Classification 2

분류모델 (Classification)의 성능 평가

Classification & Clustering 모델 평가 조대협 (http://bcho.tistory.com) 클러스터링과 분류 모델에 대한 성능 평가 방법은 데이타에 라벨이 있는가 없는가에 따라서 방법이 나뉘어 진다. 사실 클러스터링은 라벨이 없는 데이타에 주로 사용을 하고, 라벨이 있는 경우에는 분류 모델을 사용한다. 클러스터링 모델에 대한 평가는 라벨이 없는 상태에서 클러스터의 응집도등을 평가하는데 대부분 그 정확도가 그리 높지 않기 때문에, 도메인 지식을 가지고 있는 전문가에 의한 휴리스틱한 방식의 평가 방식이 대부분이다. 분류 모델(Classification) 에 대한 모델 평가 라벨이 있는 경우에는 분류 모델에 대한 모델 평가 방법을 사용한다.Confusion matrix이진 분류 문제에서..

나이브 베이즈 분류 (Naive Bayesian classification) #1 - 소개

나이브 베이즈 분류 (Naive Bayesian classification) #1 - 소개조대협 (http://bcho.tistory.com) 지금 부터 소개할 알고리즘은, 머신러닝 알고리즘 중에서 분류 알고리즘으로 많이 사용되는 나이브 베이스 알고리즘이다. 배경 지식나이브 베이스 알고리즘을 이해하려면 몇가지 배경 지식이 필요하다. 베이스 정리먼저 베이스 정리를 보면, 매개 변수, x,y가 있을때, 분류 1에 속할 확률이 p1(x,y)이고, 분류 2에 속할 확률이 p2(x,y)일때, p1(x,y) > p2(x,y) 이면, 이 값은 분류 1에 속한다.p1(x,y) < p2(x,y) 이면, 이 값은 분류 2에 속한다.나이브 베이스 알고리즘은 이 베이스의 정리를 이용하여, 분류하고자 하는 대상의 각 분류별 확..