빅데이타 & 머신러닝 183

파이토치 분산 학습 도구 비교

1. 개요torch.distributed.launch와 torchrun은 둘 다 PyTorch에서 분산 학습을 실행하기 위한 도구이다.torch.distributed.launch는 이전부터 사용되어 온 유틸리티이며, torchrun은 더 최근에 등장한 도구로 사용 편의성을 개선했다.2. 주요 차이점 torch.distributed.launchtorchrun사용 편의성--local_rank 인자를 수동으로 스크립트에 전달해야 함--local_rank 자동 처리기능 범위기본적인 분산 학습 실행 기능 제공torch.distributed.launch 기능 + 탄력성(elasticity), 오류 처리 등 추가 기능 제공오류 처리worker 실패 시 자동 재시작 기능 없음worker 실패 시 자동 재시작 기능 제공..

파이토치 4 - 쿠버네티스에서 학습하기

파이토치 모델을 학습을 하는데 여러 사람이 동시에 작업을 하거나 또는 학습이 멀티 GPU, 멀티 노드를 사용할 경우에는 한정된 GPU 자원을 어떻게 배치할지에 대한 어려움이 생긴다. 또한 파이토치 작업이 학습도중에 중단되거나 했을때 자동으로 학습을 재시작하는 것과 같은 자동화된 관리가 필요한데, 이런 문제를 해결하기 위해서 가장 보편적으로 사용되는 접근 방법이 쿠버네티스나 Slurm등이 될 수 있다.  향후에 멀티 머신 기반의 학습이나 Fault Torelent 아키텍처를 기반으로한 분산 모델 학습 방법에도 설명하겠지만, 이 글에서는 간단하게 모델을 쿠버네티스에서 학습할 수 있는 방법에 대해서 알아본다.  아래 코드는 파이토치 라이트닝을 이용하여 Fashion Mnist 데이터를 학습하는 간단한 DNN ..

파이토치 3. 파이토치라이트닝

파이토치 라이트닝 파이토치 라이트닝은 파이토치를 한번 더 추상화하는 프레임웍으로, 파이토치 코딩의 복잡도를 낮춰주는 프레임이다. 텐서플로우의 복잡도를 케라스로 잡아주는 느낌이라고 할까? 한번더 추상화하는 만큼, 약간의 성능저하가 발생한다.  아래와 같은 간단한 선형 회귀 모델이 있다고 하자.import osimport torchfrom torch import nnimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderimport lightning as Lfrom torch.utils.data import TensorDataset# 데이터x_train = torch.FloatTensor([[1], [2], [3]])y_train = t..

파이토치 2. 선형회귀 (Linear Regression)을 통한 코드 구조 이해

파이토치의 모델 코드 구조를 이해해보자.먼저 가장 간단한 선형 회귀 모델 코드를 살펴보자. 아래는 전체 코드 블럭이다. 아래 코드는 "모두를 위한 딥러닝 시즌 2 파이토치 편"을 참고하였다. https://deeplearningzerotoall.github.io/season2/lec_pytorch.htmlimport matplotlib.pyplot as pltimport numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optim# 데이터x_train = torch.FloatTensor([[1], [2], [3]])y_train = torch.FloatTensor([[1], [2],..

파이토치 1. 기본 자료형 텐서

파이토치는 기본 자료형으로 행렬을 표현하는 텐서라는 자료형을 사용한다.아래 코드는 간단하게 배열로 부터 텐서를 생성하고, 이를 곱하는 코드이다. 곱셈은 matmul 함수를 이용하거나 @ 를 이용할 수 있다. # Multiply Tensorsimport torcha = torch.tensor([[1,2],[3,4]])b = torch.tensor([[1],[1]])c = torch.matmul(a, b)print(c)print(a@b) GPU에 텐서 생성파이토치에서는 텐서를 생성할때 텐서가 저장되는 메모리를 지정할 수 있다. 일반적인 메모리나 또는 GPU가 있을 경우 GPU 메모리를 지정할 수 있다.아래 코드는 GPU가 있을 경우 텐서 a,b를 GPU에 저장하고 서로 곱한 결과를 출력하는 코드이다. # p..

LLM 애플리케이션 아키텍처 (1/2)

LLM 애플리케이션 아키텍처 (1/2) 조대협 (http://bcho.tistory.com) ChatGPT나, Gemini 모델과 같은 LLM 을 이용한 애플리케이션을 개발하는 형태를 보면, 보통 LLM에 프롬프트 엔지니어링을 사용한 프롬프트를 입력으로 사용하고, 리턴을 받아서 사용한다. 그리고 약간 발전된 형태의 경우에는 파인 튜닝을 사용하거나, 아주 발전된 형태는 외부 문서 저장소를 사용하는 형태 정도의 수준으로 개발한다. 즉 LLM을 한번 정도 호출하는 정도의 구조를 가지고 있다. 그러나 운영환경에 올라가는 LLM 기반의 애플리케이션의 구조는 이것보다 훨씬 복잡하다. 아래 그림은 LLM 애플리케이션의 아키텍처 예시이다. 단순하게 프롬프트를 작성해서 LLM을 한번만 호출하는 것이 아니라, 여러 예제를..

#19 ChatGPT에서 질문과 관련된 웹페이지 크롤링하기

조대협 (http://bcho.tistory.com) Langchain 에서 Agent가 사용하는 Tool을 사용자가 쉽게 개발해서 추가할 수 있다. 이번 예제에서는 DuckDuckSearch Tool을 이용하여, 질문에 관련된 웹사이트를 검색한후, 그 중 한 웹사이트의 내용을 크롤링해서 웹페이지 내용을 읽어온후에, 이를 요약하는 예제를 만들어 본다. 이를 위해서 웹페이지를 크롤링하는 툴을 BeautifulSoup 을 이용해서 만들어 본다. 커스텀 툴을 정의하는 방법은 몇가지가 있는데, 이 예제에서는 데코레이터를 사용하는 방법과 StructuredTool을 사용하는 방법 두가지를 살펴보자. 먼저 decorator를 사용하는 방법이다. HEADERS = { 'User-Agent': 'Mozilla/5.0 ..

#18.LangSmith를 이용한 Langchain agent 내부 동작 구조 이해

앞의 예제는 agent를 생성할때 initialize_agent를 사용하는 방식으로 Langchain 0.1.0 까지는 지원하지만 deplicate 될 예정이고 새 버전의 create_react_agent 함수를 사용하기를 권장하고 있다. create_react_agent를 사용하려면 직접 agentExecutor도 선언해야 하고, 프롬프트도 정의해야하기 때문에 기존 방식에 비해서 다소 번거롭지만 좀 더 많은 컨트롤을 할 수 있다. 이번에는 create_react_agent를 이용하는 방식을 설명하면서 내부적으로 agent가 어떻게 동작하는지를 자세하게 살펴보고, 더불어서 langsmith 모니터링 툴을 이용하여, agent에서 내부의 동작을 어떻게 모니터링하고 추적하는지에 대해서 알아보록 한다. Lan..

Langchain을 이용한 LLM 애플리케이션 구현 #17-ChatGPT 구글 검색 엔진과 연동하기

Agent/Tool 을 이용하여 ChatGPT와 구글 검색엔진 연동하기 조대협 (http://bcho.tistory.com) LLM 모델은 기본적으로 학습 당시에 저장된 데이터만을 기반으로 답변을 한다. RAG를 이용하여 외부의 벡터 데이터 베이스에 있는 내용을 참고하여 지식 데이터를 확장할 수 있지만, 이 역시 저장한 문서에만 해당된다. LLM 애플리케이션을 데이터를 확장하고 싶다면? 예를 들어 LLM에 저장되지 않은 데이터를 구글 서치 엔진을 통해서 검색해서 참고하거나 유투브의 비디오 스크립트를 참고할 수 있다면? 아니면 회사내의 데이터베이스의 정보를 참고해서 답변을 할 수 있다면? 이러한 요구사항에 부합하여 LLM이 외부 정보를 참고하여 답변을 할 수 있도록 기능을 제공하는 컴포넌트가 langcha..