Tutorial 48

연예인 얼굴 인식 모델을 만들어보자 - #2. CNN 모델을 만들고 학습시켜 보자

연예인 얼굴 인식 모델을 만들어보자 #2 CNN 모델을 만들고 학습 시켜보기 조대협 (http://bcho.tistroy.com)선행 학습 자료 이 글은 딥러닝 컨볼루셔널 네트워크 (이하 CNN)을 이용하여 사람의 얼굴을 인식하는 모델을 만드는 튜토리얼이다. 이 글을 이해하기 위해서는 머신러닝과 컨볼루셔널 네트워크등에 대한 사전 지식이 필요한데, 사전 지식이 부족한 사람은 아래 글을 먼저 읽어보기를 추천한다. 머신러닝의 개요 http://bcho.tistory.com/1140 머신러닝의 기본 원리는 http://bcho.tistory.com/1139 이산 분류의 원리에 대해서는 http://bcho.tistory.com/1142 인공 신경망에 대한 개념은 http://bcho.tistory.com/114..

머신러닝 시스템 프로세스와 아키텍쳐

Machine Learning Pipeline 조대협 (http://bcho.tistory.com)대부분 모델 개발과 알고리즘에 집중머신러닝을 공부하고 나서는 주로 통계학이나, 모델 자체에 많은 공부를 하는 노력을 드렸었다. 선형대수나 미적분 그리고 방정식에 까지 기본으로 돌아가려고 노력을 했었고, 그 중간에 많은 한계에도 부딪혔지만, 김성훈 교수님의 모두를 위한 딥러닝 강의를 접하고 나서, 수학적인 지식도 중요하지만 수학적인 깊은 지식이 없어도 모델 자체를 이해하고 근래에 발전된 머신러닝 개발 프레임웍을 이용하면 모델 개발이 가능하다는 것을 깨달았다. 계속해서 모델을 공부하고, 머신러닝을 공부하는 분들을 관심있게 지켜보고 실제 머신러닝을 사용하는 업무들을 살펴보니 재미있는 점이 모두 모델 자체 개발에만..

텐서플로우의 세션,그래프 그리고 함수의 개념

텐서플로우의 세션,그래프 그리고 함수의 개념 조대협 (http://bcho.tistory.com) 그래프와 세션에 대한 개념이 헷갈려서, 좋은 샘플이 하나 만들어져서 공유합니다.텐서 플로우의 기본 작동 원리는 세션 시작전에 그래프를 정의해놓고, 세션을 시작하면 그 그래프가 실행되는 원리인데, 그래서 이 개념이 일반적인 프로그래밍 개념과 상의하여 헷갈리는 경우가 많다 즉, 세션을 시작해놓고 함수를 호출하는 케이스들이 대표적인데http://bcho.tistory.com/1170 코드를 재 사용해서 이해해보도록 하자 이 코드를 보면, tt = time * 10 을 세션 시작전에 정의해놨는데, 이 코드를 함수로 바꾸면 아래와 같은 형태가 된다. 변경전 코드 def main(): print 'start sessi..

텐서플로우-배치 처리에 대해서 이해하자

텐서플로우 배치 처리 조대협 (http://bcho.tistory.com) 텐서플로우에서 파일에서 데이타를 읽은 후에, 배치처리로 placeholder에서 읽는 예제를 설명한다.텐서의 shape 의 차원과 세션의 실행 시점등이 헷갈려서 시행착오가 많았기 때문에 글로 정리해놓는다.큐와 파일처리에 대한 기본적인 내용은 아래글http://bcho.tistory.com/1163http://bcho.tistory.com/1165를 참고하기 바란다.데이타 포맷읽어 드릴 데이타 포맷은 다음과 같다. 비행기 노선 정보에 대한 데이타로 “년도,항공사 코드, 편명"을 기록한 CSV 파일이다.2014,VX,1212014,WN,18732014,WN,2787배치 처리 코드이 데이타를 텐서 플로우에서 읽어서 배치로 place h..

딥러닝을 이용한 숫자 이미지 인식 #2/2-예측

딥러닝을 이용한 숫자 이미지 인식 #2/2 앞서 MNIST 데이타를 이용한 필기체 숫자를 인식하는 모델을 컨볼루셔널 네트워크 (CNN)을 이용하여 만들었다. 이번에는 이 모델을 이용해서 필기체 숫자 이미지를 인식하는 코드를 만들어 보자 조금 더 테스트를 쉽게 하기 위해서, 파이썬 주피터 노트북내에서 HTML 을 이용하여 마우스로 숫자를 그릴 수 있도록 하고, 그려진 이미지를 어떤 숫자인지 인식하도록 만들어 보겠다. 모델 로딩 먼저 앞의 예제에서 학습을한 모델을 로딩해보도록 하자.이 코드는 주피터 노트북에서 작성할때, 모델을 학습 시키는 코드 (http://bcho.tistory.com/1156) 와 별도의 새노트북에서 구현을 하도록 한다. 코드import tensorflow as tfimport nump..

딥러닝을 이용한 숫자 이미지 인식 #1/2-학습

딥러닝을 이용한 숫자 이미지 인식 #1/2 조대협 (http://bcho.tistory.com) 지난 글(http://bcho.tistory.com/1154 ) 을 통해서 소프트맥스 회귀를 통해서, 숫자를 인식하는 모델을 만들어서 학습 시켜 봤다.이번글에서는 소프트맥스보다 정확성이 높은 컨볼루셔널 네트워크를 이용해서 숫자 이미지를 인식하는 모델을 만들어 보겠다. 이 글의 목적은 CNN 자체의 설명이나, 수학적 이론에 대한 이해가 목적이 아니다. 최소한의 수학적 지식만 가지고, CNN 네트워크 모델을 텐서플로우로 구현하는데에 그 목적을 둔다. CNN을 이해하기 위해서는 Softmax 등의 함수를 이해하는게 좋기 때문에 가급적이면 http://bcho.tistory.com/1154 예제를 먼저 보고 이 문서..

텐서플로우 #2 - 행렬과 텐서플로우

텐서플로우 #2 - 행렬과 텐서플로우 조대협 (http://bcho.tistory.com) 머신러닝은 거의 모든 연산을 행렬을 활용한다. 텐서플로우도 이 행렬을 기반으로 하고, 이 행렬의 차원을 shape 라는 개념으로 표현하는데, 행렬에 대한 기본적이 개념이 없으면 헷갈리기 좋다. 그래서 이 글에서는 간략하게 행렬의 기본 개념과 텐서플로우내에서 표현 방법에 대해서 알아보도록 한다. 행렬의 기본 개념 훝어보기행과 열행렬의 가장 기본 개념은 행렬이다. mxn 행렬이 있을때, m은 행, n은 열을 나타내며, 행은 세로의 줄수, 열은 가로줄 수 를 나타낸다. 아래는 3x4 (3행4열) 행렬이다. 곱셈 곱셈은 앞의 행렬에서 행과, 뒤의 행렬의 열을 순차적으로 곱해준다.아래 그림을 보면 쉽게 이해가 될것이다. 이..

텐서플로우-#1 자료형의 이해

텐서플로우-#1 자료형의 이해 조대협 (http://bcho.tistory.com) 딥러닝에 대한 대략적인 개념을 익히고 실제로 코딩을 해보려고 하니, 모 하나를 할때 마다 탁탁 막힌다. 파이썬이니 괜찮겠지 했는데, (사실 파이썬도 다 까먹어서 헷갈린다.) 이건 라이브러리로 도배가 되어 있다.당연히 텐서플로우 프레임웍은 이해를 해야 하고, 데이타를 정재하고 시각화 하는데, numpy,pandas와 같은 추가적인 프레임웍에 대한 이해가 필요하다. node.js 시작했을때도 자바스크립트 때문에 많이 헤매고 몇달이 지난후에야 어느정도 이해하게 되었는데, 역시나 차근차근 기초 부터 살펴봐야 하지 않나 싶다. 텐서 플로우에 대해 공부한 내용들을 하나씩 정리할 예정인데, 이 컨텐츠들은 유투브의 이찬우님의 강의를 기..

머신러닝의 과학습 / 오버피팅의 개념

머신러닝의 과학습 / 오버피팅의 개념 조대협 (http://bcho.tistory.com) 머신 러닝을 공부하다보면 자주 나오는 용어 중에 하나가 오버피팅 (Overfitting)이다. 과학습이라고도 하는데, 그렇다면 오버 피팅은 무엇일까? 머신 러닝을 보면 결과적으로 입력 받은 데이타를 놓고, 데이타를 분류 (Classification) 하거나 또는 데이타에 인접한 그래프를 그리는 (Regression) , “선을 그리는 작업이다.”그러면 선을 얼마나 잘 그리느냐가 머신 러닝 모델의 정확도와 연관이 되는데, 다음과 같이 붉은 선의 샘플 데이타를 받아서, 파란선을 만들어내는 모델을 만들었다면 잘 만들어진 모델이다. (기대하는) 언더 피팅 만약에 학습 데이타가 모자라거나 학습이 제대로 되지 않아서, 트레이..

Docker Kubernetes의 UI

Docker Kubernetes UI 조대협 (http://bcho.tistory.com) 오늘 도커 밋업에서 Kubernetes 발표가 있어서, 발표전에 데모를 준비하다 보니, 구글 클라우드의 Kubernetes 서비스인 GKE (Google Container Engine)에서 Kubernetes UI를 지원하는 것을 확인했다. Google Container Service (GKE) GKE는 구글 클라우드의 도커 클라우드 서비스이다. 도커 컨테이너를 관리해주는 서비스로는 Apache mesos, Docker Swarm 그리고 구글의 Kuberenetes 가 있는데, GKE는 이 Kuberentes 기반의 클라우드 컨테이너 서비스이다. 대부분의 이런 컨테이너 관리 서비스는 아직 개발중으로 운영에 적용하기..