serving 2

서버리스 오픈소스 - knative #1 소개 & Serving

Serveless를 위한 오픈소스 KNative조대협(http://bcho.tistory.com)배경근래에 들어서 컨테이너를 사용한 워크로드 관리는 쿠버네티스 de-facto 표준이 되어가고 있는데, 쿠버네티스 자체가 안정되어가고 있지만, 이를 현업에 적용하기 위해서는 아직까지 여러가지 챌린지가 있다.컨테이너 기반의 쿠버네티스 서비스가 지향하는 바는, 셀프서비스 기반의 데브옵스 모델로 인프라와 이를 자동화하는 플랫폼을 인프라엔지니어가 개발하여 개발팀에 제공하고, 개발팀은 개발과 배포/운영을 스스로 하는 모델이다.그런데 예를 들어 간단한 무상태(stateless) 웹서비스를 하나 구축한다 하더라도 Deployment,Ingress,Service 등의 쿠버네티스 리소스를 정의해서 배포해야 하고, 여기에 오토..

얼굴 인식 모델을 만들어보자 #6 - CloudML을 이용하여 예측하기

CloudML을 이용하여 예측하기조대협 (http://bcho.tistory.com) 지난글 (http://bcho.tistory.com/1189) 에서 학습된 모델을 *.pb 파일 포맷으로 Export 하였다. 그러면 이 Export 된 모델을 이용하여 예측 (prediction)을 하는 방법에 대해서 알아보겠다. 앞글에서도 언급했듯이, 예측은 Google CloudML을 이용한다.전체 코드를 https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/%2528wwoo%2529%2BML%2BEngine%2Bprediction.ipynb 를 참고하기 바란다. Export된 모델을 CloudML에 배포하기..