쿠버네티스 71

쿠버네티스 - PodPreset

PodPreset 애플리케이션을 배포하는데 있어서, 애플리케이션 실행 파일과과 설정 정보를 분리해서 환경에 따라 설정 정보만 변경해서 애플리케이션을 재배포하는 방법이 가장 효율적이다. 쿠버네티스에서는 ConfigMap을 이용하여 이러한 정보를 환경 변수로 넘기거나, 또는 파일이나 디렉토리로 마운트하는 방법을 제공해왔다. ConfigMap을 이용하는 경우 ConfigMap에서 여러 정보를 꺼내오도록 해야 한다. 또한 반복적으로 유사한 애플리케이션을 배포하고자 할때, 디스크가 필요한 경우에는 볼륨과 그 마운트에 대한 정의를 해야하기 때문에, 애플리케이션을 배포하는 Pod의 설정 파일이 다소 복잡해질 수 있다. 그래서 새롭게 소개되는 개념이 PodPreset 이다. PodPreset에는 환경 변수 이외에도, ..

쿠버네티스 리소스 배포와 관리를 위한 ksonnet

Ksonnet조대협(http://bcho.tistory.com) 쿠버네티스의 리소스 배포는 YAML 스크립트를 기반으로 한다. 하나의 마이크로 서비스를 배포하기 위해서는 최소한 Service, Deployment 두개 이상의 배포 스크립트를 작성해야 하고, 만약에 디스크를 사용한다면 Persistent Volume (aka PV)와 Persistent Volume Claim (PVC)등 추가로 여러 파일을 작성해서 배포해야 한다.그런데 이러한 배포 작업을 보면, 사실 비슷한 성격의 마이크로 서비스간에는 중복 되는 부분이 많다. 예를 들어 간단한 웹서비스 (node.js나 springboot)를 배포할때는 Service의 타입을 지정하고, Deployment에 의해서 관리되는 Pod의 수, 그리고 컨테이너..

쿠버네티스 기반의 End2End 머신러닝 플랫폼 Kubeflow #1 - 소개

End2End 머신러닝 플랫폼 Kubeflow 조대협 (http://bcho.tistory.com)머신러닝 파이프라인머신러닝에 대한 사람들의 선입견중의 하나는 머신러닝에서 수학의 비중이 높고, 이를 기반으로한 모델 개발이 전체 시스템의 대부분 일 것이라는 착각이다.그러나 여러 연구와 경험을 참고해보면, 머신러닝 시스템에서 머신러닝 모델이 차지하는 비중은 전체의 5% 에 불과하다. 실제로 모델을 개발해서 시스템에 배포할때 까지는 모델 개발 시간보다 데이타 분석에 소요되는 시간 그리고 개발된 모델을 반복적으로 학습하면서 튜닝하는 시간이 훨씬 더 길다. 머신러닝 파이프라인은 데이타 탐색에서 부터, 모델 개발, 테스트 그리고 모델을 통한 서비스와 같이 훨씬 더 복잡한 과정을 거친다. 이를 머신러닝 End to ..

컨테이너 기반 워크플로우 솔루션 Argo

컨테이너 기반의 워크플로우 솔루션 argo조대협 (http://bcho.tistory.com) argo는 컨테이너 워크플로우 솔루션이다.컨테이너 기반으로 빅데이타 분석, CI/CD, 머신러닝 파이프라인을 만들때 유용하게 사용할 수 있는 오픈 소스 솔루션으로 개념은 다음과 같다. 워크플로우를 정의하되 워크플로우의 각각의 스텝을 컨테이너로 정의한다.워크플로우 스펙은 YAML로 정의하면, 실행할때 마다 컨테이너를 생성해서, 작업을 수행하는 개념이다. 기존에 아파치 에어플로우 (https://airflow.apache.org/)등 많은 워크 플로우 솔루션이 있지만, 이러한 솔루션은 컴포넌트가 VM/컨테이너에서 이미 준비되서 돌고 있음을 전제로 하고, 각각의 컴포넌트를 흐름에 따라서 호출하는데 목적이 맞춰서 있다..

Istio #4 - Istio 설치와 BookInfo 예제

Istio #4 - 설치 및 BookInfo 예제조대협 (http://bcho.tistory.com)Istio 설치그러면 직접 Istio 를 설치해보자, 설치 환경은 구글 클라우드의 쿠버네티스 환경을 사용한다. (쿠버네티스는 오픈소스이고, 대부분의 클라우드에서 지원하기 때문에 설치 방법은 크게 다르지 않다.)쿠버네티스 클러스터 생성콘솔에서 아래 그림과 같이 istio 라는 이름으로 쿠버네티스 클러스터를 생성한다. 테스트용이기 때문에, 한존에 클러스터를 생성하고, 전체 노드는 3개 각 노드는 4 CPU/15G 메모리로 생성하였다. 다음 작업은 구글 클라우드 콘솔에서 Cloud Shell내에서 진행한다.커맨드 라인에서 작업을 할것이기 때문에, gCloud SDK를 설치(https://cloud.google...

Istio #2 - Envoy proxy

Istio #2 - Envoy Proxy 조대협 (http://bcho.tistory.com) 그럼 앞에서 설명한 서비스 매쉬의 구조를 구현한 Istio를 살펴보기전에, Istio에 사용되는 envoy 프록시에 대해서 먼저 알아보자. (이 글은 예전에 포스팅한 내용이지만, Istio 글의 흐름상 다시 포스팅 한다.) Envoy Proxy 먼저 istio에 사용되는 envory proxy를 살펴보자. Envoy 프록시는 Lyft사에서 개발되었으면 오픈소스로 공개되었다. 기존 프록시 L4기능 뿐 아니라 L7 기능도 지원하면서 HTTP 뿐아니라 HTTP 2.0,TCP,gRPC까지 다양한 프로토콜을 지원한다. 성능 지표를 보면 아래 Twillo에서 2017년에 테스트 한 자료를 참고할만 한데, (원본 https..

Istio #1 - 마이크로 서비스와 서비스 매쉬

Istio #1마이크로 서비스 아키텍처와 서비스 매쉬조대협 (http://bcho.tistory.com) 마이크로 서비스 아키텍쳐는 여러가지 장점을 가지고 있는 아키텍쳐 스타일이기는 하지만, 많은 단점도 가지고 있다. 마이크로 서비스는 기능을 서비스라는 단위로 잘게 나누다 보니, 전체 시스템이 커질 수 록 서비스가 많아지고, 그로 인해서 서비스간의 연결이 복잡해지고 여러가지 문제를 낳게 된다 출처 : https://www.slideshare.net/BruceWong3/the-case-for-chaos?from_action=save 서비스간의 전체 연결 구조를 파악하기 어려우며 이로 인해서 장애가 났을때, 어느 서비스에서 장애가 났는지 추적이 어려워진다. 또한 특정 서비스의 장애가 다른 서비스에 영향을 주..

쿠버네티스 #21 - 리소스(CPU/Memory) 할당과 관리

쿠버네티스 리소스(CPU/Memory)할당과 관리조대협 리소스 관리 쿠버네티스에서 Pod를 어느 노드에 배포할지를 결정하는 것을 스케쥴링이라고 한다.Pod에 대한 스케쥴링시에, Pod내의 애플리케이션이 동작할 수 있는 충분한 자원 (CPU,메모리 등)이 확보되어야 한다. 쿠버네티스 입장에서는 애플리케이션에서 필요한 자원의 양을 알아야, 그 만한 자원이 가용한 노드에 Pod를 배포할 수 있다. 쿠버네티스에서는 이런 컨셉을 지원하기 위해서 컨테이너에 필요한 리소스의 양을 명시할 수 있도록 지원하고 있다. 현재(1.9 버전) 지원되는 리소스 타입은 CPU와 메모리이며, 아직 까지는 네트워크 대역폭이나 다른 리소스 타입은 지원하고 있지 않다.리소스 단위리소스를 정의하는데 사용되는 단위는 CPU의 경우에는 ms(..

쿠버네티스 #20 - Security Best Practice

쿠버네티스 보안 Best Practice 조대협 (http://bcho.tistory.com) 지금까지 여러가지 보안 기능에 대해서 알아보았다. 그러면 이러한 보안 기능을 어떻게 잘 사용할지 베스프 프렉틱스에 대해서 알아보자. 쿠버네티스 보안 베스트 프렉틱스는 쿠버네티스 공식 블로그 https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment/ 에 2016년 8월에 포스팅과 https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/ 에 2018년 7월에 포스팅된 내용을 기반으로 한다. 쿠버네티스는 새버전 릴리즈가 빠른 편이고 버전마다 기능이나 아키텍쳐의..

마이크로 서비스 아키텍쳐와 컨테이너 환경

마이크로 서비스 아키텍쳐와 컨테이너조대협 (http://bcho.tistory.com)모노리틱 아키텍처마이크로 서비스 아키텍쳐를 이해하려면 먼저 이에 상반되는 모노리틱 아키텍쳐를 이해할 필요가 있다. 모노리틱 아키텍쳐는 전통적인 아키텍쳐 스타일로 애플리케이션이 하나의 서버에 배포 되고, 데이타 베이스도 마찬가지로 하나의 데이타 베이스에 모든 데이타를 저장하는 방식이다. 예전에 하나의 큰 서버를 놓고, 그 안에 하나의 애플리케이션으로 개발하는 방식인데, 수퍼돔과 같이 큰 머신을 하나 놓고, 오라클 데이타베이스에 모든 데이타를 저장하고, 애플리케이션 바이너리를 하나로 개발하는 방식이다. 중앙 관리된 구조에서 통제가 편리하고, 같은 솔루션을 사용한다는데 있어서 장점이 있다. 마이크로 서비스 아키텍처마이크로 서..