OpenAI 2

LLM 애플리케이션 개발을 위한 Langchain #6-Chat Model

Langchain에서 채팅 모델 사용하기 조대협 (http://bcho.tistory.com) 텍스트 LLM 모델이 단일 입력에 대한 단일 출력을 지원하는 모델이라면, Chat 모델은 기존의 대화 히스토리를 기반으로 해서 질문에 대한 답변을 출력하는 시나리오 이다. 이를 위해서 LangChain은 4가지 메시지 타입을 지원하는데, SystemMessage, HumanMessage, AIMessage가 주로 사용된다. SystemMessage : SystemMessage는 챗봇 에게 개발자가 명령을 내리기 위해서 사용하는 메시지이다. 예를 들어 쳇봇이 “여행가이드 역할을 하며, 여행에 관련되지 않은 질문은 답변하지 말아라" 라는 등의 역할에 대한 명령이나 대화에 대한 가이드라인이나 제약 사항을 설정할 수 ..

LLM 애플리케이션 개발을 위한 Langchain #4 - 토큰 비용 관리 및 토큰카운트

LLM 의 비용 컨트롤 및 토큰 카운트 조대협 (http://bcho.tistory.com) LLM 개발은 단순한 API 서버 개발과 다르게, 외부의 LLM API 서비스를 호출하는 형태이, 이 API는 토큰 (단어)단위로 비용을 카운트하기 때문, 개발과 서비스 과정에서 비용이 발생한다. 그래서, 개발과 운영 과정에서 발생하는 API 호출 비용을 모니터링 하고 비용을 관리해야 하는 필요성이 있다. 출처 : https://openai.com/pricing 출처 : https://cloud.google.com/vertex-ai/pricing#generative_ai_models 가격 체계는 모델 서비스 회사의 홈페이지에서 확인이 가능한데, 위의 그림과 같이, 모델의 종류나 버전 그리고 Input,Output..