google 53

파이어베이스를 이용한 유니티 게임 로그 분석

파이어베이스를 이용한 유니티 게임 로그 분석 조대협 (http://bcho.tistory.com)모바일 로그 분석일반적으로 모바일 로그 분석은 클라우드 기반의 무료 솔루션을 이용하다가 자체 구축으로 가는 경우가 많다.클라우드 기반의 무료 로그 분석 솔루션으로는 구글 애널러틱스, 야후의 플러리, 트위터의 패브릭 그리고 구글의 파이어베이스 등이 있다.이런 무료 로그 분석 솔루션들을 사용이 매우 간편하고, 핵심 지표를 쉽게 뽑아 줄 수 있으며, 별도의 운영이 필요 없다는 장점을 가지고 있다.그러나 이런 클라우드 기반의 무료 솔루션의 경우에는 요약된 정보들만 볼 수 있고 또한 내가 원하는 지표를 마음대로 지정을 할 수 없기 때문에, 어느정도 서비스가 성장하고 팀의 여력이 되면 별도의 로그 수집 및 분석 솔루션을..

트위터 피드 실시간 분석 시스템 디자인

스트리밍 분석 플랫폼인 Apache Beam (Dataflow)를 공부하다 보니, 예제가 필요해서 지난번에는 힐러리와 트럼프 후보가 언급된 피드를 읽어서, 구글의 자연어 분석 API를 통해서 긍정/부정 여부를 분석한 후, 빅쿼리에 넣어서, 파이썬 노트로 그래프로 표현해봤는데, 아무래도 자연어 분석 API의 정확도가 아직 떨어지는 건지, 대부분 부정으로 나오고, 분석 결과도 재미가 없다. 그래서 새로운 분석 예제를 고민 하다가, 다음 방향으로 정했다. 지난번과 마찬가지로 데이타 수집은 트위터에서 특정 키워드를 fluentd로 수집한다.수집한 데이타는 Pub/sub에 저장한다.Pub/sub에 데이타 플로우 파이프라인을 연결한다.데이타 플로우 파이프라인에서 데이타를 읽는다.읽어온 데이타중 10%만 샘플링 한다..

파이어베이스 애널러틱스를 이용한 모바일 데이타 분석- #3 빅쿼리에 연동하여 모든 데이타를 분석하기

파이어베이스 애널러틱스를 이용한 모바일 데이타 분석#3 빅쿼리에 연동하여 모든 데이타를 분석하기 조대협 (http://bcho.tistory.com) 파이어베이스 애널러틱스의 대단한 기능중의 하나가, 모바일에서 올라온 모든 원본 로그를 빅쿼리에 저장하고, 이를 빅쿼리를 통해서 분석할 수 있는 기능이다. 대부분의 매니지드 서비스 형태의 모바일 애널리틱스 서비스는 서비스에서 제공하는 지표만, 서비스에서 제공하는 화면을 통해서만 볼 수 있기 때문에, 상세한 데이타 분석이 불가능하다. 파이어베이스의 경우에는 빅쿼리에 모든 원본 데이타를 저장함으로써 상세 분석을 가능하게 해준다. 아울러, 모바일 서비스 분석에 있어서, 상세 로그 분석을 위해서 로그 수집 및 분석 시스템을 별도로 만드는 경우가 많은데, 이 경우 모..

세번째 책이 나왔습니다.

빠르게 훑어보는 구글 클라우드 플랫폼 오늘 세번째 책이 나왔습니다. 이번에 출간된 책은 구글 클라우드에 대해서 간략한 사용 방법을 소개한 "빠르게 훑어보는 구글 클라우드 플랫폼" 이라는 책입니다.구글에 입사한지도 이제 3개월이 막 지났는데, 막상 사람들 이야기를 들어보니, 한글 자료가 없고, 기초적인 (SSH설정)에서 부터 막히는 분들이 많아서, 구글 한국 사용자 그룹분들과 함께 간략한 소개 서적을 만들었습니다. 한빛 미디어에서 보정 및 조판 작업을 도와주셨구요. (엔지니어 출신이신 이복연님이 꼼꼼하게 봐주신 덕분에 원고 품질이 많이 올라갔습니다.) 이책은 정보 공유 차원에서 무료 EBOOK 형태로 배포됩니다.http://www.hanbit.co.kr/realtime/books/book_view.html..

사는 이야기 2016.08.29

실시간 데이타 분석 플랫폼 Dataflow - #5 데이타 플로우 프로그래밍 모델

데이타 플로우 프로그래밍 모델의 이해 조대협 (http://bcho.tistory.com) 앞의 글에서 스트리밍 프로세스의 개념과, 데이타 플로우의 스트리밍 처리 개념에 대해서 알아보았다. 그렇다면 실제로 이를 데이타 플로우를 이용해서 구현을 하기 위해서는 어떤 컴포넌트와 프로그래밍 모델을 사용하는지에 대해서 알아보자. 구글 데이타 플로우 프로그래밍 모델은 앞에서 설명한 바와 같이, 전체 데이타 파이프라인을 정의하는 Pipeline, 데이타를 저장하는 PCollections, 데이타를 외부 저장소에서 부터 읽거나 쓰는 Pipeline I/O, 그리고, 입력 데이타를 가공해서 출력해주는 Transforms , 총 4가지 컴포넌트로 구성이 되어 있다. 이번 글에서는 그 중에서 데이타를 가공하는 Transfo..

빅쿼리를 이용하여 두시간만에 트위터 실시간 데이타를 분석하는 대쉬보드 만들기

Fluentd + Bigquery + Jupyter를 이용한 초간단 BI 구축하기 조대협얼마전에 빅데이타의 전문가로 유명한 김형준님이 "Presto + Zeppelin을 이용한 초간단 BI 구축 사례"라는 발표 자료를 보았다. http://www.slideshare.net/babokim/presto-zeppelin-bi 오픈 소스 기술들을 조합하여, 초간단하게 빅데이타 분석 플랫폼을 만든 사례 인데, 상당히 실용적이기도 하고, 좋은 조합인것 같아서, 마침 구글 빅쿼리에 대한 자료를 정리하던중 비슷한 시나리오로 BI 대쉬 보드를 만들어보았다.Fluentd를 이용해서 실시간으로 데이타를 수집하고, 이를 빅쿼리에 저장한 다음에 iPython nodebook (aka Jupyter)로 대쉬보드를 만드는 예제이다..

데이타 스트리밍 분석 플랫폼 DataFlow - #2 개념 소개 (1/2)

데이타 스트리밍 분석 플랫폼 Dataflow 개념 잡기 #1/2 조대협 (http://bcho.tistory.com) 실시간 데이타 처리에서는 들어오는 데이타를 바로 읽어서 처리 하는 스트리밍 프레임웍이 대세인데, 대표적인 프레임웍으로는 Aapche Spark등을 들 수 있다. 구글의 DataFlow는 구글 내부의 스트리밍 프레임웍을 Apache Beam이라는 형태의 오픈소스로 공개하고 이를 실행하기 위한 런타임을 구글 클라우드의 DataFlow라는 이름으로 제공하고 있는 서비스이다. 스트리밍 프레임웍 중에서 Apache Spark 보다 한 단계 앞선 개념을 가지고 있는 다음 세대의 스트리밍 프레임웍으로 생각할 수 있다. Apache Flink 역시 유사한 개념을 가지면서 Apache Spark의 다음 ..

구글 클라우드의 대용량 분산 큐 서비스인 Pub/Sub 소개 #1

구글 클라우드의 대용량 메세지 큐 Pub/Sub 소개조대협 (http://bcho.tistory.com) 구글 클라우드의 Pub/Sub 은 클라우드 기반의 대용량 메세지 큐이다. 흔히들 사용하는 RabbitMQ, JMS나 Kafka의 클라우드 버전으로 보면 된다. Rabbit MQ와 같은 설치형 큐가 작은 메세지에 대해서 세심한 컨트롤을 제공한다고 하면, Kafka나 Pub/Sub은 대용량 스케일의 메세지를 처리하기 위해서 설계 되었고, 자잘한 기능보다는 용량에 목적을 둔다.그중에서 Pub/Sub은 클라우드 기반의 서비스로 비동기 메세징이 필요한 기능을 매니지드 서비스 형태로 제공함으로써, 별도의 설치나 운영이 필요 없이 손쉽게, 사용이 가능하다.보통 특정 클라우드 벤더의 매지니드 솔루션은 Lock in..

빅쿼리-#3 데이타 구조와 접근(공유)

빅쿼리-#3 데이타 구조와 데이타 공유 권한관리 조대협 (http://bcho.tistory.com) 빅쿼리에 대한 개념 및 내부 구조에 대한 이해가 끝났으면, 빅쿼리의 데이타 구조와, 데이타에 대한 권한 관리에 대해서 알아보도록 한다.데이타 구조빅쿼리의 데이타 구조는 다음과 같은 논리 구조를 갖는다. 일반적인 RDBMS와 크게 다르지 않다. 데이타 구조프로젝트 (Project)먼저 프로젝트라는 개념을 가지고 있다. 하나의 프로젝트에는 여러개의 데이타셋이 들어갈 수 있다. 데이타셋 (Dataset)데이타셋은 MySQL의 DB와 같은 개념으로, 여러개의 테이블을 가지고 있는 테이블의 집합이다. 이 단위로 다른 사용자와 데이타를 공유할 수 있다.테이블 (Table)데이타를 저장하고 있는 테이블이다. 잡 (J..

구글 빅데이타 플랫폼 빅쿼리 아키텍쳐 소개

빅쿼리 #2-아키텍쳐 조대협 (http://bcho.tistory.com) 이번글에서는 앞에서 소개한 구글의 대용량 데이타 저장/분석 시스템인 빅쿼리의 내부 아키텍쳐에 대해서 알아보도록 한다.컬럼 기반 저장소다음과 같은 테이블이 있다고 하자 전통적인 데이타 베이스는 파일에 물리적으로 데이타를 저장할때 개념 적으로 다음과 같은 방식으로 저장한다. FILE 1 : “001;Cho;Terry;Seoul;30,002;Lee;Simon;Suwon;40,003;Kim;Carl;Busan;22” 그래서 하나의 레코드를 가지고 오면 그 레코드에 해당하는 모든 값을 가지고 올 수 있다. 반면 컬럼 기반 저장소의 경우에는 각 컬럼을 다음과 같이 다른 파일에 나눠서 저장한다. FILE 1: 001:Cho,002:Lee,00..