Machine Learning Pipeline 조대협 (http://bcho.tistory.com)대부분 모델 개발과 알고리즘에 집중머신러닝을 공부하고 나서는 주로 통계학이나, 모델 자체에 많은 공부를 하는 노력을 드렸었다. 선형대수나 미적분 그리고 방정식에 까지 기본으로 돌아가려고 노력을 했었고, 그 중간에 많은 한계에도 부딪혔지만, 김성훈 교수님의 모두를 위한 딥러닝 강의를 접하고 나서, 수학적인 지식도 중요하지만 수학적인 깊은 지식이 없어도 모델 자체를 이해하고 근래에 발전된 머신러닝 개발 프레임웍을 이용하면 모델 개발이 가능하다는 것을 깨달았다. 계속해서 모델을 공부하고, 머신러닝을 공부하는 분들을 관심있게 지켜보고 실제 머신러닝을 사용하는 업무들을 살펴보니 재미있는 점이 모두 모델 자체 개발에만..