분류 전체보기 1294

오토인코더를 이용한 비정상 거래 검출 모델의 구현 #4 - 오토인코더 기반의 신용카드 이상거래 검출코드와 분석 결과

오토인코더를 이용한 비정상 거래 검출 모델 구현 #4신용카드 이상 거래 감지 코드 조대협 (http://bcho.tistory.com) 구현코드 전체 모델 코드는 https://github.com/bwcho75/tensorflowML/blob/master/autoencoder/creditcard_fraud_detection/3.model.ipynb 에 있다. 코드는 http://bcho.tistory.com/1198 에 설명한 MNIST 데이타를 이용한 오토인코더 모델과 다르지 않다. 차이는 데이타 피딩을 784개의 피쳐에서 28개의 피쳐로만 변환하였고, 데이타를 MNIST 데이타셋에서 CSV에서 읽는 부분만 변경이 되었기 때문에 쉽게 이해할 수 있으리라 본다. 학습 및 예측 결과모델을 만들고 학습을 한..

파이썬을 이용한 데이타 시각화 #1 - Matplotlib 기본 그래프 그리기

파이썬을 이용한 데이타 시각화 #1 - Matplotlib 기본 그래프 그리기 조대협 (http://bcho.tistory.com) 백앤드 엔지니어와 백그라운드를 가진 경험상, 머신러닝을 공부하면서 헷갈렸던 부분중 하나가, 데이타에 대한 시각화이다. 머신러닝은 모델을 구현하는 것도 중요하지만, 학습할 데이타를 선별하고, 만들어진 모델을 검증하기 위해서는 데이타를 이해하는 것이 필수적이고 이를 위해서는 데이타를 시각화 해서 보는 것이 매우 중요하다. 그동안 그래프를 그리는 것을 스택오버플로우등에서 찾아서 복붙을 해서 사용하다가 matplotlib를 정리해야겠다고 해서 메뉴얼을 봤지만 도무지 이해가 되지 않아서, 결국 온라인 강좌를 들어서 정리해봤는데, 역시 강좌를 들으니까는 훨씬 빠르게 이해가 된다.참고한..

오토인코더를 이용한 비정상 거래 검출 모델의 구현 #3 - 데이타 전처리

오토 인코더를 이용한 신용카드 비정상 거래 검출 #3 학습 데이타 전처리 조대협 (http://bcho.tistory.com) 앞의 글들 (http://bcho.tistory.com/1198 http://bcho.tistory.com/1197 ) 에서 신용카드 이상 검출을 하기 위한 데이타에 대한 분석과, 오토 인코더에 대한 기본 원리 그리고 오토 인코더에 대한 샘플 코드를 살펴보았다. 이제 실제 모델을 만들기에 앞서 신용카드 거래 데이타를 학습에 적절하도록 전처리를 하도록한다.데이타양이 그리 크지 않기 때문에, 데이타 전처리는 파이썬 데이타 라이브러리인 pandas dataframe을 사용하였다. 여기서 사용된 전처리 코드는 https://github.com/bwcho75/tensorflowML/blo..

지난 1년 회고

구글 입사한지 대략 1년6개월 정도 지남기술적으로는 그동안 애매했던 빅데이타 분석에 대한 기술과 어느정도 인사이트를 가지게 되었고 머신러닝에 대한 전반적인 이해와 딥러닝 기술에 대한 이해와 기본적인 구현능력을 가지게 되었음영어는 쬐끔 늘어난거 같으나 큰 발전은 없고 크게 봤을때, 집에 일찍 들어오기 때문에, 애들과 보내는 시간이 압도적으로 늘어난 반면 공부에 투자하는 시간은 상대적으로 줄었음.돌이켜 보면 1년반이면 길다면 길고 짧다면 짧은 시간인데, 기술적으로 어느정도 발전이 있었음.2017이 엊그제 같은데 벌써 3분기를 달리고 있는데. 연말에 정리는 어떻게 될련지 궁금하다. 남은건 딥러닝 기술을 더 발전 시키는것 이외에, 데이타 시각화 및 분석 능력을 가지는게 단기적인 목표 9월 20일 생각 로그

사는 이야기 2017.09.20

오토인코더를 이용한 비정상 거래 검출 모델의 구현 #2 - MNIST 오토 인코더 샘플

오토인코더를 이용한 비정상 거래 검출 모델의 구현 #2MNIST 오토인코더 샘플 조대협 (http://bcho.tistory.com) 신용카드 이상 거래 감지 시스템 구현에 앞서서, 먼저 오토인코더에 대한 이해를 하기 위해서 오토 인코더를 구현해보자. 오토 인코더 샘플 구현은 MNIST 데이타를 이용하여 학습하고 복원하는 코드를 만들어 보겠다. 이 코드의 원본은 Etsuji Nakai 님의 https://github.com/enakai00/autoencoder_example 코드를 사용하였다. 데이타 전처리이 예제에서는 텐서플로우에 포함된 MNIST 데이타 tensorflow.contrib.learn.python.learn.datasets 를 tfrecord 로 변경해서 사용한다.TFRecord에 대한 ..

오토 인코더를 이용한 비정상 거래 검출 모델의 구현 #1

오토인코더를 이용한 비정상 거래 검출 모델의 구현 #1신용카드 거래 데이타 분석 조대협 (http://bcho.tistory.com) 이미지 인식 모델은 만들어봤고, 아무래도 실제로 짜봐야 하는지라 좋은 시나리오를 고민하고 있는데, 추천 시스템도 좋지만, 이상 거래 감지에 대해 접할 기회가 있어서 이상 거래 감지 (Fraud Detection System) 시스템을 만들어 보기로 하였다 데이타셋샘플 데이타를 구해야 하는데, 마침 kaggle.com 에 크레딧 카드 이상거래 감지용 데이타가 있었다.https://www.kaggle.com/dalpozz/creditcardfraud 에서 데이타를 다운 받을 수 있다. CSV 형태로 되어 있으며, 2013년 유럽 카드사의 실 데이타 이다. 2일간의 데이타 이고..

텐서플로우 하이레벨 API를 Estimator를 이용한 모델 정의 방법

텐서플로우 하이레벨 API Estimator를 이용한 모델 정의 방법 조대협 (http://bcho.tistory.com) 텐서플로우의 하이레벨 API를 이용하기 위해서는 Estimator 를 사용하는데, Estimator 는 Predefined model 도 있지만, 직접 모델을 구현할 수 있다. 하이레벨 API와 Estimator에 대한 설명은 http://bcho.tistory.com/1195 글을 참고하기 바란다. 이 문서는 Custom Estimator를 이용하여 Estimator를 구현하는 방법에 대해서 설명하고 있으며, 대부분 https://www.tensorflow.org/extend/estimators 의 내용을 참고하여 작성하였다.Custom EstimatorEstimator의 스켈레톤..

텐서플로우 하이레벨 API

텐서플로우 하이레벨 API에 대한 이해 머신러닝을 공부하고 구현하다 보니, 모델 개발은 새로운 모델이나 알고리즘을 개발하는 일 보다는, 기존의 알고리즘을 습득해서 내 데이타 모델에 맞도록 포팅하고, 학습 시키는 것이 주된 일이 되고, 오히려, 모델 보다는 데이타에 대한 이해와 전처리에 많은 시간이 소요되었다. 특히 여러번 실험을 하면서 패러미터를 조정하고 피쳐등을 조정하기 위해서는 많은 실험을 할 수 있어야 하는데, 이러기 위해서는 실험(학습)시간이 짧아야 한다. 이를 위해서는 모델 개발 보다 분산 러닝을 하기 위한 코드 변경 작업등이 많이 소요된다. 결론을 요약하자면, 실제로 알고리즘을 개발하는 데이타 과학자가 아니라, 머신러닝을 활용만 하는 프랙티셔너 입장이라면, 모델을 개발하는 것 보다는 있는 모델..

Tensorflow Object Detection API를 이용한 물체 인식 #3-얼굴은 학습시켜보자

Object Detection API를 이용하여 커스텀 데이타 학습하기얼굴인식 모델 만들기 조대협 (http://bcho.tistory.com) 이번글에서는 Tensorflow Object Detection API를 이용하여 직접 이미지를 인식할 수 있는 방법에 대해서 알아보자. 이미 가지고 있는 데이타를 가지고 다양한 상품에 대한 인식이나, 사람 얼굴에 대한 인식 모델을 머신러닝에 대한 전문적인 지식 없이도 손쉽게 만들 수 있다. Object Detection API 설치Object Detection API 설치는 http://bcho.tistory.com/1193 와 http://bcho.tistory.com/1192 에서 이미 다뤘기 때문에 별도로 언급하지 않는다.학습용 데이타 데이타 생성 및 준비..

Tensorflow Object Detection API를 이용한 물체 인식 #2-동물 사진을 학습 시켜보자

Object Detection API에 애완동물 사진을 학습 시켜 보자 조대협 (http://bcho.tistory.com) Object Detection API에 이번에는 애완동물 사진 데이타를 학습시켜 보도록 한다.애완 동물 학습 데이타의 원본은 Oxford-IIIT Pets lives 로 http://www.robots.ox.ac.uk/~vgg/data/pets/ 에 있다. 약 37개의 클래스에, 클래스당 200개 정도의 이미지를 가지고 있다. 이번 글에서는 이 애완동물 데이타를 다운 받아서, Object Detection API에 학습 시키는 것까지 진행을 한다.데이타를 다운로드 받은 후, Object Detection API에 학습 시키기 위해서, 데이타 포맷을 TFRecord 형태로 변환한 후..