블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

KNative 를 보던중에, Autoscaling 처리를 어떻게 하는지 확인해보니,

기본은 Knative instance (한 Pod 겠지) 당 처리할 수 있는 concurrent request 수를 정해놓고, 이를 넘을 경우에 auto scaling 하는 방식이다. CPU가 아니라 connection 수를 통해서 한다. 

containerConcurrency limits the amount of concurrent requests are allowed into the application at a given time (hard limit), and is configured in the revision template.

스케일링 설정은


spec:
  template:
    metadata:
      autoscaling.knative.dev/minScale: "2"
      autoscaling.knative.dev/maxScale: "10"

min, max 값을 지정하는데, min 이 0 이면 콜드 스타트가 발생할 수 있기 때문에, 0 보다는 큰 수를 주는 것이 좋다. 


디폴트가 이 concurrent connection 수를 이용하는 방식인데, CPU 베이스도 가능하다.

spec:
  template:
    metadata:
      autoscaling.knative.dev/metric: concurrency
      autoscaling.knative.dev/class: hpa.autoscaling.knative.dev

위의 metric 모드를 사용하게 되면, concurrency 모드를 사용하게 되고, class 모드를 사용하게되면, HPA (Horizontal Pod Autoscaler)를 사용하게 된다. 


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Serveless를 위한 오픈소스 KNative #2 Eventing


조대협 (http://bcho.tistory.com)


knative의 다른 모듈로써는 비동기 메세지 처리를 위한 eventing 이라는 모듈이 있다. 카프카나, 구글 클라우드 Pub/Sub, AWS SQS와 같은 큐에서 메시지를 받거나 또는 Cron과 같은 타이머에서 이벤트가 발생하면 이를 받아서 처리할 수 있는 비동기 메커니즘을 제공하는 모듈이라고 보면 된다.


메시지 큐나 cron 과 같이 이벤트를 발생 시키는 자원들은 knative에 event source 라는 Custom Resource로 등록이 되고, 등록된 event source는 이벤트가 발생되면 지정된 knative 서비스로 이벤트 메시지를 HTTP로 전송한다. 이때 이벤트를 받는 knative 서비스는 앞에서 언급한 knative serving의 서비스이다. 이때 이벤트에 대한 스펙은 CNCF Serverless WG 에서 정의한 CloudEvents 스펙에 기반한다.

Hello Eventing

자세하게 Eventing에 대해서 알아보기 전에 간단한 예제를 살펴보자. 예제는 knative.dev의 cronjob  예제이다.  Crontab으로 이벤트를 생성하면, event-display 라는 서비스에서 이 이벤트를 받아서 이벤트의 내용을 간략하게 로그로 출력하는 예제이다.


먼저 이벤트를 읽어드릴 event-display 서비스를 배포하자. 해당 서비스는 HTTP post로 받은 이벤트의 내용을 log로 출력해주는 코드로 이벤트의 포맷은 앞에서 설명한 CloudEvent의 포맷을 따른다.

Go 로 구현된 코드이며, 코드 원본은 여기에 있다.

 해당 컨테이너를 배포하기 위해서 아래와 같이 service.yaml 파일을 만들고, kubectl apply -f service.yaml 을 이용해서 배포하면, crontab 에서 이벤트를 받는 serving 인스턴스가 준비된다.

apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: event-display

spec:

 runLatest:

   configuration:

     revisionTemplate:

       spec:

         container:

           image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/event_display

<그림. Event consumer용 knative 서비스 배포>


다음 Crontab event 소스를 아래와 같이 yaml로 정의한다.


apiVersion: sources.eventing.knative.dev/v1alpha1

kind: CronJobSource

metadata:

 name: test-cronjob-source

spec:

 schedule: "*/2 * * * *"

 data: '{"message": "Hello world!"}'

 sink:

   apiVersion: serving.knative.dev/v1alpha1

   kind: Service

   name: event-display

<그림. Crontab event source 정의>


spec>schedule 부분에 이벤트 주기에 대한 설정을 crontab 포맷을 따라서 하고, data 부분에 cron 이벤트가 발생할때 마다 보낼 데이타를 정의한다.

데이타를 보낼 목적지는 sink 부분에 지정하는데, kind에 타입을 정의하고 (여기서는 knative의 Service로 지정) 그리고 service 의 이름을 name에 정의한다. 앞에서 knative serving 서비스를 event-display로 지정하였기 때문에, 서비스명을 event-display로 정의한다.

yaml 파일 설정이 끝났으면 kubectl apply -f  명령을 이용해서 이벤트 소스를 등록하고, 동작을 하는지 확인해보도록 하자.


%kubectl logs -l serving.knative.dev/service=event-display -c user-container --since=10m


명령을 이용하면 앞에서 배포한 event-display 서비스의 로그를 볼 수 있는데, 결과를 보면 다음과 같다.



Data 부분에서 crontab 이벤트 소스에서 보내온 “message”:”Hello world!” 문자열이 도착한것을 확인할 수 있다.

Eventing detail

이벤트는 앞의 예제에서 본것과 같이 이벤트 소스에서 바로 Knative 서빙에서 받아서 처리하는 가장 기본적인 비동기 이벤트 처리 패턴이다.


Broker & Trigger

이러한 패턴이외에도 좀 더 다양한 패턴 구현이 가능한데, 두번째가 Broker와 Trigger이다. Broker는 이벤트 소스로 부터 메시지를 받아서 저장하는 버킷 역할을 하고, Broker에는 Trigger를 달 수 있는데, Trigger에는 메시지 조건을 넣어서, 특정 메시지 패턴만 서비스로 보낼 수 있다. 위의 패턴에서 필터를 추가한 패턴으로 보면 된다.



이해를 돕기 위해서 예제를 보자. 다음은 knative.dev 공식 사이트에 나와 있는 예제중에, Google Cloud Pub/Sub Source를 Broker로 연동하는 예제이다.


# Replace the following before applying this file:

#   MY_GCP_PROJECT: Replace with the GCP Project's ID.


apiVersion: sources.eventing.knative.dev/v1alpha1

kind: GcpPubSubSource

metadata:

 name: testing-source

spec:

 gcpCredsSecret:  # A secret in the knative-sources namespace

   name: google-cloud-key

   key: key.json

 googleCloudProject: MY_GCP_PROJECT  # Replace this

 topic: testing

 sink:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Broker

   name: default

<그림. github-pubsub-source.yaml>


위의 코드는 GCP Pub/Sub Source를 등록하는 부분인데, sink 부분은 이 소스에서 오는 메시지를 어디로 보낼지를 정하는 부분이다. 위에 보면 Broker로 보내는것을 볼 수 있다. Broker는 Default Broker로 보낸다.


다음은 Broker에서 받은 메시지를 Trigger 조건에 따라서 Knative Serving 서비스로 보내는 설정이다.


apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: event-display

spec:

 template:

   spec:

     containers:

     - # This corresponds to

       # https://github.com/knative/eventing-sources/blob/release-0.5/cmd/event_display/main.go           

       image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/event_display@sha256:bf45b3eb1e7fc4cb63d6a5a6416cf696295484a7662e0cf9ccdf5c080542c21d


---


# The GcpPubSubSource's output goes to the default Broker. This Trigger subscribes to events in the

# default Broker.


apiVersion: eventing.knative.dev/v1alpha1

kind: Trigger

metadata:

 name: gcppubsub-source-sample

spec:

 subscriber:

   ref:

     apiVersion: serving.knative.dev/v1alpha1

     kind: Service

     name: event-display


< 그림. Trigger와 이벤트 메시지를 수신하는 Service를 정의한 부분>


서비스는 event-display라는 서비스를 정의하였고, 그 아래 Trigger 부분을 보면 gcppubsub-source-sample 이라는 이름으로 Trigger를 정의하였다. Broker 명을 정의하지 않으면 이 Trigger는 default broker에 적용된다. 별다른 조건이 없기 때문에, Broker의 모든 메시지를 대상 서비스인 event-display로 전달한다.

Channel & subscription

다음 개념은 Channel과 subscription 이라는 개념인데, Channel을 메시지를 저장 후에, Channel에 저장된 메시지는 메시지를 수신하는 Subscription을 통해서 다른 Channel로 포워딩 되거나 또는 Service로 전달 될 수 있다.



<그림. Channel과 Subscription 개념도>


앞에서 Channel에서는 메시지를 저장한다고 했는데, 그러면 저장할 장소가 필요하다. 저장할 장소는 설정으로 다양한 메시지 저장소를 사용할 수 있는데, 현재 메모리, Apache Kafka 또는 NATS Streaming을 지원한다.


간단한 예제를 살펴보자 예제는 이 문서를 참고하였다

먼저 아래 설정을 보자


apiVersion: sources.eventing.knative.dev/v1alpha1

kind: GcpPubSubSource

metadata:

 name: testing-source

spec:

 gcpCredsSecret:  # A secret in the knative-sources namespace

   name: google-cloud-key

   key: key.json

 googleCloudProject: knative-atamel  # Replace this

 topic: testing

 sink:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Channel

   name: pubsub-test



< 그림. GCPPubSub Event Source 정의한 코드>


위 설정은 GCP Pub/Sub을 Event source로 등록하는 부분이다. 이벤트 소스로 등록 한후에, 이벤트를 sink 부분에서 pubsub-test라는 Channel로 전달하도록 하였다.

다음 아래는 Channel을 정의한 부분인데, pubsub-test 라는 이름으로 Channel을 정의하고 "provisioner” 부분에, 메시지 저장소를 "in-memory-channel” 로 지정해서 메모리에 메시지를 저장하도록 하였다.

apiVersion: eventing.knative.dev/v1alpha1

kind: Channel

metadata:

 name: pubsub-test

spec:

 provisioner:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: ClusterChannelProvisioner

   name: in-memory-channel

< 그림. Channel 정의한 코드>



apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: message-dumper-csharp

spec:

 runLatest:

   configuration:

     revisionTemplate:

       spec:

         container:

           # Replace {username} with your actual DockerHub

           image: docker.io/{username}/message-dumper-csharp:v1

---

apiVersion: eventing.knative.dev/v1alpha1

kind: Subscription

metadata:

 name: gcppubsub-source-sample-csharp

spec:

 channel:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Channel

   name: pubsub-test

 subscriber:

   ref:

     apiVersion: serving.knative.dev/v1alpha1

     kind: Service

     name: message-dumper-csharp

< 그림. Serving과 subscription을 정의 코드>


Channel에 저장된 메시지를 다른 Channel로 보내거나 또는 Service로 보내려면 Subscription을 거쳐야 한다. 위에서 gcppubsub-source-sample-charp이라는 subscription을 정의하였고, 이 subscription이 연결되는 Channel은 spec > channel 부분에 아래와 같이 정의 하였다.


aspec:

 channel:

   apiVersion: eventing.knative.dev/v1alpha1

   kind: Channel

   name: pubsub-test

< 그림. 위의 Subscription 정의에서 Channel 정의 부분>


그리고 그 채널에서 받은 메시지를 subscriber > ref 부분에서 아래와 같이 message-dumper-charp이라는 서비스로 포워딩 하도록 하였다.

 subscriber:

   ref:

     apiVersion: serving.knative.dev/v1alpha1

     kind: Service

     name: message-dumper-csharp

< 그림.위의 Subscription 정의에서 Service 정의 부분>


전체적으로 Eventing 모듈을 이해하는데 시간이 많이 걸렸는데, Eventing 모듈은 Serving 모듈에 비해서 예제가 적고, 공식 문서에 아직 설명이 부족하다. 예를 들어서 소스 → 서빙으로 메시지를 보낼때 스케일링할 경우 문제가 없는지. Channel → subscription 으로 메시지를 보낼때 Trigger를 사용할 수 있는지 등 정보가 아직 부족해서 자세한 분석이 어려웠다. Knative는 현재 0.5 버전으로 버전이고, Event Source 들도 아직 개발 단계가 아니라 PoC (Proof Of Concept : 기술적으로 가능한지 테스트를 하는 단계) 단계 이기 때문에 제대로 사용하기에는 시간이 더 걸릴 듯 하다.

본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Serveless를 위한 오픈소스 KNative

조대협(http://bcho.tistory.com)

배경

근래에 들어서 컨테이너를 사용한 워크로드 관리는 쿠버네티스 de-facto 표준이 되어가고 있는데, 쿠버네티스 자체가 안정되어가고 있지만, 이를 현업에 적용하기 위해서는 아직까지 여러가지 챌린지가 있다.

컨테이너 기반의 쿠버네티스 서비스가 지향하는 바는, 셀프서비스 기반의 데브옵스 모델로 인프라와 이를 자동화하는 플랫폼을 인프라엔지니어가 개발하여 개발팀에 제공하고, 개발팀은 개발과 배포/운영을 스스로 하는 모델이다.

그런데 예를 들어 간단한 무상태(stateless) 웹서비스를 하나 구축한다 하더라도 Deployment,Ingress,Service 등의 쿠버네티스 리소스를 정의해서 배포해야 하고, 여기에 오토 스케일링이나, 리소스 (CPU,메모리)등의 설정을 따로 해줘야 한다. 그런데 이런 설정을 일일이 다 하기에는 일반 개발자들에게 부담이 된다. 또한 A/B 테스팅이나 카날리 배포등은 쿠버네티스 자체로 지원이 되지 않고 스피니커(spinnaker)등의 다른 솔루션을 부가해서 써야 하는데, 이런 모델은 컨테이너 기반의 셀프 서비스와는 거리가 멀어진다.

서버쪽에 복잡한 설정 없이 무상태 웹서비스나 간단한 이벤트 컨슈밍 서비스등을 구축하는 방법으로는 서버리스 서비스들이 있는다. 아마존 클라우드의 람다(Lambda)나, 구글 클라우드의 펑션(Function)등이 이에 해당한다. 그런데 이러한 서버리스 서비스들은 특정 클라우드 플랫폼에 의존성을 가지고 있는데, 이러한 문제를 해결하기 위해서 나온 오픈소스 서버리스 솔루션이 Knative 이다.

Knative

Knative는 구글의 주도하는 오픈소스 기반의 서버리스 솔루션으로 쿠버네티스 위에서 기동이 된다. 그래서 특정 클라우드 종속성이 없을뿐만 아니라 On-Prem에서도 설치가 가능하다. 지원되는 인프라 목록은 여기에 있는데, 레드헷 오픈 시프트, 피보탈, IBM 과 같은 On-Prem 쿠버네티스뿐만 아니라, 구글, Azure, IBM 클라우드등 다양한 클라우드를 지원한다.


Knative는 스테이트리스 웹서비스뿐만 아니라, 큐에서 이벤트를 받아서 처리하는 이벤트 핸들링을 위한 서버리스 모델을 지원하고, 거기에 더불어 컨테이너를 빌딩할 수 있는 빌드 기능을 제공한다. 그러면 각각을 살펴보자

Serving

서빙은 무상태 웹서비스를 구축하기 위한 프레임웍으로 간단하게 웹서비스 컨테이너만 배포하면, 로드밸런서의 배치, 오토 스케일링, 복잡한 배포 (롤링/카날리)등을 지원하고, 서비스 매쉬 솔루션인 istio와 통합을 통해서 다양한 모니터링을 제공한다.

Hello Serving

일단 간단한 예제를 보자. 아래는 미리 빌드된 간단한 웹서비스 컨테이너를 배포하는 YAML 스크립트이다.


apiVersion: serving.knative.dev/v1alpha1 # Current version of Knative

kind: Service

metadata:

 name: helloworld-go # The name of the app

 namespace: default # The namespace the app will use

spec:

 runLatest:

   configuration:

     revisionTemplate:

       spec:

         container:

           image: gcr.io/knative-samples/helloworld-go # The URL to the image of the app

           env:

             - name: TARGET # The environment variable printed out by the sample app

               value: "Go Sample v1"

<그림. service.yaml>


kind에 Service로 정의되었고, 서빙을 하는 컨테이너는 container>image에 container image URL이 정의되어 있다. 이 이미지를 이용해서 서빙을 하게 되며, 환경 변수를 컨테이너로 넘길 필요가 있을 경우에는 env에 name/value 식으로 정의하면 된다.


$kubectl apply -f service.yaml

<그림. 서비스 배포>

이렇게 정의된 서비스 yaml 파일은 다른 쿠버네티스의 yaml 파일과 같게 kubectl apply -f {파일명}을 이용하면 배포할 수 있게 된다.

쿠버네티스와 마찬가지로 yaml 파일을 정의해서 컨테이너를 정의하고 서비스를 정의해서 배포하는데, 그렇다면 쿠버네티스로 배포하는 것과 무슨 차이가 있을 것인가? 위의 설정 파일을 보면, 로드밸런서,Ingress 등의 추가 설정없이 간단하게 서비스 컨테이너 이름만 정의하고, 컨테이너만 정의하면 바로 배포가 된다. 서비스를 하는데 필요한 기타 설정을 추상화 시켜서 개발자가 꼭 필요한 최소한의 설정만으로 서비스를 제공할 수 있도록 해서, 복잡도를 줄여주는 장점이 있다.

그러면 배포된 서비스를 호출해보자


서비스를 호출하기 위해서는 먼저 서비스의 IP를 알아야 하는데, Knative serving 은 서비스 매쉬 솔루션인 istio 또는 apigateway인 Gloo 상에서 작동한다. 이 예제는 istio 위에 knative를 설치한것을 가정으로 설명한다.  istio에 대한 설명은 이링크와 이 링크 를 참고하기 바란다.

istio를 사용한 경우에는 istio의 gateway를 통해서 서비스가 되고,하나의 istio gateway가 몇개의 knative 서비스를 라우팅을 통해서 서비스한다. 이때 는 단일 IP이기 때문에 여러 knative 서비스를 서빙하기 위해서는 knative 서비스를 분류할 수 있어야 하는데 URI를 이용해서 구별을 하거나 또는 hostname 으로 구별을 한다. 이 예제에서는 hostname으로 구별하는 방법을 사용하였다.


그러면 실제로 서비스를 호출해보자. 먼저 istio gateway의 ip를 알아야한다.

Istio gateway ip는 다음 명령어를 이용하면 ip를 조회할 수 있다.


$kubectl get svc istio-ingressgateway --namespace istio-system

<그림. Istio gateway IP 조회>


다음으로 해야할일은 서비스의 domain 명을 알아야 하는데, 여기서 배포한 서비스는 helloworld-go 라는 서비스이다. 이 서비스가 배포되면 서비스에 대한 라우팅 정보가 정의되는데, kubectl get route 명령을 이용하면 라우팅 정보를 조회할 수 있고 그 중에서 domain 명을 조회하면 된다.


$kubectl get route helloworld-go  --output=custom-columns=NAME:.metadata.name,DOMAIN:.status.domain

<그림. Istio gateway IP 조회>


호스트명을 조회하면 아래와 같이 해당 서비스의 호스트명을 알 수 있다.

Domain 명은 {route name}.{kubernetes name space}.도메인명 으로 되어 있고, 도메인명은 디폴트로 example.com을 사용한다. helloworld-go 애플리케이션의 route 명은 helloworld-go이고, 쿠버네티스 네임 스페이스는 default 네임 스페이스를 사용하였기 때문에, helloworld-go.default.example.com 이 전체 서비스 호스트명이 된다.


그러면 조회한 호스트명과 ingress gateway의 IP 주소를 이용해서, curl 명령으로 테스트 호출을 실행해보자.

$curl -H "Host: helloworld-go.default.example.com" http://${IP_ADDRESS}

<그림. Istio gateway IP 조회>

 

IP_ADDRESS는 앞에서 조회한 ingress의  gateway 주소를 이용하면 된다.

실행을하고 나면 다음과 같은 결과를 얻을 수 있다.

Serving detail

간단하게, Serving 을 테스트 해봤다. 그럼 Serving이 어떻게 구성되어 있는지 조금 더 자세하게 살펴보도록 하자. Serving 은 쿠버네티스 CRD (Custom Resource Definition)으로 정의된 4개의 컴포넌트로 구성되어 있다.


  • Configuration
    Configuration은 knative serving으로 배포되는 서비스를 정의한다. 컨테이너의 경로, 환경 변수, 오토스케일링 설정, hearbeat 설정등을 정의한다. 재미있는것은 단순히 컨테이너 경로를 정의할 수 도 있지만, 컨테이너 빌드 설정을 정의할 수 있다. 즉 코드가 변경되었을때 Configuration에 있는 빌드 설정을 통해서 새로운 컨테이너를 빌드해서 자동으로 배포하고 새롭게 배포된 컨테이너를 이용해서 서비스를 할 수 있도록 한다.

  • Revision
    Configuration의 히스토리라고 보면 되는데, Configuration을 생성할때 마다 새로운 revision이 생성된다.(Revision은 현재 Configuration의 스냅샷이다.) 그래서, 이전 revision으로 롤백을 하거나 저장된 각각의 다른 버전으로 트래픽을 분할해서 서빙할 수 있다.

  • Route
    Route는 서비스로 들어오는 트래픽을 Revision으로 라우팅 하는 역할을 한다. 단순하게 최신 버전의 revision으로 라우팅할 수 도 있지만, 카날리 테스트와 같이 여러 revision으로 라우팅 하는 역할은 Route에서 정의된다.

  • Service
    Service는 Configuration과 Route를 추상화하여, 하나의 웹서비스를 대표하는 개념이라고 보면 된다. 쿠버네티스에서 Deployment가 ReplicaSet 등을 추상화 하는 개념으로 생각하면 된다.


Serving 컴포넌트의 내용을 추상화하여 그림으로 표현하면 아래 그림과 같다.


<그림. Knative serving의 개념도>


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

Google Cloud Function


조대협 (http://bcho.tistory.com)

기본 개념

구글 클라우드 펑션은 서버리스 아키텍쳐를 구현하기 위한 구글 클라우드 서비스이다. 아마존 웹서비스의 람다와 같은 기능이라고 보면 된다.




이벤트가 발생하면, 이벤트에 따라서, 코드를 수행해주는 형태인데, 이벤트의 종류는 다음과 같다.

  • Pub/Sub 메세지 큐에서 들어오는 메세지

  • Firebase 모바일 SDK에 의해서 발생되는 이벤트

  • Google Cloud Storage 서비스에 의해서 파일이 생성,수정,삭데 되었을때

  • 마지막으로 HTTP로 들어오는 요청 (REST API)


개발환경

프로그래밍 언어는 node.js 6.9.1 버전을 기반으로 되어 있으며, node.js의 package.json을 이용하여 왠만한 의존성 모듈은 설치가 가능하다. (node.js express 등)  개발을 위해서는 로컬에 에뮬레이터를 설치하여 개발이 가능하다. https://cloud.google.com/functions/docs/emulator

Hello World

그러면 간단하게, 구글 클라우드 펑션을 사용해보자

클라우드 펑션은 크게 두가지 타입의 펑션이 있는데

  • HTTP 펑션
    HTTP 펑션은 HTTP 로 입력을 받는 형태로 function 펑션이름(req,res)
    req는 HTTP Request, res는 HTTP Response 이다.

  • 백그라운드 펑션
    백르라운드 펑션은 GCS,Pub/Sub 등의 이벤트로 트리거링 되는 펑션으로 function 펑션이름(event,callback)형태로 정의된다. event 객체 안에, GCS나 Pub/Sub 에서 발생된 이벤트 정보가 전송된다.


간단하게 웹에서 Hello World를 출력하는 펑션을 개발해보자.

예제 코드

Index.js 에 다음과 같은 코드를 작성한다


exports.helloworld = function helloworld (req, res) {

       switch(req.method){

         case 'GET':

          res.send('Hello world');

       }

};

위의 코드는 helloworld 라는 이름의 펑션으로 HTTP GET 요청이 들어왔을때, ‘Hello world’ 문자열을 출력하도록 하는 펑션이다.

배포 하기

배포는 크게 Web UI와 CLI (Command Line Interface) 두 가지로 할 수 있다.

배포에 앞서서, 먼저 GCS (Google Cloud Storage) 버킷을 생성해야 한다. 클라우드 펑션은 배포 코드를 클라우드 스토리지 버킷에 저장해놓고 (스테이징 용도) 배포하기 때문이다.


클라우드 스토리지 버킷은 Web UI에서도 생성할 수 있지만 간단하게 CLI 명령을 이용해서 다음과 “terrycho-cloudfunction”이라는 이름의 버킷을 생성한다


%gsutil mb gs://terrycho-cloudfunction

Command Line Interface (CLI)로 배포하기

CLI로 배포하기 위해서는 CLI 명령인 gcloud 명령을 업그레이드 해야 한다. 다음 명령을 수행하면 쉽게 업그레이드할 수 있다.

% gcloud components update beta

% gcloud components install


다음 배포 명령을 실행해보자

% gcloud beta functions deploy helloworld --stage-bucket gs://terrycho-cloudfunction --trigger-http



Web Console로 배포하기

또는 Web Console을 이용할 수 도 있다.

다음은 helloworld 펑션을 us-central1 리전에 128M 메모리 사이즈로 배포하는 화면이다

코드는 ZIP 파일로 직접 업로드 하거나 구글 클라우드 스토리지에 ZIP으로 업로드 하거나 또는 아래 그림과 같이 inline editor에 간단한 코드는 직접 넣을 수 있다.


그리고 마지막으로 export할 모듈명을 정의한다.




실행하기

클라우드 펑션을 배포 하였으면 이제 실행해보자

HTTP 펑션이기 때문에 HTTP URL을 알아야 하는데,  HTTP URL규칙은 다음과 같다.


https://[리전이름]-[프로젝트이름].cloudfunctions.net/[펑션이름]                             


앞에서 만든 펑션은 us-central1에 배포하였고, 프로젝트명은 terrycho-sandbox이고 펑션 이름은 helloworld 이기 때문에 URL과 실행 결과는 다음과 같다


모니터링

모니터링은 CLI와 웹콘솔 양쪽으로 모두 가능하지만 웹 콘솔에서 로그를 확인해보겠다. 펑션 화면에서 펑션을 선택한 후에 우측 메뉴에서 아래 그림과 같이 “See logs”를 누룬다.


로그를 확인해보면 다음과 같다.



펑션이 시작된 것을 확인할 수 있다. 7d로 시작하는 펑션과 de로 시작하는 펑션 인스턴스 두개가 생성된 것을 볼 수 있고 7d로 시작된 펑션의 실행 시간이 702 ms가 걸린것을 확인할 수 있다.

가격 정책

가격 정책 계산 방법은


(가격) = (호출 횟수) + (컴퓨팅 자원 사용량 ) + (네트워크 비용)


으로 구성된다.

  • 호출 횟수는 클라우드 펑션이 호출되는 횟수로 한달에 2백만건까지 무료이며 2백만건 이후로는 백만건당 0.4$ 가 부과 된다.

  • 컴퓨팅 자원은 사용한 메모리와 CPU 파워를 기반으로 100ms 단위 과금이다.


    예를 들어 1.4GHz CPU 1024MB 메모리를 250 ms 사용했다면, 컴퓨팅 자원 사용 비용은 0.000001650 * 3 (250ms는 올림하여 300ms로 계산한다.)

  • 네트워크 비용은 들어오는 비용은 무료이며 인터넷으로 나가는 비용에 대해서만 월 5$를 부과한다.

무료 티어

무료 티어는 매달 2백만콜에 대해서 400,000GB 초, 200,000GHZ 초의 용량 + 5GB 아웃바운드 트래픽에 대해서 무료로 제공한다

결론

사실 클라우드 펑션과 같은 서버리스 서비스는 새로운 기술은 아니다.

그러나 구글 클라우드 플랫폼과 연계되어서, 간단한 HTTP 서비스 개발은 물론, GCS에 저장된 파일에 대한 ETL 처리등 다양한 분야에 사용이 가능하며

특히나 타 클라우드 대비 특징은, 모바일 SDK 파이어베이스의 백앤드로 연동이 가능하기 때문에 모바일 개발자 입장에서 복잡한 API 인증등을 개발할 필요 없이  간단하게 서버 백앤드를 개발할 수 있다는 장점을 가지고 있기 때문에 개발 생산성 향상에 많은 도움이 되리라고 본다.


본인은 구글 클라우드의 직원이며, 이 블로그에 있는 모든 글은 회사와 관계 없는 개인의 의견임을 알립니다.

댓글을 달아 주세요

  1. ee32320 2017.06.12 00:07 신고  댓글주소  수정/삭제  댓글쓰기

    클라우드 관련 공부하고 있습니다. 검색해서 링크타고 들어왔네요. 관련 정보 잘 보고 갑니다~.