빅데이타 & 머신러닝/머신러닝

텐서플로우 - 파일에서 학습데이타를 읽어보자#2 (Reader와 Decoder)

Terry Cho 2017. 3. 11. 23:33

텐서플로우 - 파일에서 학습데이타를 읽어보자#2


CSV 파일을 읽어보자

조대협 (http://bcho.tistory.com)


이 글은 http://bcho.tistory.com/1163 의 두번째 글이다. 앞의 글을 먼저 읽고 읽기를 권장한다.

앞의 글에서는 트레이닝 파일명의 목록을 읽어서 큐에 넣고, 파일명을 하나씩 읽어오는 처리 방법에 대해서 알아보았다. 이번 글에서는 그 파일들에 있는 데이타를 읽어서 파싱한 후, 실제 트레이닝 세션에 학습용 데이타로 불러들이는 방법을 설명하도록 한다.

파일에서 데이타 읽기 (Reader)

finename_queue에 파일명이 저장되었으면, 이 파일들을 하나씩 읽어서 처리하는 방법을 알아본다.

파일에서 데이타를 읽어오는 컴포넌트를 Reader라고 한다. 이 Reader들은 filename_queue에 저장된 파일들을 하나씩 읽어서, 그 안에 있는 데이타를 읽어서 리턴한다.


예를 들어 TextLineReader의 경우에는 , 텍스트 파일에서, 한줄씩 읽어서 문자열을 리턴한다.


꼭 텐서플로우에서 미리 정해져있는 Reader 들을 사용할 필요는 없지만, 미리 정의된 Reader를 쓰면 조금 더 편리하다.

미리 정의된 Reader로는 Text File에서, 각 필드가 일정한 길이를 가지고 있을때 사용할 수 있는, FixedLengthRecordReader 그리고, 텐서플로우 데이타를 바이너리 포맷으로 저장하는 TFRecord 포맷에 대한 리더인 TFRecordReader 등이 있다.


Reader를 사용하는 방법은 다음과 같다.

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)


먼저 Reader 변수를 지정한 다음, reader.read를 이용하여 filename_queue 로 부터 파일을 읽게 하면 value에 파일에서 읽은 값이 리턴이 된다

예를 들어 csv 파일에 아래와 같은 문자열이 들어가 있다고 할때


167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54

67ea7e52-333e-43f3-a668-6d7893baa8fb,1,2016,REG,2:11

9e44593b-a870-446e-aed5-90a22ab0c952,1,2016,REG,2:32

48832a52-e56c-467f-a1ef-c6f8c6e908ea,1,2016,REG,2:17


위의 코드 처럼, TextLineReader를 이용하여 파일을 읽게 되면 value에는

처음에는 “167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54”이, 다음에는 “67ea7e52-333e-43f3-a668-6d7893baa8fb,1,2016,REG,2:11” 문자열이 순차적으로 리턴된다.

읽은 데이타를 디코딩 하기 (Decoder)

Reader에서 읽은 값은 파일의 원시 데이타 (raw)데이타이다. 아직 파싱(해석)이 된 데이타가 아닌데,

예를 들어 Reader를 이용해서 csv 파일을 읽었을 때, Reader에서 리턴되는 값은 csv 파일의 각 줄인 문자열이지, csv 파일의 각 필드 데이타가 아니다.


즉 우리가 학습에서 사용할 데이타는

167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54

하나의 문자열이 아니라

Id = “167c9599-c97d-4d42-bdb1-027ddaed07c0”,

Num  = 1

Year = 2016

rType = “REG”

rTime = “3:54”

과 같이 문자열이 파싱된 각 필드의 값이 필요하다.


이렇게 읽어드린 데이타를 파싱 (해석) 하는 컴포넌트를 Decoder라고 한다.


Reader와 마찬가지로, Decoder 역시 미리 정해진 Decoder 타입이 있는데, JSON,CSV 등 여러가지 데이타 포맷에 대한 Decoder를 지원한다.

위의 CSV 문자열을 csv 디코더를 이용하여 파싱해보자


record_defaults = [ ["null"],[1],[1900],["null"],["null"]]

id, num, year, rtype , rtime = tf.decode_csv(

   value, record_defaults=record_defaults,field_delim=',')


csv decoder를 사용하기 위해서는 각 필드의 디폴트 값을 지정해줘야 한다. record_default는 각 필드의 디폴트 값을 지정해 주는 것은 물론이고, 각 필드의 데이타 타입을 (string,int,float etc)를 정의 하는 역할을 한다.

디폴트 값은 csv 데이타에서 해당 필드가 비워져 있을때 채워 진다.

위에서는 record_deafult에서 첫번째 필드는 string 형이고 디폴트는 “null”로, 두번째 필드는 integer 형이고, 디폴트 값은 1로, 세번째 필드는 integer 형이고 디폴트는 1900 으로, 네번째와 다섯번째 필드는 모두 string형이고, 디폴트 값을 “null” 로 지정하였다.

이 디폴트 값 세팅을 가지고 tf.decode_csv를 이용하여 파싱 한다.

value는 앞에서 읽어 드린 CSV 문자열이다. record_defaults= 를 이용하여 레코드의 형과 디폴트 값을 record_defaults에 정해진 값으로 지정하였고, CSV 파일에서 각 필드를 구분하기 위한 구분자를 ‘,’를 사용한다는 것을 명시 하였다.

다음 Session을 실행하여, 이 Decoder를 실행하면 csv의 각 행을 파싱하여, 각 필드를 id,num,year,rtype,rtime이라는 필드에 리턴하게 된다.


이를 정리해보면 다음과 같은 구조를 가지게 된다.


예제

위에서 설명한 CSV 파일명을 받아서 TextLineReader를 이용하여 각 파일을 읽고, 각 파일에서 CSV 포맷의 데이타를 읽어서 출력하는 예제의 전체 코드를 보면 다음과 같다.


import tensorflow as tf

from numpy.random.mtrand import shuffle


#define filename queue

filename_queue = tf.train.string_input_producer(['/Users/terrycho/training_datav2/queue_test_data/b1.csv'

                                                ,'/Users/terrycho/training_datav2/queue_test_data/c2.csv']

                                                ,shuffle=False,name='filename_queue')

# define reader

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)


#define decoder

record_defaults = [ ["null"],[1],[1900],["null"],["null"]]

id, num, year, rtype , rtime = tf.decode_csv(

   value, record_defaults=record_defaults,field_delim=',')


with tf.Session() as sess:

   

   coord = tf.train.Coordinator()

   threads = tf.train.start_queue_runners(sess=sess, coord=coord)

   

   for i in range(100):

       print(sess.run([id, num, year, rtype , rtime]))

   

   coord.request_stop()

   coord.join(threads)                                        


지금까지 파일에서 데이타를 읽어서 학습 데이타로 사용하는 방법에 대해서 알아보았다.

다음에는 이미지 기반의 CNN 모델을 학습 시키기 위해서 이미지 데이타를 전처리 하고 읽는 방법에 대해서 설명하도록 하겠다.