b24f0761ec75bdc0489d8fd570b
Abhishek Bachan 3 http://2.bp.blogspot.com/_v9nTKD7D57Q/SL5KwcwQlRI/AAAAAAAANxM/mJPzEHPI1rU/s400/ERTYH.jpg 32,68,142,178 583608783525c2ac419b41e538a6925d

 

사람이름, 이미지 번호, 다운로드 URL, 사진 크기, MD5 체크섬을 이 필드로 저장되어 있다.

이 파일을 이용하여 다운로드 URL에서 사진을 다운받아서, 사람이름으로된 폴더에 저장한다.

물론 수동으로 할 수 없으니 HTTP Client를 이용하여, URL에서 사진을 다운로드 하게 하고, 이를 사람이름 폴더 별로 저장하도록 해야 한다.

 

HTTP Client를 이용하여 파일을 다운로드 받는 코드는 일반적인 코드이기 때문에 별도로 설명하지 않는다.

본인의 경우에는 Win이 만든 https://github.com/wwoo/tf_face/blob/master/tf/face_extract/pubfig_get.py 코드를 이용하여 데이타를 다운로드 받았다.

사용법은  https://github.com/wwoo/tf_face 에 나와 있는데,

 

$> python tf/face_extract/pubfig_get.py tf/face_extract/eval_urls.txt ./data

를 실행하면 ./data 디렉토리에 이미지를 다운로드 받아서 사람 이름별 폴더에 저장해준다.

evals_urls.txt에는 위에서 언급한 dev_urls.txt 형태의 데이타가 들어간다.


사람 종류가 너무 많으면 데이타를 정재하는 작업이 어렵고, (왜 어려운지는 뒤에 나옴) 학습 시간이 많이 걸리기 때문에, 약 47명의 데이타를 다운로드 받아서 작업하였다.

학습 데이타 준비에 있어서 경험

쓰레기 데이타 골라내기

데이타를 다운받고 나니, 아뿔사!! PubFig 데이타셋이 오래되어서 없는 이미지도 있고 학습에 적절하지 않은 이미지도 있다.


주로 학습에 적절하지 않은 데이타는 한 사진에 두사람 이상의 얼굴이 있거나, 이미지가 사라져서 위의 우측 그림처럼, 이미지가 없는 형태로 나오는 경우인데, 이러한 데이타는 어쩔 수 없이 눈으로 한장한장 다 걸러내야만 했는데, 이런 간단한 데이타 필터링 처리는 Google Cloud Vision API를 이용하여, 얼굴이 하나만 있는 사진만을 사용하도록 하여 필터링을 하였다.

학습 데이타의 분포

처음에 학습을 시작할때, 분류별로 데이타의 수를 다르게 하였다. 어렵게 모은 데이타를 버리기가 싫어서 모두 다 넣고 학습 시켰는데, 그랬더니 학습이 쏠리는 현상이 발생하였다.

예를 들어 안젤리나 졸리 300장, 브래드피트 100장, 제시카 알바 100장 이런식으로 학습을 시켰더니, 이미지 예측에서 안젤리나 졸리로 예측하는 경우가 많아졌다. 그래서 학습을 시킬때는 데이타수가 작은 쪽으로 맞춰서 각 클래스당 학습 데이타수가 같도록 하였다. 즉 위의 데이타의 경우에는 안젤리나 졸리 100장, 브래드피트 100장, 제시카 알바 100장식으로 데이타 수를 같게 해야했다.

라벨은 숫자로

라벨의 가독성을 높이기 위해서 라벨을 영문 이름으로 사용했는데, CNN 알고리즘에서 최종 분류를 하는 알고리즘은 softmax 로 그 결과 값을 0,1,2…,N식으로 라벨을 사용하기 때문에, 정수형으로 변환을 해줘야 하는데, 텐서 플로우 코드에서는 이게 그리 쉽지않았다. 그래서 차라리 처음 부터 학습 데이타를 만들때는 라벨을 정수형으로 만드는것이 더 효과적이다

얼굴 각도, 표정,메이크업, 선글라스 도 중요하다

CNN 알고리즘을 마법처럼 생각해서였을까? 데이타만 있다면 어떻게든 학습이 될 줄 알았다. 그러나 얼굴의 각도가 많이 다르거나 표정이 심하게 차이가 난 경우에는 다른 사람으로 인식이 되기 때문에 가능하면 비슷한 표정에 비슷한 각도의 사진으로 학습 시키는 것이 정확도를 높일 수 있다.


 

얼굴 각도의 경우 구글 클라우드 VISION API를 이용하면 각도를 추출할 수 있기 때문에 20도 이상 차이가 나는 사진은 필터링 하였고, 표정 부분도 VISION API를 이용하면 감정도를 분석할 수 있기 때문에 필터링이 가능하다. (아래서 설명하는 코드에서는 감정도 분석 부분은 적용하지 않았다)

또한 선글라스를 쓴 경우에도 다른 사람으로 인식할 수 있기 때문에 VISION API에서 물체 인식 기능을 이용하여 선글라스가 검출된 경우에는 학습 데이타에서 제거하였다.

이외에도 헤어스타일이나 메이크업이 심하게 차이가 나는 경우에는 다른 사람으로 인식되는 확률이 높기 때문에 이런 데이타도 가급적이면 필터링을 하는것이 좋다.

웹 크라울링의 문제점

데이타를 쉽게 수집하려고 웹 크라울러를 이용해서 구글 이미지 검색에서 이미지를 수집해봤지만, 정확도는 매우 낮게 나왔다.


 

https://www.youtube.com/watch?v=k5ioaelzEBM

<그림. 설현 얼굴을 웹 크라울러를 이용하여 수집하는 화면>

 

아래는 웹 크라울러를 이용하여 EXO 루한의 사진을 수집한 결과중 일부이다.


웹크라울러로 수집한 데이타는, 앞에서 언급한 쓰레기 데이타들이 너무 많다. 메이크업, 표정, 얼굴 각도, 두명 이상 있는 사진들이 많았고, 거기에 더해서 그 사람이 아닌 사람의 얼굴 사진까지 같이 수집이 되는 경우가 많았다.

웹 크라울링을 이용한 학습 데이타 수집은 적어도 얼굴 인식용 데이타 수집에 있어서는 좋은 방법은 아닌것 같다. 혹여나 웹크라울러를 사용하더라도 반드시 수동으로 직접 데이타를 검증하는 것이 좋다.

학습 데이타의 양도 중요하지만 질도 매우 중요하다

아이돌 그룹인 EXO와 레드벨벳의 사진을 웹 크라울러를 이용해서 수집한 후에 학습을 시켜보았다. 사람당 약 200장의 데이타로 8개 클래스 정도를 테스트해봤는데 정확도가 10%가 나오지를 않았다.

대신 데이타를 학습에 좋은 데이타를 일일이 눈으로 확인하여 클래스당 30장 정도를 수집해서 학습 시킨 결과 60% 정도의 정확도를 얻을 수 있었다.  양도 중요하지만 학습 데이타의 질적인 면도 중요하다.

중복데이타 처리 문제

데이타를 수집해본 결과, 중복되는 데이타가 생각보다 많았다. 중복 데이타를 걸러내기 위해서 파일의 MD5 해쉬 값을 추출해낸 후 이를 비교해서 중복되는 파일을 제거하였는데, 어느정도 효과를 볼 수 있었지만, 아래 이미지와 같이 같은 이미지지만, 편집이나 리사이즈가 된 이미지의 경우에는 다른 파일로 인식되서 중복 체크에서 검출되지 않았다.


연예인 얼굴 인식은 어렵다

얼굴 인식 예제를 만들면서 재미를 위해서 한국 연예인 얼굴을 수집하여 학습에 사용했는데, 제대로 된 학습 데이타를 구하기가 매우 어려웠다. 앞에서 언급한데로 메이크업이나 표정 변화가 너무 심했고, 어렸을때나 나이먹었을때의 차이등이 심했다. 간단한 공부용으로 사용하기에는 좋은 데이타는 아닌것 같다.

그러면 학습에 좋은 데이타는?

그러면 얼굴 인식 학습에 좋은 데이타는 무엇일까? 테스트를 하면서 내린 자체적인 결론은 정면 프로필 사진류가 제일 좋다. 특히 스튜디오에서 찍은 사진은 같은 조명에 같은 메이크업과 헤어스타일로 찍은 경우가 많기 때문에 학습에 적절하다. 또는 동영상의 경우에는 프레임을 잘라내면 유사한 표정과 유사한 각도, 조명등에 대한 데이타를 많이 얻을 수 있기 때문에 좋은 데이타 된다.

얼굴 추출하기

그러면 앞의 내용을 바탕으로 해서, 적절한 학습용 얼굴 이미지를 추출하는 프로그램을 만들어보자

포토샵으로 일일이 할 수 없기 때문에 얼굴 영역을 인식하는 API를 사용하기로한다. OPEN CV와 같은 오픈소스 라이브러리를 사용할 수 도 있지만 구글의 VISION API의 경우 얼굴 영역을 아주 잘 잘라내어주고,  얼굴의 각도나 표정을 인식해서 필터링 하는 기능까지 코드 수십줄만 가지고도 구현이 가능했기 때문에, VISION API를 사용하였다. https://cloud.google.com/vision/

VISION API ENABLE 하기

VISION API를 사용하기 위해서는 해당 구글 클라우드 프로젝트에서 VISION API를 사용하도록 ENABLE 해줘야 한다.

VISION API를 ENABLE하기 위해서는 아래 화면과 같이 구글 클라우드 콘솔 > API Manager 들어간후


 

+ENABLE API를 클릭하여 아래 그림과 같이 Vision API를 클릭하여 ENABLE 시켜준다.

 



 

SERVICE ACCOUNT 키 만들기

다음으로 이 VISION API를 호출하기 위해서는 API 토큰이 필요한데, SERVICE ACCOUNT 라는 JSON 파일을 다운 받아서 사용한다.

구글 클라우드 콘솔에서 API Manager로 들어간후 Credentials 메뉴에서 Create creadential 메뉴를 선택한후, Service account key 메뉴를 선택한다


 

다음 Create Service Account key를 만들도록 하고, accountname과 id와 같은 정보를 넣는다. 이때 중요한것이 이 키가 가지고 있는 사용자 권한을 설정해야 하는데, 편의상 모든 권한을 가지고 있는  Project Owner 권한으로 키를 생성한다.

 

(주의. 실제 운영환경에서 전체 권한을 가지는 키는 보안상의 위험하기 때문에 특정 서비스에 대한 접근 권한만을 가지도록 지정하여 Service account를 생성하기를 권장한다.)

 


 

Service account key가 생성이 되면, json 파일 형태로 다운로드가 된다.

여기서는 terrycho-ml-80abc460730c.json 이름으로 저장하였다.

 

예제 코드

그럼 예제를 보자 코드의 전문은 https://github.com/bwcho75/facerecognition/blob/master/com/terry/face/extract/crop_face.py 에 있다.

 

이 코드는 이미지 파일이 있는 디렉토리를 지정하고, 아웃풋 디렉토리를 지정해주면 이미지 파일을 읽어서 얼굴이 있는지 없는지를 체크하고 얼굴이 있으면, 얼굴 부분만 잘라낸 후에, 얼굴 사진을 96x96 사이즈로 리사즈 한후에,

70%의 파일들은 학습용으로 사용하기 위해서 {아웃풋 디렉토리/training/} 디렉토리에 저장하고

나머지 30%의 파일들은 검증용으로 사용하기 위해서 {아웃풋 디렉토리/validate/} 디렉토리에 저장한다.

 

그리고 학습용 파일 목록은 다음과 같이 training_file.txt에 파일 위치,사람명(라벨) 형태로 저장하고

/Users/terrycho/traning_datav2/training/wsmith.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith061408.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith1.jpg,Will Smith

 

검증용 파일들은 validate_file.txt에 마찬가지로  파일위치와, 사람명(라벨)을 저장한다.

사용 방법은 다음과 같다.

python com/terry/face/extract/crop_face.py “원본 파일이있는 디렉토리" “아웃풋 디렉토리"

(원본 파일 디렉토리안에는 {사람이름명} 디렉토리 아래에 사진들이 쭈욱 있는 구조라야 한다.)

 

자 그러면, 코드의 주요 부분을 살펴보자

 

VISION API 초기화 하기

  def __init__(self):

       # initialize library

       #credentials = GoogleCredentials.get_application_default()

       scopes = ['https://www.googleapis.com/auth/cloud-platform']

       credentials = ServiceAccountCredentials.from_json_keyfile_name(

                       './terrycho-ml-80abc460730c.json', scopes=scopes)

       self.service = discovery.build('vision', 'v1', credentials=credentials)

 

초기화 부분은 Google Vision API를 사용하기 위해서 OAuth 인증을 하는 부분이다.

scope를 googleapi로 정해주고, 인증 방식을 Service Account를 사용한다. credentials 부분에 service account key 파일인 terrycho-ml-80abc460730c.json를 지정한다.

 

얼굴 영역 찾아내기

다음은 이미지에서 얼굴을 인식하고, 얼굴 영역(사각형) 좌표를 리턴하는 함수를 보자

 

   def detect_face(self,image_file):

       try:

           with io.open(image_file,'rb') as fd:

               image = fd.read()

               batch_request = [{

                       'image':{

                           'content':base64.b64encode(image).decode('utf-8')

                           },

                       'features':[

                           {

                           'type':'FACE_DETECTION',

                           'maxResults':MAX_FACE,

                           },

                           {

                           'type':'LABEL_DETECTION',

                           'maxResults':MAX_LABEL,

                           }

                                   ]

                       }]

               fd.close()

       

           request = self.service.images().annotate(body={

                           'requests':batch_request, })

           response = request.execute()

           if 'faceAnnotations' not in response['responses'][0]:

                print('[Error] %s: Cannot find face ' % image_file)

                return None

               

           face = response['responses'][0]['faceAnnotations']

           label = response['responses'][0]['labelAnnotations']

           

           if len(face) > 1 :

               print('[Error] %s: It has more than 2 faces in a file' % image_file)

               return None

           

           roll_angle = face[0]['rollAngle']

           pan_angle = face[0]['panAngle']

           tilt_angle = face[0]['tiltAngle']

           angle = [roll_angle,pan_angle,tilt_angle]

           

           # check angle

           # if face skew angle is greater than > 20, it will skip the data

           if abs(roll_angle) > MAX_ROLL or abs(pan_angle) > MAX_PAN or abs(tilt_angle) > MAX_TILT:

               print('[Error] %s: face skew angle is big' % image_file)

               return None

           

           # check sunglasses

           for l in label:

               if 'sunglasses' in l['description']:

                 print('[Error] %s: sunglass is detected' % image_file)  

                 return None

           

           box = face[0]['fdBoundingPoly']['vertices']

           left = box[0]['x']

           top = box[1]['y']

               

           right = box[2]['x']

           bottom = box[2]['y']

               

           rect = [left,top,right,bottom]

               

           print("[Info] %s: Find face from in position %s and skew angle %s" % (image_file,rect,angle))

           return rect

       except Exception as e:

           print('[Error] %s: cannot process file : %s' %(image_file,str(e)) )

           

 

 

맨 처음에는 얼굴 영역을 추출하기전에, 같은 파일이 예전에 사용되었는지를 확인한다.

           image = Image.open(fd)  

 

           # extract hash from image to check duplicated image

           m = hashlib.md5()

           with io.BytesIO() as memf:

               image.save(memf, 'PNG')

               data = memf.getvalue()

               m.update(data)

 

           if image_hash in global_image_hash:

               print('[Error] %s: Duplicated image' %(image_file) )

               return None

           global_image_hash.append(image_hash)

 

이미지에서 md5 해쉬를 추출한후에, 이 해쉬를 이용하여 학습 데이타로 사용된 파일들의 해쉬와 비교한다. 만약에 중복되는 것이 없으면 이 해쉬를 리스트에 추가하고 다음 과정을 수행한다.

 

VISION API를 이용하여, 얼굴 영역을 추출하는데, 위의 코드에서 처럼 image_file을 읽은후에, batch_request라는 문자열을 만든다. JSON 형태의 문자열이 되는데, 이때 image라는 항목에 이미지 데이타를 base64 인코딩 방식으로 인코딩해서 전송한다. 그리고 VISION API는 얼굴인식뿐 아니라 사물 인식, 라벨인식등 여러가지 기능이 있기 때문에 그중에서 타입을 ‘FACE_DETECTION’으로 정의하여 얼굴 영역만 인식하도록 한다.

 

request를 만들었으면, VISION API로 요청을 보내면 응답이 오는데, 이중에서 response 엘리먼트의 첫번째 인자 ( [‘responses’][0] )은 첫번째 얼굴은 뜻하는데, 여기서 [‘faceAnnotation’]을 하면 얼굴에 대한 정보만을 얻을 수 있다. 이중에서  [‘fdBoundingPoly’] 값이 얼굴 영역을 나타내는 사각형이다. 이 갑ㄱㅅ을 읽어서 left,top,right,bottom 값에 세팅한 후 리턴한다.

 

그리고 얼굴의 각도 (상하좌우옆)를 추출하여, 얼국 각도가 각각 20도 이상 더 돌아간 경우에는 학습 데이타로 사용하지 않고 필터링을 해냈다.

다음은 각도를 추출하고 필터링을 하는 부분이다.

           roll_angle = face[0]['rollAngle']

           pan_angle = face[0]['panAngle']

           tilt_angle = face[0]['tiltAngle']

           angle = [roll_angle,pan_angle,tilt_angle]

           

           # check angle

           # if face skew angle is greater than > 20, it will skip the data

           if abs(roll_angle) > MAX_ROLL or abs(pan_angle) > MAX_PAN or abs(tilt_angle) > MAX_TILT:

               print('[Error] %s: face skew angle is big' % image_file)

               return None

 

 

VISION API에서 추가로 “FACE DETECTION” 뿐만 아니라 “LABEL_DETECTION” 을 같이 수행했는데 이유는 선글라스를 쓰고 있는 사진을 필터링하기 위해서 사용하였다. 아래는 선글라스 있는 사진을 검출하는  코드이다.

           # check sunglasses

           for l in label:

               if 'sunglasses' in l['description']:

                 print('[Error] %s: sunglass is detected' % image_file)  

                 return None

 

얼굴 잘라내고 리사이즈 하기

앞의 detect_face에서 필터링하고 찾아낸 얼굴 영역을 가지고 그 부분만 전체 사진에서 잘라내고, 잘라낸 얼굴을 학습에 적합하도록 같은 크기 (96x96)으로 리사이즈 한다.

이런 이미지 처리를 위해서 PIL (Python Imaging Library - http://www.pythonware.com/products/pil/)를 사용하였다.

   def crop_face(self,image_file,rect,outputfile):

       try:

           fd = io.open(image_file,'rb')

           image = Image.open(fd)  

           crop = image.crop(rect)

           im = crop.resize(IMAGE_SIZE,Image.ANTIALIAS)

           im.save(outputfile,"JPEG")

           fd.close()

           print('[Info] %s: Crop face %s and write it to file : %s' %(image_file,rect,outputfile) )

       except Exception as e:

           print('[Error] %s: Crop image writing error : %s' %(image_file,str(e)) )

image_file을 인자로 받아서 , rect 에 정의된 사각형 영역 만큼 crop를 해서 잘라내고, resize 함수를 이용하여 크기를 96x96으로 조정한후 (참고 IMAGE_SIZE = 96,96 로 정의되어 있다.) outputfile 경로에 저장하게 된다.        

 

실행을 해서 정재된 데이타는 다음과 같다.



  

생각해볼만한점들

이 코드는 간단한 토이 프로그램이기 때문에 간단하게 작성했지만 실제 운영환경에 적용하기 위해서는 몇가지 고려해야 할 사항이 있다.

먼저, 이 코드는 싱글 쓰레드로 돌기 때문에 속도가 상대적으로 느리다 그래서 멀티 쓰레드로 코드를 수정할 필요가 있으며, 만약에 수백만장의 사진을 정재하기 위해서는 한대의 서버로 되지 않기 때문에, 원본 데이타를 여러 서버로 나눠서 처리할 수 있는 분산 처리 구조가 고려되어야 한다.

또한, VISION API로 사진을 전송할때는 BASE64 인코딩된 구조로 서버에 이미지를 직접 전송하기 때문에, 자칫 이미지 사이즈들이 크면 네트워크 대역폭을 많이 잡아먹을 수 있기 때문에 가능하다면 식별이 가능한 크기에서 리사이즈를 한 후에, 서버로 전송하는 것이 좋다. 실제로 필요한 얼굴 크기는 96x96 픽셀이기 때문에 필요없이 1000만화소 고화질의 사진들을 전송해서 네트워크 비용을 낭비하지 않기를 바란다.

 

다음은 이렇게 정재한 파일들을 텐서플로우에서 읽어서 실제로 학습하는 모델을 만들어보겠다.


위의 코드를 멀티 프로세스&멀티쓰레드로 돌리는 아키텍쳐와 코드는 http://bcho.tistory.com/1177 글을 참고하기 바란다.

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

Google Cloud Function


조대협 (http://bcho.tistory.com)

기본 개념

구글 클라우드 펑션은 서버리스 아키텍쳐를 구현하기 위한 구글 클라우드 서비스이다. 아마존 웹서비스의 람다와 같은 기능이라고 보면 된다.




이벤트가 발생하면, 이벤트에 따라서, 코드를 수행해주는 형태인데, 이벤트의 종류는 다음과 같다.

  • Pub/Sub 메세지 큐에서 들어오는 메세지

  • Firebase 모바일 SDK에 의해서 발생되는 이벤트

  • Google Cloud Storage 서비스에 의해서 파일이 생성,수정,삭데 되었을때

  • 마지막으로 HTTP로 들어오는 요청 (REST API)


개발환경

프로그래밍 언어는 node.js 6.9.1 버전을 기반으로 되어 있으며, node.js의 package.json을 이용하여 왠만한 의존성 모듈은 설치가 가능하다. (node.js express 등)  개발을 위해서는 로컬에 에뮬레이터를 설치하여 개발이 가능하다. https://cloud.google.com/functions/docs/emulator

Hello World

그러면 간단하게, 구글 클라우드 펑션을 사용해보자

클라우드 펑션은 크게 두가지 타입의 펑션이 있는데

  • HTTP 펑션
    HTTP 펑션은 HTTP 로 입력을 받는 형태로 function 펑션이름(req,res)
    req는 HTTP Request, res는 HTTP Response 이다.

  • 백그라운드 펑션
    백르라운드 펑션은 GCS,Pub/Sub 등의 이벤트로 트리거링 되는 펑션으로 function 펑션이름(event,callback)형태로 정의된다. event 객체 안에, GCS나 Pub/Sub 에서 발생된 이벤트 정보가 전송된다.


간단하게 웹에서 Hello World를 출력하는 펑션을 개발해보자.

예제 코드

Index.js 에 다음과 같은 코드를 작성한다


exports.helloworld = function helloworld (req, res) {

       switch(req.method){

         case 'GET':

          res.send('Hello world');

       }

};

위의 코드는 helloworld 라는 이름의 펑션으로 HTTP GET 요청이 들어왔을때, ‘Hello world’ 문자열을 출력하도록 하는 펑션이다.

배포 하기

배포는 크게 Web UI와 CLI (Command Line Interface) 두 가지로 할 수 있다.

배포에 앞서서, 먼저 GCS (Google Cloud Storage) 버킷을 생성해야 한다. 클라우드 펑션은 배포 코드를 클라우드 스토리지 버킷에 저장해놓고 (스테이징 용도) 배포하기 때문이다.


클라우드 스토리지 버킷은 Web UI에서도 생성할 수 있지만 간단하게 CLI 명령을 이용해서 다음과 “terrycho-cloudfunction”이라는 이름의 버킷을 생성한다


%gsutil mb gs://terrycho-cloudfunction

Command Line Interface (CLI)로 배포하기

CLI로 배포하기 위해서는 CLI 명령인 gcloud 명령을 업그레이드 해야 한다. 다음 명령을 수행하면 쉽게 업그레이드할 수 있다.

% gcloud components update beta

% gcloud components install


다음 배포 명령을 실행해보자

% gcloud beta functions deploy helloworld --stage-bucket gs://terrycho-cloudfunction --trigger-http



Web Console로 배포하기

또는 Web Console을 이용할 수 도 있다.

다음은 helloworld 펑션을 us-central1 리전에 128M 메모리 사이즈로 배포하는 화면이다

코드는 ZIP 파일로 직접 업로드 하거나 구글 클라우드 스토리지에 ZIP으로 업로드 하거나 또는 아래 그림과 같이 inline editor에 간단한 코드는 직접 넣을 수 있다.


그리고 마지막으로 export할 모듈명을 정의한다.




실행하기

클라우드 펑션을 배포 하였으면 이제 실행해보자

HTTP 펑션이기 때문에 HTTP URL을 알아야 하는데,  HTTP URL규칙은 다음과 같다.


https://[리전이름]-[프로젝트이름].cloudfunctions.net/[펑션이름]                             


앞에서 만든 펑션은 us-central1에 배포하였고, 프로젝트명은 terrycho-sandbox이고 펑션 이름은 helloworld 이기 때문에 URL과 실행 결과는 다음과 같다


모니터링

모니터링은 CLI와 웹콘솔 양쪽으로 모두 가능하지만 웹 콘솔에서 로그를 확인해보겠다. 펑션 화면에서 펑션을 선택한 후에 우측 메뉴에서 아래 그림과 같이 “See logs”를 누룬다.


로그를 확인해보면 다음과 같다.



펑션이 시작된 것을 확인할 수 있다. 7d로 시작하는 펑션과 de로 시작하는 펑션 인스턴스 두개가 생성된 것을 볼 수 있고 7d로 시작된 펑션의 실행 시간이 702 ms가 걸린것을 확인할 수 있다.

가격 정책

가격 정책 계산 방법은


(가격) = (호출 횟수) + (컴퓨팅 자원 사용량 ) + (네트워크 비용)


으로 구성된다.

  • 호출 횟수는 클라우드 펑션이 호출되는 횟수로 한달에 2백만건까지 무료이며 2백만건 이후로는 백만건당 0.4$ 가 부과 된다.

  • 컴퓨팅 자원은 사용한 메모리와 CPU 파워를 기반으로 100ms 단위 과금이다.


    예를 들어 1.4GHz CPU 1024MB 메모리를 250 ms 사용했다면, 컴퓨팅 자원 사용 비용은 0.000001650 * 3 (250ms는 올림하여 300ms로 계산한다.)

  • 네트워크 비용은 들어오는 비용은 무료이며 인터넷으로 나가는 비용에 대해서만 월 5$를 부과한다.

무료 티어

무료 티어는 매달 2백만콜에 대해서 400,000GB 초, 200,000GHZ 초의 용량 + 5GB 아웃바운드 트래픽에 대해서 무료로 제공한다

결론

사실 클라우드 펑션과 같은 서버리스 서비스는 새로운 기술은 아니다.

그러나 구글 클라우드 플랫폼과 연계되어서, 간단한 HTTP 서비스 개발은 물론, GCS에 저장된 파일에 대한 ETL 처리등 다양한 분야에 사용이 가능하며

특히나 타 클라우드 대비 특징은, 모바일 SDK 파이어베이스의 백앤드로 연동이 가능하기 때문에 모바일 개발자 입장에서 복잡한 API 인증등을 개발할 필요 없이  간단하게 서버 백앤드를 개발할 수 있다는 장점을 가지고 있기 때문에 개발 생산성 향상에 많은 도움이 되리라고 본다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습데이타 준비하기


조대협 (http://bcho.tistory.com)


CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.

CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다.


이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face )

얼굴 데이타를 내려 받자

먼저 얼굴 인식 모델을 만들려면, 학습을 시킬 충분한 데이타가 있어야 한다. 사람 얼굴을 일일이 구할 수 도 없고, 구글이나 네이버에서 일일이 저장할 수 도 없기 때문에, 공개된 데이타셋을 활용하였는데, PubFig (Public Figures Face Database - http://www.cs.columbia.edu/CAVE/databases/pubfig/) 를 사용하였다.



이 데이타셋에는 약 200명에 대한 58,000여장의 이미지를 저장하고 있는데, 이 중의 일부만을 사용하였다.

Download 페이지로 가면, txt 파일 형태 (http://www.cs.columbia.edu/CAVE/databases/pubfig/download/dev_urls.txt) 로 아래와 같이


Abhishek Bachan 1 http://1.bp.blogspot.com/_Y7rzCyUABeI/SNIltEyEnjI/AAAAAAAABOg/E1keU_52aFc/s400/ash_abhishek_365x470.jpg 183,60,297,174 f533da9fbd1c770428c8961f3fa48950
Abhishek Bachan 2 http://1.bp.blogspot.com/_v9nTKD7D57Q/SQ3HUQHsp_I/AAAAAAAAQuo/DfPcHPX2t_o/s400/normal_14thbombaytimes013.jpg 49,71,143,165 e36a8b24f0761ec75bdc0489d8fd570b
Abhishek Bachan 3 http://2.bp.blogspot.com/_v9nTKD7D57Q/SL5KwcwQlRI/AAAAAAAANxM/mJPzEHPI1rU/s400/ERTYH.jpg 32,68,142,178 583608783525c2ac419b41e538a6925d


사람이름, 이미지 번호, 다운로드 URL, 사진 크기, MD5 체크섬을 이 필드로 저장되어 있다.

이 파일을 이용하여 다운로드 URL에서 사진을 다운받아서, 사람이름으로된 폴더에 저장한다.

물론 수동으로 할 수 없으니 HTTP Client를 이용하여, URL에서 사진을 다운로드 하게 하고, 이를 사람이름 폴더 별로 저장하도록 해야 한다.


HTTP Client를 이용하여 파일을 다운로드 받는 코드는 일반적인 코드이기 때문에 별도로 설명하지 않는다.

본인의 경우에는 Win이 만든 https://github.com/wwoo/tf_face/blob/master/tf/face_extract/pubfig_get.py 코드를 이용하여 데이타를 다운로드 받았다.

사용법은  https://github.com/wwoo/tf_face 에 나와 있는데,


$> python tf/face_extract/pubfig_get.py tf/face_extract/eval_urls.txt ./data

를 실행하면 ./data 디렉토리에 이미지를 다운로드 받아서 사람 이름별 폴더에 저장해준다.

evals_urls.txt에는 위에서 언급한 dev_urls.txt 형태의 데이타가 들어간다.


사람 종류가 너무 많으면 데이타를 정재하는 작업이 어렵고, (왜 어려운지는 뒤에 나옴) 학습 시간이 많이 걸리기 때문에, 약 47명의 데이타를 다운로드 받아서 작업하였다.

쓰레기 데이타 골라내기

데이타를 다운받고 나니, 아뿔사!! PubFig 데이타셋이 오래되어서 없는 이미지도 있고 학습에 적절하지 않은 이미지도 있다.


주로 학습에 적절하지 않은 데이타는 한 사진에 두사람 이상의 얼굴이 있거나, 이미지가 사라져서 위의 우측 그림처럼, 이미지가 없는 형태로 나오는 경우인데, 이러한 데이타는 어쩔 수 없이 눈으로 한장한장 다 걸러내야만 하였다.

아마 이 작업이 가장 오랜 시간이 걸린 작업이 아닐까도 한다. 더불어서 머신러닝이 정교한 수학이나 알고리즘이 아니라 노가다라고 불리는 이유를 알았다.

얼굴 추출하기

다음 학습에 가능한 데이타를 잘 골라내었으면, 학습을 위해서 사진에서 얼굴만을 추출해내야 한다. 포토샵으로 일일이 할 수 없기 때문에 얼굴 영역을 인식하는 API를 사용하기로한다. OPEN CV와 같은 오픈소스 라이브러리를 사용할 수 도 있지만 구글의 VISION API의 경우 얼굴 영역을 아주 잘 잘라내어주고, 코드 수십줄만 가지고도 얼굴 영역을 알아낼 수 있기 때문에 구글 VISION API를 사용하였다.

https://cloud.google.com/vision/




VISION API ENABLE 하기

VISION API를 사용하기 위해서는 해당 구글 클라우드 프로젝트에서 VISION API를 사용하도록 ENABLE 해줘야 한다.

VISION API를 ENABLE하기 위해서는 아래 화면과 같이 구글 클라우드 콘솔 > API Manager 들어간후




+ENABLE API를 클릭하여 아래 그림과 같이 Vision API를 클릭하여 ENABLE 시켜준다.




SERVICE ACCOUNT 키 만들기

다음으로 이 VISION API를 호출하기 위해서는 API 토큰이 필요한데, SERVICE ACCOUNT 라는 JSON 파일을 다운 받아서 사용한다.

구글 클라우드 콘솔에서 API Manager로 들어간후 Credentials 메뉴에서 Create creadential 메뉴를 선택한후, Service account key 메뉴를 선택한다



다음 Create Service Account key를 만들도록 하고, accountname과 id와 같은 정보를 넣는다. 이때 중요한것이 이 키가 가지고 있는 사용자 권한을 설정해야 하는데, 편의상 모든 권한을 가지고 있는  Project Owner 권한으로 키를 생성한다.


(주의. 실제 운영환경에서 전체 권한을 가지는 키는 보안상의 위험하기 때문에 특정 서비스에 대한 접근 권한만을 가지도록 지정하여 Service account를 생성하기를 권장한다.)




Service account key가 생성이 되면, json 파일 형태로 다운로드가 된다.

여기서는 terrycho-ml-80abc460730c.json 이름으로 저장하였다.


예제 코드

그럼 예제를 보자 코드의 전문은 https://github.com/bwcho75/facerecognition/blob/master/com/terry/face/extract/crop_face.py 에 있다.


이 코드는 이미지 파일이 있는 디렉토리를 지정하고, 아웃풋 디렉토리를 지정해주면 이미지 파일을 읽어서 얼굴이 있는지 없는지를 체크하고 얼굴이 있으면, 얼굴 부분만 잘라낸 후에, 얼굴 사진을 96x96 사이즈로 리사즈 한후에,

70%의 파일들은 학습용으로 사용하기 위해서 {아웃풋 디렉토리/training/} 디렉토리에 저장하고

나머지 30%의 파일들은 검증용으로 사용하기 위해서 {아웃풋 디렉토리/validate/} 디렉토리에 저장한다.


그리고 학습용 파일 목록은 다음과 같이 training_file.txt에 파일 위치,사람명(라벨) 형태로 저장하고

/Users/terrycho/traning_datav2/training/wsmith.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith061408.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith1.jpg,Will Smith


검증용 파일들은 validate_file.txt에 마찬가지로  파일위치와, 사람명(라벨)을 저장한다.

사용 방법은 다음과 같다.

python com/terry/face/extract/crop_face.py “원본 파일이있는 디렉토리" “아웃풋 디렉토리"

(원본 파일 디렉토리안에는 {사람이름명} 디렉토리 아래에 사진들이 쭈욱 있는 구조라야 한다.)


자 그러면, 코드의 주요 부분을 살펴보자


VISION API 초기화 하기

  def __init__(self):

       # initialize library

       #credentials = GoogleCredentials.get_application_default()

       scopes = ['https://www.googleapis.com/auth/cloud-platform']

       credentials = ServiceAccountCredentials.from_json_keyfile_name(

                       './terrycho-ml-80abc460730c.json', scopes=scopes)

       self.service = discovery.build('vision', 'v1', credentials=credentials)


초기화 부분은 Google Vision API를 사용하기 위해서 OAuth 인증을 하는 부분이다.

scope를 googleapi로 정해주고, 인증 방식을 Service Account를 사용한다. credentials 부분에 service account key 파일인 terrycho-ml-80abc460730c.json를 지정한다.


얼굴 영역 찾아내기

다음은 이미지에서 얼굴을 인식하고, 얼굴 영역(사각형) 좌표를 리턴하는 함수를 보자


   def detect_face(self,image_file):

       try:

           with io.open(image_file,'rb') as fd:

               image = fd.read()

               batch_request = [{

                       'image':{

                           'content':base64.b64encode(image).decode('utf-8')

                           },

                       'features':[{

                           'type':'FACE_DETECTION',

                           'maxResults':MAX_RESULTS,

                           }]

                       }]

               fd.close()

       

           request = self.service.images().annotate(body={

                           'requests':batch_request, })

           response = request.execute()

           if 'faceAnnotations' not in response['responses'][0]:

                print('[Error] %s: Cannot find face ' % image_file)

                return None

               

           face = response['responses'][0]['faceAnnotations']

           box = face[0]['fdBoundingPoly']['vertices']

           left = box[0]['x']

           top = box[1]['y']

               

           right = box[2]['x']

           bottom = box[2]['y']

               

           rect = [left,top,right,bottom]

               

           print("[Info] %s: Find face from in position %s" % (image_file,rect))

           return rect

       except Exception as e:

           print('[Error] %s: cannot process file : %s' %(image_file,str(e)) )

 

VISION API를 이용하여, 얼굴 영역을 추출하는데, 위의 코드에서 처럼 image_file을 읽은후에, batch_request라는 문자열을 만든다. JSON 형태의 문자열이 되는데, 이때 image라는 항목에 이미지 데이타를 base64 인코딩 방식으로 인코딩해서 전송한다. 그리고 VISION API는 얼굴인식뿐 아니라 사물 인식, 라벨인식등 여러가지 기능이 있기 때문에 그중에서 타입을 ‘FACE_DETECTION’으로 정의하여 얼굴 영역만 인식하도록 한다.


request를 만들었으면, VISION API로 요청을 보내면 응답이 오는데, 이중에서 response 엘리먼트의 첫번째 인자 ( [‘responses’][0] )은 첫번째 얼굴은 뜻하는데, 여기서 [‘faceAnnotation’]을 하면 얼굴에 대한 정보만을 얻을 수 있다. 이중에서  [‘fdBoundingPoly’] 값이 얼굴 영역을 나타내는 사각형이다. 이 갑ㄱㅅ을 읽어서 left,top,right,bottom 값에 세팅한 후 리턴한다.


얼굴 잘라내고 리사이즈 하기

앞의 detect_face에서 찾아낸 얼굴 영역을 가지고 그 부분만 전체 사진에서 잘라내고, 잘라낸 얼굴을 학습에 적합하도록 같은 크기 (96x96)으로 리사이즈 한다.

이런 이미지 처리를 위해서 PIL (Python Imaging Library - http://www.pythonware.com/products/pil/)를 사용하였다.

   def crop_face(self,image_file,rect,outputfile):

       try:

           fd = io.open(image_file,'rb')

           image = Image.open(fd)  

           crop = image.crop(rect)

           im = crop.resize(IMAGE_SIZE,Image.ANTIALIAS)

           im.save(outputfile,"JPEG")

           fd.close()

           print('[Info] %s: Crop face %s and write it to file : %s' %(image_file,rect,outputfile) )

       except Exception as e:

           print('[Error] %s: Crop image writing error : %s' %(image_file,str(e)) )

image_file을 인자로 받아서 , rect 에 정의된 사각형 영역 만큼 crop를 해서 잘라내고, resize 함수를 이용하여 크기를 96x96으로 조정한후 (참고 IMAGE_SIZE = 96,96 로 정의되어 있다.) outputfile 경로에 저장하게 된다.        


실행을 해서 정재된 데이타는 다음과 같다.


생각해볼만한점들

이 코드는 간단한 토이 프로그램이기 때문에 간단하게 작성했지만 실제 운영환경에 적용하기 위해서는 몇가지 고려해야 할 사항이 있다.

먼저, 이 코드는 싱글 쓰레드로 돌기 때문에 속도가 상대적으로 느리다 그래서 멀티 쓰레드로 코드를 수정할 필요가 있으며, 만약에 수백만장의 사진을 정재하기 위해서는 한대의 서버로 되지 않기 때문에, 원본 데이타를 여러 서버로 나눠서 처리할 수 있는 분산 처리 구조가 고려되어야 한다.

또한, VISION API로 사진을 전송할때는 BASE64 인코딩된 구조로 서버에 이미지를 직접 전송하기 때문에, 자칫 이미지 사이즈들이 크면 네트워크 대역폭을 많이 잡아먹을 수 있기 때문에 가능하다면 식별이 가능한 크기에서 리사이즈를 한 후에, 서버로 전송하는 것이 좋다. 실제로 필요한 얼굴 크기는 96x96 픽셀이기 때문에 필요없이 1000만화소 고화질의 사진들을 전송해서 네트워크 비용을 낭비하지 않기를 바란다.


다음은 이렇게 정재한 파일들을 텐서플로우에서 읽어서 학습 데이타로 활용하는 방법에 대해서 알아보겠다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우 - 파일에서 학습데이타를 읽어보자#2


CSV 파일을 읽어보자

조대협 (http://bcho.tistory.com)


이 글은 http://bcho.tistory.com/1163 의 두번째 글이다. 앞의 글을 먼저 읽고 읽기를 권장한다.

앞의 글에서는 트레이닝 파일명의 목록을 읽어서 큐에 넣고, 파일명을 하나씩 읽어오는 처리 방법에 대해서 알아보았다. 이번 글에서는 그 파일들에 있는 데이타를 읽어서 파싱한 후, 실제 트레이닝 세션에 학습용 데이타로 불러들이는 방법을 설명하도록 한다.

파일에서 데이타 읽기 (Reader)

finename_queue에 파일명이 저장되었으면, 이 파일들을 하나씩 읽어서 처리하는 방법을 알아본다.

파일에서 데이타를 읽어오는 컴포넌트를 Reader라고 한다. 이 Reader들은 filename_queue에 저장된 파일들을 하나씩 읽어서, 그 안에 있는 데이타를 읽어서 리턴한다.


예를 들어 TextLineReader의 경우에는 , 텍스트 파일에서, 한줄씩 읽어서 문자열을 리턴한다.


꼭 텐서플로우에서 미리 정해져있는 Reader 들을 사용할 필요는 없지만, 미리 정의된 Reader를 쓰면 조금 더 편리하다.

미리 정의된 Reader로는 Text File에서, 각 필드가 일정한 길이를 가지고 있을때 사용할 수 있는, FixedLengthRecordReader 그리고, 텐서플로우 데이타를 바이너리 포맷으로 저장하는 TFRecord 포맷에 대한 리더인 TFRecordReader 등이 있다.


Reader를 사용하는 방법은 다음과 같다.

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)


먼저 Reader 변수를 지정한 다음, reader.read를 이용하여 filename_queue 로 부터 파일을 읽게 하면 value에 파일에서 읽은 값이 리턴이 된다

예를 들어 csv 파일에 아래와 같은 문자열이 들어가 있다고 할때


167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54

67ea7e52-333e-43f3-a668-6d7893baa8fb,1,2016,REG,2:11

9e44593b-a870-446e-aed5-90a22ab0c952,1,2016,REG,2:32

48832a52-e56c-467f-a1ef-c6f8c6e908ea,1,2016,REG,2:17


위의 코드 처럼, TextLineReader를 이용하여 파일을 읽게 되면 value에는

처음에는 “167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54”이, 다음에는 “67ea7e52-333e-43f3-a668-6d7893baa8fb,1,2016,REG,2:11” 문자열이 순차적으로 리턴된다.

읽은 데이타를 디코딩 하기 (Decoder)

Reader에서 읽은 값은 파일의 원시 데이타 (raw)데이타이다. 아직 파싱(해석)이 된 데이타가 아닌데,

예를 들어 Reader를 이용해서 csv 파일을 읽었을 때, Reader에서 리턴되는 값은 csv 파일의 각 줄인 문자열이지, csv 파일의 각 필드 데이타가 아니다.


즉 우리가 학습에서 사용할 데이타는

167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54

하나의 문자열이 아니라

Id = “167c9599-c97d-4d42-bdb1-027ddaed07c0”,

Num  = 1

Year = 2016

rType = “REG”

rTime = “3:54”

과 같이 문자열이 파싱된 각 필드의 값이 필요하다.


이렇게 읽어드린 데이타를 파싱 (해석) 하는 컴포넌트를 Decoder라고 한다.


Reader와 마찬가지로, Decoder 역시 미리 정해진 Decoder 타입이 있는데, JSON,CSV 등 여러가지 데이타 포맷에 대한 Decoder를 지원한다.

위의 CSV 문자열을 csv 디코더를 이용하여 파싱해보자


record_defaults = [ ["null"],[1],[1900],["null"],["null"]]

id, num, year, rtype , rtime = tf.decode_csv(

   value, record_defaults=record_defaults,field_delim=',')


csv decoder를 사용하기 위해서는 각 필드의 디폴트 값을 지정해줘야 한다. record_default는 각 필드의 디폴트 값을 지정해 주는 것은 물론이고, 각 필드의 데이타 타입을 (string,int,float etc)를 정의 하는 역할을 한다.

디폴트 값은 csv 데이타에서 해당 필드가 비워져 있을때 채워 진다.

위에서는 record_deafult에서 첫번째 필드는 string 형이고 디폴트는 “null”로, 두번째 필드는 integer 형이고, 디폴트 값은 1로, 세번째 필드는 integer 형이고 디폴트는 1900 으로, 네번째와 다섯번째 필드는 모두 string형이고, 디폴트 값을 “null” 로 지정하였다.

이 디폴트 값 세팅을 가지고 tf.decode_csv를 이용하여 파싱 한다.

value는 앞에서 읽어 드린 CSV 문자열이다. record_defaults= 를 이용하여 레코드의 형과 디폴트 값을 record_defaults에 정해진 값으로 지정하였고, CSV 파일에서 각 필드를 구분하기 위한 구분자를 ‘,’를 사용한다는 것을 명시 하였다.

다음 Session을 실행하여, 이 Decoder를 실행하면 csv의 각 행을 파싱하여, 각 필드를 id,num,year,rtype,rtime이라는 필드에 리턴하게 된다.


이를 정리해보면 다음과 같은 구조를 가지게 된다.


예제

위에서 설명한 CSV 파일명을 받아서 TextLineReader를 이용하여 각 파일을 읽고, 각 파일에서 CSV 포맷의 데이타를 읽어서 출력하는 예제의 전체 코드를 보면 다음과 같다.


import tensorflow as tf

from numpy.random.mtrand import shuffle


#define filename queue

filename_queue = tf.train.string_input_producer(['/Users/terrycho/training_datav2/queue_test_data/b1.csv'

                                                ,'/Users/terrycho/training_datav2/queue_test_data/c2.csv']

                                                ,shuffle=False,name='filename_queue')

# define reader

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)


#define decoder

record_defaults = [ ["null"],[1],[1900],["null"],["null"]]

id, num, year, rtype , rtime = tf.decode_csv(

   value, record_defaults=record_defaults,field_delim=',')


with tf.Session() as sess:

   

   coord = tf.train.Coordinator()

   threads = tf.train.start_queue_runners(sess=sess, coord=coord)

   

   for i in range(100):

       print(sess.run([id, num, year, rtype , rtime]))

   

   coord.request_stop()

   coord.join(threads)                                        


지금까지 파일에서 데이타를 읽어서 학습 데이타로 사용하는 방법에 대해서 알아보았다.

다음에는 이미지 기반의 CNN 모델을 학습 시키기 위해서 이미지 데이타를 전처리 하고 읽는 방법에 대해서 설명하도록 하겠다.

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

구글의 IOT 솔루션

클라우드 컴퓨팅 & NoSQL/M2M & IOT | 2017.03.10 10:31 | Posted by 조대협


구글의 IOT 솔루션


조대협 (http://bcho.tistory.com)


오늘 샌프란시스코 구글 NEXT 행사에서 IOT 솔루션에 대한 소개가 있었는데, 내용이 괜찮아서 정리를 해놓는다.



구글의 특징은 안드로이드 플랫폼, 클라우드 , 분석 플랫폼, 개발자 에코 시스템  등 End to End 에 걸쳐서 상당히 다양한 포트폴리오를 가지고 있다는 것이 장점인데 이를 잘 녹여낸 아키텍쳐 구성이다.

디바이스 OS

IOT는 라즈베리파이와 같은 임베디드 디바이스를 사용하는 것이 일반적인데, 이런 임베디드 시스템 운용에 어려운 점중의 하나가 보안이다.

장비에 따라서 보안적인 문제가 없는지 체크를 해야 하고, 주기적으로 기능 및 보안에 대한 업데이트를 해줘야 하는데, 구글의 Android IOT (https://developer.android.com/things/index.html) 플랫폼은 이를 다 자동으로 해준다.


더구나, 기존의 모바일 안드로이드 플랫폼을 기반으로 하기 때문에, 안드로이드 개발자 풀을 그대로 사용할 수 있다는 장점이 있다.

이미 Android IOT 플랫폼은 인텔,라즈베리파이등 여러 디바이스 업체와 협업을 하면서 Certi 작업을 하고 있기 때문에 잘 알려진 플랫폼이라면 보안 테스트나 별도의 기능 테스트 없이 바로 사용이 가능하다.


백앤드

IOT의 백앤드는 구글 클라우드 플랫폼을 이용한다.

  • 디바이스로 부터 수집된 데이타는 Pub/Sub 큐에 저장된후

  • DataFlow 프레임웍을 통해서 배치나 실시간 스트리밍 분석이 되고

  • 분석된 데이타는 빅테이블이나 빅쿼리에 저장된다. 분석이나 리포팅을 위해서는 빅쿼리, 타임 시리즈 데이타나 고속의 데이타 접근을 위해서는 빅테이블이 사용된다.

  • 이렇게 저장된 데이타들은 구글의 머신러닝 프레임웍 텐서플로우의 클라우드 런타임인 CloudML을 사용해서 분석 및 예측 모델을 만들게 된다.



머신러닝을 등에 탑재한  디바이스

구글이 재미있는 점은 텐서플로우라는 머신러닝 프레임웍을 가지고 있다는 것인데, 애초부터 텐서플로우의 디자인은 서버 뿐만 아니라, 클라이언트 그리고 IOT 디바이스에서 동작하게 디자인이 되었다. 그래서 학습된 모델을 디바이스로 전송하여, 디바이스에서 머신러닝을 이용한 예측이 가능하다.

예를 들어 방범용 카메라를 만들었을때, 방문자의 사진을 클라우드로 저장하는 시나리오가 있다고 하자.

그런데 매번 전송을 하면 배터리나 네트워크 패킷 요금이 문제가 될 수 있기 때문에, 텐서 플로우 기반의 얼굴 인식 모델을 탑재하여 등록되지 않은 사용자만 사진을 찍어서 클라우드로 전송하게 하는 등의 시나리오 구현이 가능하다.


파이어 베이스 연동

동영상을 보다가 놀란점 중의 하나는 파이어 베이스가 Android IOT에 연동이 된다.

아래 그림은 온도를 측정해서 팬의 속도를 조정하는 시나리오인데, 우측 하단에 보면 파이어베이스가 위치해 있다.



센서로 부터 온도를 측정한 다음, 디바이스 컨트롤러로 온도 조정 명령을 내리는 것을 파이어베이스 메시징 서비스를 이용하도록 되어 있다.


결론

Android IOT 서비스 하나만 IOT 서비스로 내놓은 것이 아니라 구글 클라우드 플랫폼, 텐서플로우에 파이어베이스까지 구글의 기존의 노하우들을 묶어서 포트폴리오를 만들어 내었고, 더구나 이러한 기술들이 개발자 에코 시스템이 이미 형성이 되어 있는 시스템인 점에서, IOT 개발에 있어서 누구나 쉽게 IOT 서비스를 개발할 수 있게 한다는데, 큰 의미가 있다고 본다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

'클라우드 컴퓨팅 & NoSQL > M2M & IOT' 카테고리의 다른 글

구글의 IOT 솔루션  (0) 2017.03.10
TI의 IOT 개발용 센서 키트  (0) 2016.03.17
MQTT 서버 간단 공부 노트  (2) 2014.02.13

딥러닝을 이용한 숫자 이미지 인식 #2/2


앞서 MNIST 데이타를 이용한 필기체 숫자를 인식하는 모델을 컨볼루셔널 네트워크 (CNN)을 이용하여 만들었다. 이번에는 이 모델을 이용해서 필기체 숫자 이미지를 인식하는 코드를 만들어 보자


조금 더 테스트를 쉽게 하기 위해서, 파이썬 주피터 노트북내에서 HTML 을 이용하여 마우스로 숫자를 그릴 수 있도록 하고, 그려진 이미지를 어떤 숫자인지 인식하도록 만들어 보겠다.



모델 로딩

먼저 앞의 예제에서 학습을한 모델을 로딩해보도록 하자.

이 코드는 주피터 노트북에서 작성할때, 모델을 학습 시키는 코드 (http://bcho.tistory.com/1156) 와 별도의 새노트북에서 구현을 하도록 한다.


코드

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data


#이미 그래프가 있을 경우 중복이 될 수 있기 때문에, 기존 그래프를 모두 리셋한다.

tf.reset_default_graph()


num_filters1 = 32


x = tf.placeholder(tf.float32, [None, 784])

x_image = tf.reshape(x, [-1,28,28,1])


#  layer 1

W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,num_filters1],

                                         stddev=0.1))

h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')


b_conv1 = tf.Variable(tf.constant(0.1, shape=[num_filters1]))

h_conv1_cutoff = tf.nn.relu(h_conv1 + b_conv1)


h_pool1 =tf.nn.max_pool(h_conv1_cutoff, ksize=[1,2,2,1],

                       strides=[1,2,2,1], padding='SAME')


num_filters2 = 64


# layer 2

W_conv2 = tf.Variable(

           tf.truncated_normal([5,5,num_filters1,num_filters2],

                               stddev=0.1))

h_conv2 = tf.nn.conv2d(h_pool1, W_conv2,

                      strides=[1,1,1,1], padding='SAME')


b_conv2 = tf.Variable(tf.constant(0.1, shape=[num_filters2]))

h_conv2_cutoff = tf.nn.relu(h_conv2 + b_conv2)


h_pool2 =tf.nn.max_pool(h_conv2_cutoff, ksize=[1,2,2,1],

                       strides=[1,2,2,1], padding='SAME')


# fully connected layer

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*num_filters2])


num_units1 = 7*7*num_filters2

num_units2 = 1024


w2 = tf.Variable(tf.truncated_normal([num_units1, num_units2]))

b2 = tf.Variable(tf.constant(0.1, shape=[num_units2]))

hidden2 = tf.nn.relu(tf.matmul(h_pool2_flat, w2) + b2)


keep_prob = tf.placeholder(tf.float32)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)


w0 = tf.Variable(tf.zeros([num_units2, 10]))

b0 = tf.Variable(tf.zeros([10]))

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, '/Users/terrycho/anaconda/work/cnn_session')


print 'reload has been done'


그래프 구현

코드를 살펴보면, #prepare session 부분 전까지는 이전 코드에서의 그래프를 정의하는 부분과 동일하다. 이 코드는 우리가 만든 컨볼루셔널 네트워크를 복원하는 부분이다.


변수 데이타 로딩

그래프의 복원이 끝나면, 저장한 세션의 값을 다시 로딩해서 학습된 W와 b값들을 다시 로딩한다.


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, '/Users/terrycho/anaconda/work/cnn_session')


이때 saver.restore 부분에서 앞의 예제에서 저장한 세션의 이름을 지정해준다.

HTML을 이용한 숫자 입력

그래프와 모델 복원이 끝났으면 이 모델을 이용하여, 숫자를 인식해본다.

테스트하기 편리하게 HTML로 마우스로 숫자를 그릴 수 있는 화면을 만들어보겠다.

주피터 노트북에서 새로운 Cell에 아래와 같은 내용을 입력한다.


코드

input_form = """

<table>

<td style="border-style: none;">

<div style="border: solid 2px #666; width: 143px; height: 144px;">

<canvas width="140" height="140"></canvas>

</div></td>

<td style="border-style: none;">

<button onclick="clear_value()">Clear</button>

</td>

</table>

"""


javascript = """

<script type="text/Javascript">

   var pixels = [];

   for (var i = 0; i < 28*28; i++) pixels[i] = 0

   var click = 0;


   var canvas = document.querySelector("canvas");

   canvas.addEventListener("mousemove", function(e){

       if (e.buttons == 1) {

           click = 1;

           canvas.getContext("2d").fillStyle = "rgb(0,0,0)";

           canvas.getContext("2d").fillRect(e.offsetX, e.offsetY, 8, 8);

           x = Math.floor(e.offsetY * 0.2)

           y = Math.floor(e.offsetX * 0.2) + 1

           for (var dy = 0; dy < 2; dy++){

               for (var dx = 0; dx < 2; dx++){

                   if ((x + dx < 28) && (y + dy < 28)){

                       pixels[(y+dy)+(x+dx)*28] = 1

                   }

               }

           }

       } else {

           if (click == 1) set_value()

           click = 0;

       }

   });

   

   function set_value(){

       var result = ""

       for (var i = 0; i < 28*28; i++) result += pixels[i] + ","

       var kernel = IPython.notebook.kernel;

       kernel.execute("image = [" + result + "]");

   }

   

   function clear_value(){

       canvas.getContext("2d").fillStyle = "rgb(255,255,255)";

       canvas.getContext("2d").fillRect(0, 0, 140, 140);

       for (var i = 0; i < 28*28; i++) pixels[i] = 0

   }

</script>

"""


다음 새로운 셀에서, 다음 코드를 입력하여, 앞서 코딩한 HTML 파일을 실행할 수 있도록 한다.


from IPython.display import HTML

HTML(input_form + javascript)


이제 앞에서 만든 두 셀을 실행시켜 보면 다음과 같이 HTML 기반으로 마우스를 이용하여 숫자를 입력할 수 있는 박스가 나오는것을 확인할 수 있다.



입력값 판정

앞의 HTML에서 그린 이미지는 앞의 코드의 set_value라는 함수에 의해서, image 라는 변수로 784 크기의 벡터에 저장된다. 이 값을 이용하여, 이 그림이 어떤 숫자인지를 앞서 만든 모델을 이용해서 예측을 해본다.


코드


p_val = sess.run(p, feed_dict={x:[image], keep_prob:1.0})


fig = plt.figure(figsize=(4,2))

pred = p_val[0]

subplot = fig.add_subplot(1,1,1)

subplot.set_xticks(range(10))

subplot.set_xlim(-0.5,9.5)

subplot.set_ylim(0,1)

subplot.bar(range(10), pred, align='center')

plt.show()

예측

예측을 하는 방법은 쉽다. 이미지 데이타가 image 라는 변수에 들어가 있기 때문에, 어떤 숫자인지에 대한 확률을 나타내는 p 의 값을 구하면 된다.


p_val = sess.run(p, feed_dict={x:[image], keep_prob:1.0})


를 이용하여 x에 image를 넣고, 그리고 dropout 비율을 0%로 하기 위해서 keep_prob를 1.0 (100%)로 한다. (예측이기 때문에 당연히 dropout은 필요하지 않다.)

이렇게 하면 이 이미지가 어떤 숫자인지에 대한 확률이 p에 저장된다.

그래프로 표현

그러면 이 p의 값을 찍어 보자


fig = plt.figure(figsize=(4,2))

pred = p_val[0]

subplot = fig.add_subplot(1,1,1)

subplot.set_xticks(range(10))

subplot.set_xlim(-0.5,9.5)

subplot.set_ylim(0,1)

subplot.bar(range(10), pred, align='center')

plt.show()


그래프를 이용하여 0~9 까지의 숫자 (가로축)일 확률을 0.0~1.0 까지 (세로축)으로 출력하게 된다.

다음은 위에서 입력한 숫자 “4”를 인식한 결과이다.



(보너스) 첫번째 컨볼루셔널 계층 결과 출력

컨볼루셔널 네트워크를 학습시키다 보면 종종 컨볼루셔널 계층을 통과하여 추출된 특징 이미지들이 어떤 모양을 가지고 있는지를 확인하고 싶을때가 있다. 그래서 각 필터를 통과한 값을 이미지로 출력하여 확인하고는 하는데, 여기서는 이렇게 각 필터를 통과하여 인식된 특징이 어떤 모양인지를 출력하는 방법을 소개한다.


아래는 우리가 만든 네트워크 중에서 첫번째 컨볼루셔널 필터를 통과한 결과 h_conv1과, 그리고 이 결과에 bias 값을 더하고 활성화 함수인 Relu를 적용한 결과를 출력하는 예제이다.


코드


conv1_vals, cutoff1_vals = sess.run(

   [h_conv1, h_conv1_cutoff], feed_dict={x:[image], keep_prob:1.0})


fig = plt.figure(figsize=(16,4))


for f in range(num_filters1):

   subplot = fig.add_subplot(4, 16, f+1)

   subplot.set_xticks([])

   subplot.set_yticks([])

   subplot.imshow(conv1_vals[0,:,:,f],

                  cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()


x에 image를 입력하고, dropout을 없이 모든 네트워크를 통과하도록 keep_prob:1.0으로 주고, 첫번째 컨볼루셔널 필터를 통과한 값 h_conv1 과, 이 값에 bias와 Relu를 적용한 값 h_conv1_cutoff를 계산하였다.

conv1_vals, cutoff1_vals = sess.run(

   [h_conv1, h_conv1_cutoff], feed_dict={x:[image], keep_prob:1.0})


첫번째 필터는 총 32개로 구성되어 있기 때문에, 32개의 결과값을 imshow 함수를 이용하여 흑백으로 출력하였다.




다음은 bias와 Relu를 통과한 값인 h_conv_cutoff를 출력하는 예제이다. 위의 코드와 동일하며 subplot.imgshow에서 전달해주는 인자만 conv1_vals → cutoff1_vals로 변경되었다.


코드


fig = plt.figure(figsize=(16,4))


for f in range(num_filters1):

   subplot = fig.add_subplot(4, 16, f+1)

   subplot.set_xticks([])

   subplot.set_yticks([])

   subplot.imshow(cutoff1_vals[0,:,:,f],

                  cmap=plt.cm.gray_r, interpolation='nearest')

   

plt.show()


출력 결과는 다음과 같다



이제까지 컨볼루셔널 네트워크를 이용한 이미지 인식을 텐서플로우로 구현하는 방법을 MNIST(필기체 숫자 데이타)를 이용하여 구현하였다.


실제로 이미지를 인식하려면 전체적인 흐름은 같지만, 이미지를 전/후처리 해내야 하고 또한 한대의 머신이 아닌 여러대의 머신과 GPU와 같은 하드웨어 장비를 사용한다. 다음 글에서는 MNIST가 아니라 실제 칼라 이미지를 인식하는 방법에 대해서 데이타 전처리에서 부터 서비스까지 전체 과정에 대해서 설명하도록 하겠다.


예제 코드 : https://github.com/bwcho75/tensorflowML/blob/master/MNIST_CNN_Prediction.ipynb


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


텐서플로우로 모델을 만들어보자

Softmax를 이용한 숫자 인식

조대협 (http://bcho.tistory.com)


텐서플로우와 머신러닝에 대한 개념에 대해서 대략적으로 이해 했으면 간단한 코드를 한번 짜보자.

MNIST

그러면 이제 실제로 텐서플로우로 모델을 만들어서 학습을 시켜보자. 예제에 사용할 시나리오는 MNIST (Mixed National Institute of Standards and Technology database) 라는 데이타로, 손으로 쓴 숫자이다. 이 손으로 쓴 숫자 이미지를 0~9 사이의 숫자로 인식하는 예제이다.



이 예제는 텐서플로우 MNIST 튜토리얼 (https://www.tensorflow.org/tutorials/mnist/beginners/) 을 기반으로 작성하였는데, 설명이 빠진 부분과 소스코드 일부분이 수정되었으니 내용이 약간 다르다는 것을 인지해주기를 바란다.


MNIST 숫자 이미지를 인식하는 모델을 softmax 알고리즘을 이용하여 만든 후에, 트레이닝을 시키고, 정확도를 체크해보도록 하겠다.

데이타셋

MNIST 데이타는 텐서플로우 내에 라이브러리 형태로 내장이 되어 있어서 쉽게 사용이 가능하다. tensorflow.examples.tutorials.mnist 패키지에 데이타가 들어 있는데, read_data_sets 명령어를 이용하면 쉽게 데이타를 로딩할 수 있다.


데이타 로딩 코드

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data


mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)


Mnist 데이타셋에는 총 60,000개의 데이타가 있는데, 이 데이타는  크게 아래와 같이 세종류의 데이타 셋으로 나눠 진다. 모델 학습을 위한 학습용 데이타인 mnist.train 그리고, 학습된 모델을 테스트하기 위한 테스트 데이타 셋은 minst.test, 그리고 모델을 확인하기 위한 mnist.validation 데이타셋으로 구별된다.

각 데이타는 아래와 같이 학습용 데이타 55000개, 테스트용 10,000개, 그리고, 확인용 데이타 5000개로 구성되어 있다.


데이타셋 명

행렬 차원

데이타 종류

노트

mnist.train.images

55000 x 784

학습 이미지 데이타


mnist.train.labels

55000 x 10

학습 라벨 데이타


mnist.test.images

10000 x 784

테스트용 이미지 데이타


mnist.test.labels

10000 x 10

테스트용 라벨 데이타


mnist.validation.images

5000 x 784

확인용 이미지 데이타


mnist.validation.labels

5000 x 10

확인용 라벨 데이타



각 데이타셋은 학습을 위한 글자 이미지를 저장한 데이타 image 와, 그 이미지가 어떤 숫자인지를 나타낸 라벨 데이타인 label로 두개의 데이타 셋으로 구성되어 있다.

이미지

먼저 이미지 데이타를 보면 아래 그림과 같이 28x28 로 구성되어 있는데,


이를 2차원 행렬에서 1차원으로 쭈욱 핀 형태로 784개의 열을 가진 1차원 행렬로 변환되어 저장이 되어 있다.

mnist.train.image는 이러한 784개의 열로 구성된 이미지가 55000개가 저장이 되어 있다.


텐서플로우의 행렬을 나타내는 shape의 형태로는 shape=[55000,784] 이 된다.


마찬가지로, mnist.train.image 도 784개의 열로 구성된 숫자 이미지 데이타를 10000개를 가지고 있고 텐서플로우의 shape으로는 shape=[10000,784] 로 표현될 수 있다.


라벨

Label 은 이미지가 나타내는 숫자가 어떤 숫자인지를 나타내는 라벨 데이타로 10개의 숫자로 이루어진 1행 행렬이다. 0~9 순서로, 그 숫자이면 1 아니면 0으로 표현된다. 예를 들어 1인경우는 [0,1,0,0,0,0,0,0,0,0,0]  9인 경우는 [0,0,0,0,0,0,0,0,0,1] 로 표현된다.

이미지 데이타에 대한 라벨이기 때문에, 당연히 이미지 데이타 수만큼의 라벨을 가지게 된다.



Train 데이타 셋은 이미지가 55000개 였기 때문에, Train의 label의 수 역시도 55000개가 된다.


소프트맥스 회귀(Softmax regression)

숫자 이미지를 인식하는 모델은 많지만, 여기서는 간단한 알고리즘 중 하나인 소프트 맥스 회귀 모델을 사용하겠다.

소프트맥스 회귀에 대한 알고리즘 자체는 자세히 설명하지 않는다. 소프트맥스 회귀는 classification 알고리즘중의 하나로, 들어온 값이 어떤 분류인지 구분해주는 알고리즘이다.

예를 들어 A,B,C 3개의 결과로 분류해주는 소프트맥스의 경우 결과값은 [0.7,0.2,0.1] 와 같이 각각 A,B,C일 확률을 리턴해준다. (결과값의 합은 1.0이 된다.)


(cf. 로지스틱 회귀는 두 가지로만 분류가 가능하지만, 소프트맥스 회귀는 n 개의 분류로 구분이 가능하다.)


모델 정의

소프트맥스로 분류를 할때, x라는 값이 들어 왔을때, 분류를 한다고 가정했을때, 모델에서 사용하는 가설은 다음과 같다.  

y = softmax (W*x + b)

W는 weight, 그리고 b는 bias 값이다.

y는 최종적으로 10개의 숫자를 감별하는 결과가 나와야 하기 때문에, 크기가 10인 행렬이 되고,

10개의 결과를 만들기 위해서 W역시 10개가 되어야 하며, 이미지 하나는 784개의 숫자로 되어 있기 때문에, 10개의 값을 각각 784개의 숫자에 적용해야 하기 때문에, W는 784x10 행렬이 된다. 그리고, b 는 10개의 값에 각각 더하는 값이기 때문에, 크기가 10인 행렬이 된다.


이를 표현해보면 다음과 같은 그림이 된다.


이를 텐서플로우 코드로 표현하면 다음과 같다.

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


우리가 구하고자 하는 값은 x 값으로 학습을 시켜서 0~9를 가장 잘 구별해내는 W와 b의 값을 찾는 일이다.


여기서 코드를 주의깊게 봤다면 하나의 의문이 생길것이다.

x의 데이타는 총 55000개로, 55000x784 행렬이 되고, W는 784x10 행렬이다. 이 둘을 곱하면, 55000x10 행렬이 되는데, b는 1x10 행렬로 차원이 달라서 합이 되지 않는다.

텐서플로우와 파이썬에서는 이렇게 차원이 다른 행렬을 큰 행렬의 크기로 늘려주는 기능이 있는데, 이를 브로드 캐스팅이라고 한다. (브로드 캐스팅 개념 참고 - http://bcho.tistory.com/1153)

브로드 캐스팅에 의해서 b는 55000x10 사이즈로 자동으로 늘어나고 각 행에는 첫행과 같은 데이타들로 채워지게 된다.


소프트맥스 알고리즘을 이해하고 사용해도 좋지만, 텐서플로우에는 이미 tf.nn.softmax 라는 함수로 만들어져 있고, 대부분 많이 알려진 머신러닝 모델들은 샘플들이 많이 있기 때문에, 대략적인 원리만 이해하고 가져다 쓰는 것을 권장한다. 보통 모델을 다 이해하려고 하다가 수학에서 부딪혀서 포기하는 경우가 많은데, 디테일한 모델을 이해하기 힘들면, 그냥 함수나 예제코드를 가져다 쓰는 방법으로 접근하자. 우리가 일반적인 프로그래밍에서도 해쉬테이블이나 트리와 같은 자료구조에 대해서 대략적인 개념만 이해하고 미리 정의된 라이브러리를 사용하지 직접 해쉬 테이블등을 구현하는 경우는 드물다.

코스트(비용) 함수

이 소프트맥스 함수에 대한 코스트 함수는 크로스엔트로피 (Cross entropy) 함수의 평균을 이용하는데, 복잡한 산식 없이 그냥 외워서 쓰자. 다행이도 크로스엔트로피 함수역시 함수로 구현이 되어있다.


Cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y_))


가설에 의해 계산된 값 y를 넣지 않고 tf.matmul(x, W) + b 를 넣은 이유는 tf.nn.softmax_cross_entropy_with_logits 함수 자체가 softmax를 포함하기 때문이다.

y_은 학습을 위해서 입력된 값이다.


텐서플로우로 구현

자 그럼 학습을 위한 전체 코드를 보자


샘플코드

# Import data

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

 

mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)


# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])                                                                               

learning_rate = 0.5

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)


print ("Training")

sess = tf.Session()

init = tf.global_variables_initializer() #.run()

sess.run(init)

for _ in range(1000):

   # 1000번씩, 전체 데이타에서 100개씩 뽑아서 트레이닝을 함.  

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})


print ('b is ',sess.run(b))

print('W is',sess.run(W))

데이타 로딩

# Import data

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

 

mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)


앞에서 데이타에 대해서 설명한것과 같이 데이타를 로딩하는 부분이다. read_data_sets에 들어가 있는 디렉토리는 샘플데이타를 온라인에서 다운 받는데, 그 데이타를 임시로 저장해놓을 위치이다.

모델 정의

다음은 소프트맥스를 이용하여 모델을 정의한다.

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


x는 트레이닝 데이타를 저장하는 스테이크홀더, W는 Weight, b는 bias 값이고, 모델은 y = tf.nn.softmax(tf.matmul(x, W) + b) 이 된다.

코스트함수와 옵티마이저 정의

모델을 정의했으면 학습을 위해서, 코스트 함수를 정의한다.

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])                                                                               

learning_rate = 0.5

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)


코스트 함수는 크로스 엔트로피 함수의 평균값을 사용한다. 크로스엔트로피 함수는 아래와 같은 모양인데, 이 값을 전체 트레이닝 데이타셋의 수로 나눠 준다.  


그래서 최종적으로 cost 함수는 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_)) 이 된다.

이 때 주의할점은 y가 아니라 k를 넣어야 한다. softmax_cross_entropy_with_logits 함수는 softmax를 같이 하기 때문에, 위의 y값은 이미 softmax를 해버린 함수이기 때문에 softmax가 중복될 수 있다.



이 코스트 함수를 가지고 코스트가 최소화가 되는 W와 b를 구해야 하는데, 옵티마이져를 사용한다. 여기서는 경사 하강법(Gradient Descent Optimizer)를 사용하였고 경사하강법에 대한 개념은 http://bcho.tistory.com/1141 를 참고하기 바란다.

GradientDescent에서 learning rate는 학습속도 인데, 학습 속도에 대한 개념은 http://bcho.tistory.com/1141 글을 참고하기 바란다.

세션 초기화  

print ("Training")

sess = tf.Session()

init = tf.global_variables_initializer() #.run()

sess.run(init)


tf.Session() 을 이용해서 세션을 만들고, global_variable_initializer()를 이용하여, 변수들을 모두 초기화한후, 초기화 값을 sess.run에 넘겨서 세션을 초기화 한다.

트레이닝 시작

세션이 생성되었으면 이제 트레이닝을 시작한다.

for _ in range(1000):

   # 1000번씩, 전체 데이타에서 100개씩 뽑아서 트레이닝을 함.  

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})


여기서 주목할점은 Batch training 과 Stochastic training 인데, Batch training이란, 학습을 할때 전체 데이타를 가지고 한번에 학습을 하는게 아니라 전체 데이타셋을 몇 개로 쪼갠후 나눠서 트레이닝을 하는 방법을 배치 트레이닝이라고 한다. 그중에서 여기에 사용된 배치 방법은 Stochastic training 이라는 방법인데, 원칙대로라면 전체 55000개 의 학습데이타가 있기 때문에 배치 사이즈를 100으로 했다면, 100개씩 550번 순차적으로 데이타를 읽어서 학습을 해야겠지만, Stochastic training은 전체 데이타중 일부를 샘플링해서 학습하는 방법으로, 여기서는 배치 한번에 100개씩의 데이타를 뽑아서 1000번 배치로 학습을 하였다.

(텐서플로우 문서에 따르면, 전체 데이타를 순차적으로 학습 시키기에는 연산 비용이 비싸기 때문에, 샘플링을 해도 비슷한 정확도를 낼 수 있기 때문에, 예제 차원에서 간단하게, Stochastic training을 사용한것으로 보인다.)


결과값 출력

print ('b is ',sess.run(b))

print('W is',sess.run(W))


마지막으로 학습에서 구해진 W와 b를 출력해보자

다음은 실행 결과 스크린 샷이다.




먼저 앞에서 데이타를 로딩하도록 지정한 디렉토리에, 학습용 데이타를 다운 받아서 압축 받는 것을 확인할 수 있다. (Extracting.. 부분)

그 다음 학습이 끝난후에, b와 W 값이 출력되었다. W는 784 라인이기 때문에, 중간을 생략하고 출력되었으나, 각 행을 모두 찍어보면 아래와 같이 W 값이 들어가 있는 것을 볼 수 있다.


모델 검증

이제 모델을 만들고 학습을 시켰으니, 이 모델이 얼마나 정확하게 작동하는지를 테스트 해보자.  mnist.test.image 와 mnist.test.labels 데이타셋을 이용하여 테스트를 진행하는데, 앞에서 나온 모델에 mnist.test.image 데이타를 넣어서 예측을 한 후에, 그 결과를 mnist.test.labels (정답)과 비교해서 정답률이 얼마나 되는지를 비교한다.


다음은 모델 테스팅 코드이다. 이 코드를 위의 코드 뒤에 붙여서 실행하면 된다.


모델 검증 코드

print ("Testing model")

# Test trained model

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print('accuracy ',sess.run(accuracy, feed_dict={x: mnist.test.images,

                                    y_: mnist.test.labels}))

print ("done")

   

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

코드를 보자, tf.argmax 함수를 이해해야 하는데, argmax(y,1)은 행렬 y에서 몇번째에 가장 큰 값이 들어가 있는지를 리턴해주는 함수이다. 아래 예제 코드를 보면


session = tf.InteractiveSession()


data = tf.constant([9,2,11,4])

idx = tf.argmax(data,0)

print idx.eval()


session.close()


[9,2,11,4] 에서 최대수는 11이고, 이 위치는 두번째 (0 부터 시작한다)이기 때문에 0을 리턴한다.

두번째 변수는 어느축으로 카운트를 할것인지를 선택한다. , 1차원 배열의 경우에는 0을 사용한다.

여기서 y는 2차원 행렬인데, 0이면 같은 열에서 최대값인 순서, 1이면 같은 행에서 최대값인 순서를 리턴한다.

그럼 원래 코드로 돌아오면 tf.argmax(y,1)은 y의 각행에서 가장 큰 값의 순서를 찾는다. y의 각행을 0~9으로 인식한 이미지의 확률을 가지고 있다.

아래는 4를 인식한 y 값인데, 4의 값이 0.7로 가장높기 (4일 확률이 70%, 3일 확률이 10%, 1일 확률이 20%로 이해하면 된다.) 때문에, 4로 인식된다.

여기서 tf.argmax(y,1)을 사용하면, 행별로 가장 큰 값을 리턴하기 때문에, 위의 값에서는 4가 리턴이된다.

테스트용 데이타에서 원래 정답이 4로 되어 있다면, argmax(y_,1)도 4를 리턴하기 때문에, tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))는 tf.equals(4,4)로 True를 리턴하게 된다.


모든 테스트 셋에 대해서 검증을 하고 나서 그 결과에서 True만 더해서, 전체 트레이닝 데이타의 수로 나눠 주면 결국 정확도가 나오는데, tf.cast(boolean, tf.float32)를 하면 텐서플로우의 bool 값을 float32 (실수)로 변환해준다. True는 1.0으로 False는 0.0으로 변환해준다. 이렇게 변환된 값들의 전체 평균을 구하면 되기 때문에, tf.reduce_mean을 사용한다.


이렇게 정확도를 구하는 함수가 정의되었으면 이제 정확도를 구하기 위해 데이타를 넣어보자

sess.run(accuracy, feed_dict={x: mnist.test.images,y_: mnist.test.labels})

x에 mnist.test.images 데이타셋으로 이미지 데이타를 입력받아서  y (예측 결과)를 계산하고, y_에는 mnist.test.labels 정답을 입력 받아서, y와 y_로 정확도 accuracy를 구해서 출력한다.


최종 출력된 accuracy 정확도는 0.9 로 대략 90% 정도가 나온다.


Testing model
('accuracy ', 0.90719998)
done


다른 알고리즘의 정확도는 http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html 를 참고하면 된다.


다음글에서는 소프트맥스 모델 대신 CNN (Convolutional Neural Network)를 이용하여, 조금 더 정확도가 높은  MNIST를 구현하고 테스트해보도록 하겠다.


참고 자료

  • 텐서플로우 MNIST https://www.tensorflow.org/tutorials/mnist/beginners/


2017년 1월 6일 추가

위의 코드 부분에 잘못된 부분이 있어서 수정합니다.


k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])                                                                               

learning_rate = 0.5

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))


https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.softmax_cross_entropy_with_logits.md 레퍼런스에 따르면


WARNING: This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. Do not call this op with the output of softmax, as it will produce incorrect results.


tf.nn.softmax_cross_entropy_with_logits 함수는 softmax를 포함하고 있다. 그래서 softmax를 적용한 y를 넣으면 안되고 softmax 적용전인 k를 넣어야 한다.



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우 #2 - 행렬과 텐서플로우


조대협 (http://bcho.tistory.com)


머신러닝은 거의 모든 연산을 행렬을 활용한다. 텐서플로우도 이 행렬을 기반으로 하고, 이 행렬의 차원을 shape 라는 개념으로 표현하는데, 행렬에 대한 기본적이 개념이 없으면 헷갈리기 좋다. 그래서 이 글에서는 간략하게 행렬의 기본 개념과 텐서플로우내에서 표현 방법에 대해서 알아보도록 한다.


행렬의 기본 개념 훝어보기

행과 열

행렬의 가장 기본 개념은 행렬이다. mxn 행렬이 있을때, m은 행, n은 열을 나타내며, 행은 세로의 줄수, 열은 가로줄 수 를 나타낸다. 아래는 3x4 (3행4열) 행렬이다.


곱셈


곱셈은 앞의 행렬에서 행과, 뒤의 행렬의 열을 순차적으로 곱해준다.

아래 그림을 보면 쉽게 이해가 될것이다.



이렇게 앞 행렬의 행과 열을 곱해나가면 결과적으로 아래와 같은 결과가 나온다.


이때 앞의 행렬의 열과, 뒤의 행렬의 행이 같아야 곱할 수 있다.

즉 axb 행렬과 mxn 행렬이 있을때, 이 두 행렬을 곱하려면 b와 m이 같아야 한다.

그리고 이 두 행렬을 곱하면 axn 사이즈의 행렬이 나온다.

행렬의 덧셈과 뺄셈

행렬의 덧셈과 뺄셈은 단순하다. 같은 행과 열에 있는 값을 더하거나 빼주면 되는데, 단지 주의할점은 덧셈과 뺄샘을 하는 두개의 행렬의 차원이 동일해야 한다.


텐서 플로우에서 행렬의 표현

행렬에 대해서 간단하게 되짚어 봤으면, 그러면 텐서 플로우에서는 어떻게 행렬을 표현하는지 알아보자


을 하는 코드를 살펴보자


예제코드

import tensorflow as tf


x = tf.constant([ [1.0,2.0,3.0] ])

w = tf.constant([ [2.0],[2.0],[2.0] ])

y = tf.matmul(x,w)

print x.get_shape()


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y)


print result


실행 결과

(1, 3)
[[ 12.]]



텐서플로우에서 행렬의 곱셈은 일반 * 를 사용하지 않고, 텐서플로우 함수  “tf.matmul” 을 사용한다.

중간에, x.get_shape()를 통해서, 행렬 x의 shape를 출력했는데, shape는 행렬의 차원이라고 생각하면 된다. x는 1행3열인 1x3 행렬이기 때문에, 위의 결과와 같이 (1,3)이 출력된다.


앞의 예제에서는 contant 에 저장된 행렬에 대한 곱셈을 했는데, 당연히 Variable 형에서도 가능하다.


예제 코드

import tensorflow as tf


x = tf.Variable([ [1.,2.,3.] ], dtype=tf.float32)

w = tf.constant([ [2.],[2.],[2.]], dtype=tf.float32)

y = tf.matmul(x,w)


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y)


print result


Constant 및 Variable 뿐 아니라,  PlaceHolder에도 행렬로 저장이 가능하다 다음은 PlaceHolder에 행렬 데이타를 feeding 해주는 예제이다.

입력 데이타 행렬 x는 PlaceHolder 타입으로 3x3 행렬이고, 여기에 곱하는 값 w는 1x3 행렬이다.


예제 코드는 다음과 같다.


예제코드

import tensorflow as tf


input_data = [ [1.,2.,3.],[1.,2.,3.],[2.,3.,4.] ] #3x3 matrix

x = tf.placeholder(dtype=tf.float32,shape=[None,3])

w = tf.Variable([ [2.],[2.],[2.] ], dtype = tf.float32) #3x1 matrix

y = tf.matmul(x,w)


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y,feed_dict={x:input_data})


print result


실행결과

[[ 12.]
[ 12.]
[ 18.]]


이 예제에서 주의 깊게 봐야 할부분은 placeholder x 를 정의하는 부분인데, shape=[None,3] 으로 정의했다 3x3 행렬이기 때문에, shape=[3,3]으로 지정해도 되지만 None 이란, 갯수를 알수 없음을 의미하는 것으로, 텐서플로우 머신러닝 학습에서 학습 데이타가 계속해서 들어오고  학습 때마다 데이타의 양이 다를 수 있기 때문에, 이를 지정하지 않고 None으로 해놓으면 들어오는 숫자 만큼에 맞춰서 저장을 한다.

브로드 캐스팅

텐서플로우 그리고 파이썬으로 행렬 프로그래밍을 하다보면 헷갈리는 개념이 브로드 캐스팅이라는 개념이 있다. 먼저 다음 코드를 보자


예제코드

import tensorflow as tf


input_data = [

    [1,1,1],[2,2,2]

   ]

x = tf.placeholder(dtype=tf.float32,shape=[2,3])

w  =tf.Variable([[2],[2],[2]],dtype=tf.float32)

b  =tf.Variable([4],dtype=tf.float32)

y = tf.matmul(x,w)+b


print x.get_shape()

sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y,feed_dict={x:input_data})


print result


실행결과

(2, 3)
[[ 24.]
[ 48.]]


행렬 x는 2x3 행렬이고 w는 3x1 행렬이다. x*w를 하면 2*1 행렬이 나온다.

문제는 +b 인데, b는 1*1 행렬이다. 행렬의 덧셈과 뺄셈은 차원이 맞아야 하는데, 이 경우 더하고자 하는 대상은 2*1, 더하려는 b는 1*1로 행렬의 차원이 다르다. 그런데 어떻게 덧셈이 될까?

이 개념이 브로드 캐스팅이라는 개념인데, 위에서는 1*1인 b행렬을 더하는 대상에 맞게 2*1 행렬로 자동으로 늘려서 (stretch) 계산한다.


브로드 캐스팅은 행렬 연산 (덧셈,뺄셈,곱셈)에서 차원이 맞지 않을때, 행렬을 자동으로 늘려줘서(Stretch) 차원을 맞춰주는 개념으로 늘리는 것은 가능하지만 줄이는 것은 불가능하다.


브로드 캐스팅 개념은 http://scipy.github.io/old-wiki/pages/EricsBroadcastingDoc 에 잘 설명되어 있으니 참고하기 바란다. (아래 그림은 앞의 링크를 참조하였다.)


아래는 4x3 행렬 a와 1x3 행렬 b를 더하는 연산인데, 차원이 맞지 않기 때문에, 행렬 b의 열을 늘려서 1x3 → 4x3 으로 맞춰서 연산한 예이다.


만약에 행렬 b가 아래 그림과 같이 1x4 일 경우에는 열을 4 → 3으로 줄이고, 세로 행을 1→ 4 로 늘려야 하는데, 앞에서 언급한바와 같이, 브로드 캐스팅은 행이나 열을 줄이는 것은 불가능하다.


다음은 양쪽 행렬을 둘다 늘린 케이스 이다.

4x1 행렬 a와 1x3 행렬 b를 더하면 양쪽을 다 수용할 수 있는 큰 차원인 4x3 행렬로 변환하여 덧셈을 수행한다.



텐서플로우 행렬 차원 용어


텐서플로우에서는 행렬을 차원에 따라서 다음과 같이 호칭한다.

행렬이 아닌 숫자나 상수는 Scalar, 1차원 행렬을 Vector, 2차원 행렬을 Matrix, 3차원 행렬을 3-Tensor 또는 cube, 그리고 이 이상의 다차원 행렬을 N-Tensor라고 한다.


그리고 행렬의 차원을 Rank라고 부른다. scalar는 Rank가 0, Vector는 Rank 가 1, Matrix는 Rank가 2가 된다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

구글 빅쿼리 사용시 count(distinct)의 값이 정확하지 않은 문제


조대협 (http://bcho.tistory.com)


빅쿼리에서 count(distinct) 문을 사용하면, 종종 값이 부 정확하게 나오는 경우가 있다.

예를 들어서 아래의 두 쿼리는 같은 결과가 나와야 하는데, 아래 count(distinct id)를 쓴 쿼리는 다른 값을 리턴한다.

select count(*)

where id="mykey"

from mytable


select count(distinct id)

where id="mykey"

from mytable


빅쿼리에는 쿼리가 빅쿼리에 최적화된 SQL과 유사한 Legacy SQL 쿼리가 있고, ANSI SQL을 따르는 스탠다드 쿼리가 있다.

Legacy SQL 쿼리의 경우 확인해보니, 동작 방식이 다소 상이한 부분이 있다.
COUNT([DISTINCT] field [, n])
Returns the total number of non-NULL values in the scope of the function.

If you use the DISTINCT keyword, the function returns the number of distinct values for the specified field. Note that the returned value for DISTINCT is a statistical approximation and is not guaranteed to be exact.

Count(distinct) 함수의 경우 리턴 값이 1000이 넘을 경우에는 성능 향상을 위해서 정확한 값을 리턴하지 않고, 근사치 값 (approximation)을 리턴하도록 되어 있습니다. 그래서 상이한 결과가 나온다.

count(distinct platformadid,10000) 으로 하게 되면 리턴값이 10000을 넘을 경우에만 근사치 값을 리턴하게 됩니다. 즉 리턴값이 10000 이하이면 정확한 값을 리턴한다.

만약에 Legacy SQL에서 근사치 값이 아닌 정확한 값을 리턴 받으려면 count(distinct)
EXACT_COUNT_DISTINCT(field)
Returns the exact number of non-NULL, distinct values for the specified field. For better scalability and performance, use COUNT(DISTINCT field).

함수를 사용하시는 방법이 있고, 아니면 Legacy SQL 의 특성에 의한 오류를 방지하시려면 쿼리를 ANSI SQL 모드로 실행하시면 됩니다.
ANSI SQL 모드로 수행하는 방법은 아래와 같이 "Use Legacy SQL" Box를 unchecking 하시고, 테이블 이름을 []로 감싸지 마시고 ``로 감싸서 사용하시면 된다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우-#1 자료형의 이해

빅데이타/머신러닝 | 2016.12.09 22:42 | Posted by 조대협

텐서플로우-#1 자료형의 이해


조대협 (http://bcho.tistory.com)


딥러닝에 대한 대략적인 개념을 익히고 실제로 코딩을 해보려고 하니, 모 하나를 할때 마다 탁탁 막힌다. 파이썬이니 괜찮겠지 했는데, (사실 파이썬도 다 까먹어서 헷갈린다.) 이건 라이브러리로 도배가 되어 있다.

당연히 텐서플로우 프레임웍은 이해를 해야 하고, 데이타를 정재하고 시각화 하는데, numpy,pandas와 같은 추가적인 프레임웍에 대한 이해가 필요하다.


node.js 시작했을때도 자바스크립트 때문에 많이 헤매고 몇달이 지난후에야 어느정도 이해하게 되었는데, 역시나 차근차근 기초 부터 살펴봐야 하지 않나 싶다.


텐서 플로우에 대해 공부한 내용들을 하나씩 정리할 예정인데, 이 컨텐츠들은 유투브의 이찬우님의 강의를 기반으로 정리하였다. 무엇보다 한글이고 개념을 쉽게 풀어서 정리해주시기 때문에, 왠만한 교재 보다 났다.

https://www.youtube.com/watch?v=a74pFg8paVc


텐서플로우 환경 설정

텐서 플로우 환경을 설정 하는 방법은 쉽지 않다. 텐서플로우 뿐 아니라, 여러 파이썬 버전과 그에 맞는 라이브러리도 함께 설정해야 하기 때문에 여간 까다로운게 아닌데, 텐서플로우 환경은 크게 대략 두 가지 환경으로 쉽게 설정이 가능하다.

구글 데이타랩

첫번째 방법은 구글에서 주피터 노트북을 도커로 패키징해놓은 패키지를 이용하는 방법이다. 도커 패키지안에, numpy,pandas,matplotlib,tensorflow,python 등 텐서플로우 개발에 필요한 모든 환경이 패키징 되어 있다. 데이타 랩 설치 방법은 http://bcho.tistory.com/1134 링크를 참고하면 된다.

도커 런타임이 설치되어 있다면, 데이타랩 환경 설정은 10분이면 충분하다.

아나콘다

다음 방법은 일반적으로 가장 많이 사용하는 방법인데, 파이썬 수학관련 라이브러리를 패키징해놓은 아나콘다를 이용하는 방법이 있다. 자세한 환경 설정 방법은 https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html#anaconda-installation 를 참고하기 바란다. 아나콘다를 설치해놓고, tensorflow 환경(environment)를 정의한 후에, 주피터 노트북을 설치하면 된다. http://stackoverflow.com/questions/37061089/trouble-with-tensorflow-in-jupyter-notebook 참고


Tensorflow 환경을 만든 후에,

$ source activate tensorflow

를 실행해서 텐서 플로우 환경으로 전환한후, 아래와 같이 ipython 을 설치한후에, 주피터 (jupyter) 노트북을 설치하면 된다.

(tensorflow) username$ conda install ipython
(tensorflow) username$ pip install jupyter #(use pip3 for python3)


아나콘다 기반의 텐서플로우 환경 설정은 나중에 시간이 될때 다른 글을 통해서 다시 설명하도록 하겠다.

텐서플로우의 자료형

텐서플로우는 뉴럴네트워크에 최적화되어 있는 개발 프레임웍이기 때문에, 그 자료형과, 실행 방식이 약간 일반적인 프로그래밍 방식과 상의하다. 그래서 삽질을 많이 했다.


상수형 (Constant)

상수형은 말 그대로 상수를 저장하는 데이타 형이다.

  • tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)

와 같은 형태로 정의 된다. 각 정의되는 내용을 보면

  • value : 상수의 값이다.

  • dtype : 상수의 데이타형이다. tf.float32와 같이 실수,정수등의 데이타 타입을 정의한다.

  • shape : 행렬의 차원을 정의한다. shape=[3,3]으로 정의해주면, 이 상수는 3x3 행렬을 저장하게 된다.

  • name : name은 이 상수의 이름을 정의한다. name에 대해서는 나중에 좀 더 자세하게 설명하도록 하겠다.

간단한 예제를 하나 보자.

a,b,c 상수에, 각각 5,10,2 의 값을 넣은 후에, d=a*b+c 를 계산해서 계산 결과 d를 출력하려고 한다.

import tensorflow as tf


a = tf.constant([5],dtype=tf.float32)

b = tf.constant([10],dtype=tf.float32)

c = tf.constant([2],dtype=tf.float32)


d = a*b+c


print d

그런데, 막상 실행해보면, a*b+c의 값이 아니라 다음과 같이 Tensor… 라는 문자열이 출력된다.


Tensor("add_8:0", shape=(1,), dtype=float32)

그래프와 세션의 개념

먼저 그래프와 세션이라는 개념을 이해해야 텐서플로우의 프로그래밍 모델을 이해할 수 있다.

위의 d=a*b+c 에서 d 역시 계산을 수행하는 것이 아니라 다음과 같이 a*b+c 그래프를 정의하는 것이다.


실제로 값을 뽑아내려면, 이 정의된 그래프에 a,b,c 값을 넣어서 실행해야 하는데, 세션 (Session)을 생성하여,  그래프를 실행해야 한다. 세션은 그래프를 인자로 받아서 실행을 해주는 일종의 러너(Runner)라고 생각하면 된다.


자 그러면 위의 코드를 수정해보자


import tensorflow as tf


a = tf.constant([5],dtype=tf.float32)

b = tf.constant([10],dtype=tf.float32)

c = tf.constant([2],dtype=tf.float32)


d = a*b+c


sess = tf.Session()

result = sess.run(d)

print result



tf.Session()을 통하여 세션을 생성하고, 이 세션에 그래프 d를 실행하도록 sess.run(d)를 실행한다

이 그래프의 실행결과는 리턴값으로 result에 저장이 되고, 출력을 해보면 다음과 같이 정상적으로 52라는 값이 나오는 것을 볼 수 있다.


플레이스 홀더 (Placeholder)

자아 이제 상수의 개념을 알았으면, 이제는 플레이스 홀더에 대해서 알아보자.

y = x * 2 를 그래프를 통해서 실행한다고 하자. 입력값으로는 1,2,3,4,5를 넣고, 출력은 2,4,6,8,10을 기대한다고 하자. 이렇게 여러 입력값을 그래프에서 넣는 경우는 머신러닝에서 y=W*x + b 와 같은 그래프가 있다고 할 때, x는 학습을 위한 데이타가 된다.

즉 지금 살펴보고자 하는 데이타 타입은 학습을 위한 학습용 데이타를 위한 데이타 타입이다.


y=x*2를 정의하면 내부적으로 다음과 같은 그래프가 된다.


그러면, x에는 값을 1,2,3,4,5를 넣어서 결과값을 그래프를 통해서 계산해 내야한다. 개념적으로 보면 다음과 같다.



이렇게 학습용 데이타를 담는 그릇을 플레이스홀더(placeholder)라고 한다.

플레이스홀더에 대해서 알아보면, 플레이스 홀더의 위의 그래프에서 x 즉 입력값을 저장하는 일종의 통(버킷)이다.

tf.placeholder(dtype,shape,name)

으로 정의된다.

플레이스 홀더 정의에 사용되는 변수들을 보면

  • dtype : 플레이스홀더에 저장되는 데이타형이다. tf.float32와 같이 실수,정수등의 데이타 타입을 정의한다.

  • shape : 행렬의 차원을 정의한다. shapre=[3,3]으로 정의해주면, 이 플레이스홀더는 3x3 행렬을 저장하게 된다.

  • name : name은 이 플레이스 홀더의 이름을 정의한다. name에 대해서는 나중에 좀 더 자세하게 설명하도록 하겠다.


그러면 이 x에 학습용 데이타를 어떻게 넣을 것인가? 이를 피딩(feeding)이라고 한다.

다음 예제를 보자


import tensorflow as tf


input_data = [1,2,3,4,5]

x = tf.placeholder(dtype=tf.float32)

y = x * 2


sess = tf.Session()

result = sess.run(y,feed_dict={x:input_data})


print result


처음 input_data=[1,2,3,4,5]으로 정의하고

다음으로 x=tf.placeholder(dtype=tf.float32) 를 이용하여, x를 float32 데이타형을 가지는 플레이스 홀더로 정의하다. shape은 편의상 생략하였다.

그리고 y=x * 2 로 그래프를 정의하였다.


세션이 실행될때, x라는 통에 값을 하나씩 집어 넣는데, (앞에서도 말했듯이 이를 피딩이라고 한다.)

sess.run(y,feed_dict={x:input_data}) 와 같이 세션을 통해서 그래프를 실행할 때, feed_dict 변수를 이용해서 플레이스홀더 x에, input_data를 피드하면, 세션에 의해서 그래프가 실행되면서 x는 feed_dict에 의해서 정해진 피드 데이타 [1,2,3,4,5]를 하나씩 읽어서 실행한다.


변수형 (Variable)

마지막 데이타형은 변수형으로,

y=W*x+b 라는 학습용 가설이 있을때, x가 입력데이타 였다면, W와 b는 학습을 통해서 구해야 하는 값이 된다.  이를 변수(Variable)이라고 하는데, 변수형은 Variable 형의 객체로 생성이 된다.


  • tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None)


변수형에 값을 넣는 것은 다음과 같이 한다.


var = tf.Variable([1,2,3,4,5], dtype=tf.float32)


자 그러면 값을 넣어보고 코드를 실행해보자


import tensorflow as tf


input_data = [1,2,3,4,5]

x = tf.placeholder(dtype=tf.float32)

W = tf.Variable([2],dtype=tf.float32)

y = W*x


sess = tf.Session()

result = sess.run(y,feed_dict={x:input_data})


print result


우리가 기대하는 결과는 다음과 같다. y=W*x와 같은 그래프를 가지고,


x는 [1,2,3,4,5] 값을 피딩하면서, 변수 W에 지정된 2를 곱해서 결과를 내기를 바란다.

그렇지만 코드를 실행해보면 다음과 같이 에러가 출력되는 것을 확인할 수 있다.



이유는 텐서플로우에서 변수형은 그래프를 실행하기 전에 초기화를 해줘야 그 값이 변수에 지정이 된다.


세션을 초기화 하는 순간 변수 W에 그 값이 지정되는데, 초기화를 하는 방법은 다음과 같이 변수들을 global_variables_initializer() 를 이용해서 초기화 한후, 초기화된 결과를 세션에 전달해 줘야 한다.


init = tf.global_variables_initializer()

sess.run(init)


그러면 초기화를 추가한 코드를 보자


import tensorflow as tf


input_data = [1,2,3,4,5]

x = tf.placeholder(dtype=tf.float32)

W = tf.Variable([2],dtype=tf.float32)

y = W*x


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y,feed_dict={x:input_data})


print result


초기화를 수행한 후, 코드를 수행해보면 다음과 같이 우리가 기대했던 결과가 출력됨을 확인할 수 있다.



텐서플로우를 처음 시작할때, Optimizer나 모델등에 대해 이해하는 것도 중요하지만, “데이타를 가지고 학습을 시켜서 적정한 값을 찾는다" 라는 머신러닝 학습 모델의 특성상, 모델을 그래프로 정의하고, 세션을 만들어서 그래프를 실행하고, 세션이 실행될때 그래프에 동적으로 값을 넣어가면서 (피딩) 실행한 다는 기본 개념을 잘 이해해야, 텐서플로우 프로그래밍을 제대로 시작할 수 있다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

딥러닝의 개념과 유례

빅데이타/머신러닝 | 2016.11.27 20:37 | Posted by 조대협


딥러닝의 역사와 기본 개념

조대협 (http://bcho.tistory.com)

인경 신경망 알고리즘의 기본 개념


알파고나 머신러닝에서 많이 언급되는 알고리즘은 단연 딥러닝이다.

이 딥러닝은 머신러닝의 하나의 종류로 인공 신경망 알고리즘의 새로운 이름이다.


인공 신경망은 사람의 두뇌가 여러개의 뉴론으로 연결되서 복잡한 연산을 수행한다는데서 영감을 받아서, 머신러닝의 연산을 여러개의 간단한 노드를 뉴론 처럼 상호 연결해서 복잡한 연산을 하겠다는 아이디어이다.


<출처 : http://webspace.ship.edu/cgboer/theneuron.html >


이 뉴런의 구조를 조금 더 단순하게 표현해보면 다음과 같은 모양이 된다.


뉴런은 돌기를 통해서 여러 신경 자극 (예를 들어 피부에서 촉각)을 입력 받고, 이를 세포체가 인지하여 신호로 변환해준다. 즉 신경 자극을 입력 받아서 신호라는 결과로 변환해주는 과정을 거치는데,


이를 컴퓨터로 형상화 해보면 다음과 같은 형태가 된다.


뉴런의 돌기처럼 외부에서 입력값 X1,X2,X3를 읽어드리고, 이 입력값들은 돌기를 거치면서 인식되어 각각 W1*X1, W2*X2, W3*X3로 변환이 되어 세포체에 도착하여 여러 돌기에서 들어온 값은 (W1*X1+W2*X2+W3*X3)+b 값으로 취합된다.

이렇게 취합된 값은 세포체내에서 인지를 위해서 어떤 함수 f(x)를 거치게 되고, 이 값이 일정 값을 넘게 되면, Y에 1이라는 신호를 주고, 일정값을 넘지 않으면 0이라는 값을 준다.


즉 뉴런을 본떠서 입력값 X1...n에 대해서, 출력값  Y가 0 또는 1이 되는 알고리즘을 만든것이다.

Perceptron


이를 수식을 사용하여 한번 더 단순화를 시켜보면

X를 행렬이라고 하고,  X = [X1,X2,X3] 라고 하자.

그리고 역시 이에 대응되는 행렬 W를 정의하고 W=[W1,W2,W3] 라고 하면


<뉴런을 본떠서 만든 Perceptron>


입력 X를 받아서 W를 곱한 후에, 함수 f(x)를 거쳐서 0 또는 1의 결과를 내는 Y를 낸다.

즉 입력 X를 받아서 참(1)인지 거짓(0) 인지를 판별해주는 계산 유닛을 Perceptron이라고 한다.


이 Perceptron은 결국 W*X+b인 선을 그려서 이 선을 기준으로 1 또는 0을 판단하는 알고리즘이다.

예를 들어서 동물의 크기 (X1)와 동물의 복종도 (X2)라는 값을 가지고, 개인지 고양이인지를 구별하는 Perceptron이 있을때,

W*X+b로 그래프를 그려보면 (X=[X1,X2], W=[W1,W2] 다음과 같은 직선이 되고, 이 직선 윗부분이면 개, 아랫 부분이면 고양이 식으로 분류가 가능하다.



이 Perceptron은 입력에 따라서 Y를 1,0으로 분류해주는 알고리즘으로 앞에서 설명한 로지스틱 회귀 알고리즘을 사용할 수 있는데, 이때 로지스틱 회귀에서 사용한 함수 f(x)는 sigmoid 함수를 사용하였기 때문에, 여기서는 f(x)를 이 sigmoid 함수를 사용했다. 이 함수 f(x)를 Activation function이라고 한다. 이 Activation function은 중요하니 반드시 기억해놓기 바란다.


( 참고. 손쉬운 이해를 위해서 로지스틱 회귀와 유사하게 sigmoid 함수를 사용했지만,  sigmoid 함수이외에 다양한 함수를 Activation 함수로 사용할 수 있으며, 요즘은 sigmoid 함수의 정확도가 다른 Activation function에 비해 떨어지기 때문에, ReLu와 같은 다른 Activation function을 사용한다. 이 Activation function)에 대해서는 나중에 설명하겠다.)


Perceptron의 XOR 문제

그런데 이 Perceptron는 결정적인 문제를 가지고 있는데, 직선을 그려서 AND,OR 문제를 해결할 수 는 있지만,  XOR 문제를 풀어낼 수 가 없다는 것이다.


다음과 같은 Perceptron이 있을때


다음 그림 처럼 AND나 OR 문제는 직선을 그려서 해결이 가능하다.


그러나 다음과 같은 XOR 문제는 WX+b의 그래프로 해결이 가능할까?



<그림 XOR 문제>



하나의 선을 긋는 Perceptron으로는 이 문제의 해결이 불가능하다.


MLP (Multi Layer Perceptron) 다중 계층 퍼셉트론의 등장

이렇게 단일 Perceptron으로 XOR 문제를 풀 수 없음을 증명되었는데, 1969년에 Marvin Minsky 교수가, 이 문제를 해결 하는 방법으로 Perceptron을 다중으로 겹치면 이 문제를 해결할 수 있음을 증명하였다.



<그림 Multi Layer Perceptron의 개념도>


그런데, 이 MLP 역시 다른 문제를 가지고 있는데, MLP에서 학습을 통해서 구하고자 하는 것은 최적의 W와 b의 값을 찾아내는 것인데, 레이어가 복잡해질 수 록, 연산이 복잡해져서 현실적으로 이 W와 b의 값을 구하는 것이 불가능 하다는 것을 Marvin Minsky 교수가 증명 하였다.

Back Propagation 을 이용한 MLP 문제 해결

이런 문제를 해결 하기 위해서 Back propagation이라는 알고리즘이 도입되었는데, 기본 개념은

뉴럴 네트워크를 순방향으로 한번 연산을 한 다음에, 그 결과 값을 가지고, 뉴럴 네트워크를 역방향 (backward)로 계산하면서 값을 구한다는 개념이다.


Backpropagation의 개념에 대해서는 다음글에서 자세하게 설명하도록 한다.


Back Propagation 문제와 ReLu를 이용한 해결

그러나 이 Back Propagation 역시 문제를 가지고 있었는데, 뉴럴 네트워크가 깊어질 수 록 Backpropagation이 제대로 안된다.

즉 순방향(foward)한 결과를 역방향(backward)로 반영하면서 계산을 해야 하는데, 레이어가 깊을 수 록 뒤에 있는 값이 앞으로 전달이 되지 않는 문제 이다. 이를 Vanishing Gradient 문제라고 하는데, 그림으로 개념을 표현해보면 다음과 같다.

뒤에서 계산한 값이 앞의 레이어로 전달이 잘 되지 않는 것을 표현하기 위해서 흐리게 네트워크를 표현하였다.



이는 ReLu라는 activation function (앞에서는 sigmoid 함수를 사용했다.)으로 해결이 되었다.


뉴럴 네트워크의 초기값 문제

이 문제를 캐나다 CIFAR 연구소의 Hinton 교수님이 “뉴럴네트워크는 학습을 할때 초기값을 잘 주면 학습이 가능하다" 라는 것을 증명하면서 깊은 레이어를 가진 뉴럴 네트워크의 사용이 가능하게 된다.

이때 소개된 알고리즘이 초기값을 계산할 수 있는 RBM (Restricted Boltzmann Machine)이라는 알고리즘으로 이 알고리즘을 적용한 뉴럴 네트워크는 특히 머신러닝 알고리즘을 테스트 하는 ImageNet에서 CNN (Convolutional Neural Network)가 독보적인 성능을 내면서 뉴럴 네트워크가 주목 받기 시작하였다.


딥러닝

딥러닝이라는 어원은 새로운 알고리즘이나 개념을 이야기 하는 것이 아니고, 뉴럴 네트워크가 새롭게 주목을 받기 시작하면서 Hinton 교수님 등이 뉴럴네트워크에 대한 리브랜딩의 의미로 뉴럴 네트워크를 새로운 이름 “딥러닝"으로 부르기 시작하면서 시작 되었다.


추가

뉴럴네트워크와 딥러닝의 대략적인 개념과 역사에 대해서 알아보았다.

이 글에서는 뉴럴 네트워크에 대한 대략적인 개념만을 설명하고 있는데, 주로 언급되는 단어를 중심으로 기억하기를 바란다.

  • Perceptron

  • MLP (Multi Layer Perceptron)

  • Back propagation

  • ReLu

  • RBM


이외에도, Drop Out, Mini Batch, Ensemble 과 같은 개념이 있는데, 이 개념은 추후에 다시 설명하고, 딥러닝에서 이미지 인식에 많이 사용되는 CNN (Convolutional Neural Network)을 나중에 소개하도록 하겠다.