블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 


쿠버네티스 #14

모니터링 2/3 Prometheus를 이용한 모니터링


조대협 (http://bcho.tistory.com)

프로메테우스

그동안 주요 모니터링 솔루션으로 사용되던 힙스터는 1.13 버전 이후로 deprecated 될 예정이고, 그 이후를 맏을 모니터링 솔루션으로 가장 많이 언급되는 모니터링 솔루션은 프로메테우스 (Prometheus)이다.


프로메테우스는 SoundCloud (http://soundcloud.com/)에서 개발된 모니터링 툴로, 2016년에 CNCF  (Cloud Native Computing Foundation)에 오픈소스 프로젝트로 기부되었다. 지표 수집을 통한 모니터링을 주요 기능으로 하고 있다.


쿠버네티스 모니터링뿐만 아니라 애플리케이션이나 서버, OS 등 다양한 대상으로 부터 지표를 수집하여 모니터링할 수 있는 범용 솔루션으로, 아래와 같은 구조를 가지고 있다.



<그림. 프로메테우스 모니터링 아키텍처>

데이타 수집 부분

기본적으로, 프로메테우스는 데이타 수집을 PULLING 모델을 사용한다. 모니터링 대상이 되는 자원이 지표 정보를 프로메테우스로 보내는 것이 아니라, 프로메테우스가 주기적으로 모니터링 대상에서 지표를 읽어 오는 모델을 사용한다.


모니터링 대상이 프로메테우스의 데이타 포맷을 지원할 경우 바로 읽어올 수 있고, 만약에 지원하지 않는다면 별도의 에이전트를 설치해서 지표를 읽어올 수 있는데, 이를 exporter라고 한다. exporter는 mysql,nginx,redis와 같은 패키지는 미리 개발된 export가 있어서 다양한 서비스의 지표까지 쉽게 읽어올 수 있다.

이런 패키지 애플리케이션이 아니라, java 나 node.js와 같은 사용자 애플리케이션의 경우에는 Exporter를 사용하는 방법 말고도, 프로메테우스 클라이언트 라이브러리를 사용하게 되면, 바로 지표를 프로메테우스 서버로 보낼 수 있다.

마지막으로, Push gateway를 사용하는 방법이 있는데, 배치나 스케쥴 작업 같은 서비스의 경우에는 항상 서비스가 떠 있는 것이 아니라, 필요한 경우에만 떠 있다가 작업이 끝나면 사라지는 경우가 있다. 그래서, 이런 서비스를 Pulling으로 지표를 얻어오기가 어려울 수 있는데, 이를 보완하기 위해서, 이런 서비스들이 Push 방식으로 Push gateway에 지표를 쏴주면, Push gateway가 지표를 보관하고 있다가 프로메테우스 서버가 Pulling 을 하면, 저장된 지표 정보를 리턴하도록 한다.

서비스 디스커버리

그러면 프로메테우스는 모니터링 대상을 어떻게 알 수 있을까? 당연히 모니터링 대상 목록을 유지하고 있고, 대상에 대한 IP나 기타 접속 정보를 설정 파일에 주면, 그 정보를 기반으로 프로메테우스 서버가 모니터링 정보를 읽어온다.

그러나 오토스케일링을 많이 사용하는 클라우드 환경이나 쿠버네티스와 같은 컨테이너 환경에서는 모니터링 대상의 IP가 동적으로 변경되는 경우가 많기 때문에 이를 일일이 설정파일에 넣는데 한계가 있다. 이러한 문제를 해결 하기 위해서 프로메테우스는 서비스 디스커버리 를 사용하는데, 모니터링 대상이 등록되어 있는 저장소에서 목록을 받아서 그 대상을 모니터링 하는 형태이다.


프로메테우스는 DNS나 Consul, etcd와 같은 다양한 서비스 디스커버리 서비스와 연동을 통해서 자동으로 모니터링 대상의 목록을 가지고 올 수 있다.

저장 및 시각화

이렇게 수집된 지표 정보들은 프로메테우스 내부의 시계열 데이타베이스에 저장이 되고, 프로메테우스 웹 콘솔을 이용하여 시각화 되거나 또는 API를 외부에 제공해서 Grafana와 같은 시각화 툴을 통해서 지표를 시작화 해서 볼 수 있다.

알림 서비스

부가 기능중의 하나로, alerting 컴포넌트는, 지표에 대한 규칙을 걸어놓고 그 규칙을 위반할 경우에는 알림을 보낼 수 있는 기능을 가지고 있다. 알림을 보내는 대상은 이메일이나 pagerduty와 같은 notification 서비스 등과 연동이 가능하다.

쿠버네티스 연동 아키텍처

그러면, 쿠버네티스와 프로메테우스는 어떻게 연동이 될까? 여기서 오해하지 말아야 하는 점은 Heapster,cAdvisor 스택과 같이 딱 정해진 아키텍쳐는 없다는 것이다. 프로메테우스는 범용 모니터링 솔루션으로 프로메테우스 서버가 지표정보를 읽어올 수 만 있다면 거의 모든 정보를 읽어올 수 있는 구조이기 때문에, 쿠버네티스 연동에 있어서도 자유도가 매우 높다


단 레퍼런스 할 수 있는 구성은 있는데, 다음과 같은 구조를 갖는다.


먼저 프로메테우스 서버가 모니터링할 리소스를 찾기 위해서 서비스 디스커버리 (Service discovery) 메카니즘이 필요한데, 이를 위해서 쿠버네티스 API를 호출해서, 자원들의 목록 (Pod,Node, Service,Ingress,Endpoint 등)의 목록을 라벨 셀렉터(label selector)를 이용하여 수집한다.

다음 수집된 모니터링 대상에 대해서 모니터링을 수행하는데, 쿠버네티스는 apiServer에서 /metric 이라는 URL을 통해서 기본적인 지표 정보를 리턴하기 때문에, 쿠버네티스 자원들에 대한 모니터링은 이 API를 통해서 수집하게 된다.


아랫단에 하드웨어 즉 node에 대한 정보는 API를 통해서 수집하기가 어렵기 때문에, node에 node exporter를 설치해서 하드웨어와 OS에 대한 정보를 수집한다. 컨테이너에 대한 정보는 node별로 배포되어 있는 cAdvisor가 이를 수집하여 프로메테우스에 제공한다.


컨테이너내에서 기동되는 애플리케이션에 대한 정보는 필요한 경우, 클라이언트 SDK나, 솔루션에 맞는 exporter를 이용해서 수집한다.

쿠버네티스 연동하기

그러면 실제로 프로메테우스를 설치해서 쿠버네티스 클러스터를 모니터링 해보자. 앞의 아키텍쳐에서 봤지만, alert server, exporter, prometheus server 등 설치해야 하는 서버들이 많아서, 일일이 설치하는 것이 쉽지 않다. 여러가지 설치 방법이 있지만 여기서는 쿠버네티스의 패키지 매니저인 Helm 을 이용해서 프로메테우스를 설치하도록 한다. Helm 은  Linux의 RPM이나, Node.js의 npm같이 소프트웨어 스택을 명령으로 손쉽게 설치할 수 있도록 해주는 패키지 매니져의 개념으로 쿠버네티스 버전의 npm 툴이라고 이해하면 된다.


참고로 여기서 설치는 로컬 PC의 minikube 환경을 이용해서 설치하였다. 클라우드 환경에서 제공되는 쿠버네티스 클러스터의 경우에는 다소 차이가 있을 수 있으니, 각 벤더에서 제공되는 가이드를 참고하기 바란다. 아울러 아래 설치 내용은 운영 환경에서 적용하기는 어렵고, 운영환경 적용을 위해서는 적절한 디스크 타입과 Pod의 사이즈등을 다시 클러스터 환경에 맞도록 설정해야하고 어디까지나, 테스트 용임을 인지하기 바란다.

Helm 인스톨

Helm은 클라이언트와 서버 두개의 모듈로 나뉘어 진다.

인스톨은 어렵지 않은데, 클라이언트 OS에 따라 약간씩 차이가 있다. 자세한 인스톨 방법은 https://docs.helm.sh/using_helm/ 문서를 참고하면 된다.

클라이언트 인스톨

맥에서 클라이언트 인스톨은 brew를 이용하면 쉽게할 수 있다.

%brew install kubernetes-helm

명령을 이용하면 Helm 클라이언트가 로컬 PC에 설치된다.

서버 인스톨

Helm 서버를 Tiller라고 하는데, Tiler 서버의 인스톨은 어렵지 않으나, 클라우드 벤더나 설치 환경에 따라서 약간씩의 차이가 있다.


Minikube  환경에서 인스톨

Minikube 환경에서 인스톨은 Helm 클라이언트를 인스톨 한 후에, 아래와 같이

%helm init

명령어를 실행하면 쿠버네티스 클러스터에 Tiller 서버가 자동으로 설치된다.


구글 클라우드 쿠버네티스 엔진 (GKE) 환경에서 인스톨

GKE 환경은 약간 설치 방법이 다른데, 보안적인 이슈로 인해서 계정에 대한 권한 컨트롤을 상대적으로 까다롭게 하기 때문이다.

(참고 : https://cloud.google.com/solutions/continuous-integration-helm-concourse )


아래 명령을 이용하면 kube-system 네임 스페이스에 tiller라는 이름으로 서비스 어카운트를 생성할 수 있다.

% kubectl create clusterrolebinding user-admin-binding --clusterrole=cluster-admin --user=$(gcloud config get-value account)

% kubectl create serviceaccount tiller --namespace kube-system

% kubectl create clusterrolebinding tiller-admin-binding --clusterrole=cluster-admin --serviceaccount=kube-system:tiller


다음 Tiller를 생성할때, --service-account=tiller 옵션을 줘서 tiller 가 실행될때, 해당 서비스 어카운트의 권한을 가지고 실행되도록 한다.


헬름 서버 (Tieller) 인스톨

./helm init --service-account=tiller
./helm update


이렇게 설치 하지 않으면 Tiller 자체는 설치가 될 수 있지만, Tiller에 의해서 인스톨 되는 패키지들이 권한 오류로 인해서 제대로 설치되지 않을 수 있다

Helm Chart를 이용한 Prometheus 설치

Helm이 준비되었으면 프로메테우스 를 설치해보자


% git clone https://github.com/kubernetes/charts

명령을 이용하여 Helm chart를 다운 받는다. Helm chart는 npm 파일과 같이 인스톨 스크립트를 모아놓은 것으로 생각하면 된다. 프로메테우스외에도 다양한 설치 스크립트가 있다.


$ cd charts/stable/prometheus

를 이용해서 프로메테우스 디렉토리로 들어간 후에, 아래 명령을 이용하면 prometheus 네임스페이스에 프로메테우스가 설치된다.


$ helm install -f values.yaml stable/prometheus --name prometheus --namespace prometheus


설치가 끝났으면 이제 프로메테우스가 제대로 작동해서 지표를 수집하고 있는지 확인하자. 프로메테우스 서버는 디폴트로 9090 포트를 통해서 웹 인터페이스를 제공한다. 프로메테우스 서버를 외부 서비스로 expose 하지 않았기 때문에 포트 포워딩을 이용해서 프로메테우스 서버의 9090 포트를 포워딩 해보자


%kubectl get pod -n prometheus

명령을 이용해서 prometheus 네임스페이스에 있는 pod 목록을 다음과 같이 가지고 온다.



prometheus의 pod 명이 “prometheus-server-5695758946-gdxjx” 인것을 알았으면,localhost:9090을 이 pod의 9090포트로 포워딩하도록 설정한다.

%kubectl port-forward -n prometheus prometheus-server-5695758946-gdxjx 9090


포트 포워딩이 설정되었으면 localhost:9090으로 접속하여 프로메테우스의 웹 콘솔을 접속해보자

처음에는 아무것도 나오지 않을텐데, metric을 PQL (프로메테우스 쿼리)를 이용해서 선택하면 아래와 같이 해당 지표에 대한 값이 나오는것을 볼 수 있다. 아래는 node의 disk_io 정보를 살펴보는 쿼리이다.



이 메뉴에서 지표를 모니터링 하거나 또는 모니터링된 지표를 Graph 탭을 눌러서 그래프로 시각화 할 수 있다. 메뉴를 조금더 둘러보면 상단의 Status 메뉴에서 Service Discovery 메뉴를 눌러보면 다음과 같은 결과를 얻을 수 있다.


모니터링해야 하는 자원들의 목록으로 node, node-cadvisor, pods, services 등에 대한 정보를 모니터링할 수 있는 것을 확인할 수 있다.


Target 메뉴를 클릭하면 다음과 같은 정보가 나오는데,


어디로 부터 지표들을 수집해오는지 URL등을 확인할 수 있다. apiserver의 URL, node metric 정보 수집 URL node cAdvisor 수집 URL등을 확인할 수 있다.

Helm Chart를 이용한 Grafana 설치

프로메테우스를 설치했으면 이를 시각화 하기 위해서 Grafana를 설치해서 연동해보도록 하자.

Helm chart 디렉토리에서 stable/grafana 디렉토리에 values.yaml 파일이 있는데, 이 부분에서 adminPassword 부분을 찾아서 admin 사용자의 비밀 번호를 세팅하도록 하자.


adminUser: admin

adminPassword: mypassword


다음 Helm chart를 이용해서 Grafana를 설치한다.

stable/grafana 디렉토리에서 앞에서 수정한 values.yaml 파일을 이용한다.

%helm install -f values.yaml stable/grafana --name grafana --namespace grafana


설치가 종료되었으면 Grafana 콘솔에 접속해보자.

%kubectl get pod -n grafana 명령을 이용해서 grafana 서버의 pod 명을 알아낸다.


Grafana 서버는 외부 서비스로 Expose 되지 않았기 때문에, 포트 포워딩을 이용해서 해당 서버에 접속하도록 한다. Grafana는 3000번 포트로 웹 접속을 허용한다.


% kubectl port-forward -n grafana grafana-679cdd7676-zhwnf 3000

명령을 이용하면 localhost:3000을 Grafana 웹 서버로 포워딩 해준다.

localhost:3000에 접속해보면 다음과 같은 로그인 창이 나온다.


로그인창에서, 사용자명을 admin으로 입력하고, 비밀번호는 앞의 설정에서 입력한 비밀번호를 설정한다.

다음으로 프로메테우스 서버를 데이타 소스로 설정해야 하는데, grafana 메뉴에서 Configuration > Data source 메뉴를 선택한다.



Data source를 추가하기 위해서는 프로메테우스 서버의 URL 을 알아야 하는데, 프로메테우스 서버는 내부 IP를 가지고 있는 서비스로 Expose 되어 있다. 서비스명을 알기 위해서 다음 명령어를 실행한다.

%kubectl get svc -n prometheus

다음과 같이 서비스명이 prometheus-server이고 cluster-IP가 10.102.173.250 인것을 확인할 수 있다.




HTTP URL은 http://prometheus-server.prometheus.svc.cluster.local 게 된다.

그러면 이 정보를 Grafana datasource 쪽에 추가한다.



데이타소스 명은 Kuberentes로 지정하고, 타입은 Prometheus로 지정한다. 그리고 HTTP URL은 위의 http://prometheus-server.prometheus.svc.cluster.local 를 사용하고 Access 타입은 Server를 선택한다.


이 과정이 끝나면, 프로메테우스를 Grafana의 데이타 소스로 사용할 수 있다.

이 데이타 소스를 이용해서 대쉬 보드를 구성해야 하는데, 수동으로 일일이 구성할 수 도 있지만 Grafana 커뮤니티에는 이미 미리 구성되어 있는 대쉬보드 템플릿이 많다. 이 템플릿을 그대로 import 해서 사용해보도록 하겠다.

Grafana 메뉴에서 아래와 같이 Create > Import 메뉴를 선택한다.


다음 대쉬보드 설정 JSON을 넣을 수 있는데, 또는 Grafana.com에 등록된 대쉬보드 템플릿 번호를 넣을 수 도 있다. 여기서는 쿠버네티스 클러스터 모니터링 템플릿을 사용하도록 하겠다. 이 템플릿의 ID는 1621번이기 때문에 아래와 같이 템플릿 ID를 입력한다.

이 템플릿 이외에도, 노드 모니터링을 위한 템플릿등 여러 종류의 대쉬 보드 템플릿이 있기 때문에 용도에 맞게 선택해서 사용하면 된다.


템플릿 ID를 선택하면 다음 화면에서 데이타 소스를 선택해줘야 하는데, 아래 그림과 같이 Prometheus 부분을 앞에서 만든 데이타 소스 이름인 Kubernetes를 선택한다.


설정이 끝난후에 대쉬보드를 확인하면 아래와 같이 쿠버네티스에 대한 전반적인 모니터링 정보가 나오는 것을 확인할 수 있다.





쿠버네티스 #13

모니터링 1/2


조대협 (http://bcho.tistory.com)


시스템을 운영하는데 있어서 운영 관점에 있어서 가장 중요한 기능중의 하나는 시스템에 대한 모니터링이다. 시스템 자원의 사용량이나 에러등에 대한 모니터링을 통해서, 시스템을 안정적으로 운영하고 문제 발생시 원인 파악과 대응을 할 수 있다.

이번 글에서는 쿠버네티스 모니터링 시스템에 대한 개념과, 아키텍쳐 그리고 구축 방법에 대해서 소개하고자 한다.

쿠버네티스 모니터링 컨셉

쿠버네티스에 대한 모니터링을 보면 많은 툴과 지표들이 있어서 혼돈하기 쉬운데, 먼저 모니터링 컨셉에 대한 이해를 할 필요가 있다.

쿠버네티스 기반의 시스템을 모니터링하기 위해서는 크게 아래와 같이 4가지 계층을 모니터링해야 한다.



1. 호스트 (노드)

먼저 쿠버네티스 컨테이너를 실행하는 하드웨어 호스트 즉 노드에 대한 지표 모니터링이 필요하다. 노드의 CPU,메모리, 디스크, 네트워크 사용량과, 노드 OS와 커널에 대한 모니터링이 이에 해당한다.

2. 컨테이너

다음은 노드에서 기동되는 각각의 컨테이너에 대한 정보이다. 컨테이너의 CPU,메모리, 디스크, 네트워크 사용량등을 모니터링 한다.

3. 애플리케이션

컨테이너안에서 구동되는 개별 애플리케이션의 지표를 모니터링 한다. 예를 들어, 컨테이너에서 기동되는 node.js 기반의 애플리케이션의 응답시간, HTTP 에러 빈도등을 모니터링한다.

4. 쿠버네티스

마지막으로, 컨테이너를 컨트롤 하는 쿠버네티스 자체에 대한 모니터링을한다. 쿠버네티스의 자원인 서비스나 POD, 계정 정보등이 이에 해당한다.

쿠버네티스 기반의 시스템 모니터링에 대해서 혼돈이 오는 부분중의 하나가 모니터링이라는 개념이 포괄적이기 때문이다. 우리가 여기서 다루는 모니터링은 자원에 대한 지표 대한 모니터링이다. 포괄적인 의미의 모니터링은 로그와, 에러 모니터링등 다양한 내용을 포괄한다.  

쿠버네티스 로깅

지표 모니터링과 함께 중요한 모니터링 기능중 하나는 로그 수집 및 로그 모니터링이다.

로그 수집 및 로그 모니터링 방법은 여러가지 방법이 있지만, 오픈소스 로그 수집 및 모니터링 조합인 EFK (Elastic search + FluentD + Kibina) 스택을 이용하는 경우가 대표적이다.

Fluentd 에이전트를 이용하여, 각종 로그를 수집하여, Elastic search에 저장하고, 저장된 지표를 Kibana 대쉬 보들르 이용하여 시작화 해서 나타내는 방법이 있다.

이에 대한 자세한 설명을 생략한다.

쿠버네티스 모니터링 시스템 구축

그러면 이러한 모니터링 시스템을 어떻게 구축할 것인가?

쿠버네티스 모니터링은 버전업 과정에서 많은 변화를 겪고 있다. 기존 모니터링 시스템의 아키텍쳐는 cAdvisor,Heapster를 이용하는 구조였으나, 이 아키텍쳐는 곧 deprecated 될 예정이고, Prometheus등 다양한 모니터링 아키텍쳐가 후보로 고려 되고 있다.

아래 그래프를 보면 재미있는 통계 결과가 있는데, cAdvisor,Heapster,Promethus 를 이용하는 방법도 있지만, 클라우드의 경우에는 클라우드 벤더에서 제공하는 쿠버네티스 모니터링 솔루션을 그대로 사용하거나 (18%) 또는 데이타독이나 뉴렐릭 (Datadog, newRelic)과 같이 전문화된 모니터링 클라우드을 사용하는 비율 (26%) 도 꽤 높다.



<그림. 쿠버네티스 모니터링 솔루션 분포 >

출처 :  https://thenewstack.io/5-tools-monitoring-kubernetes-scale-production/


개인적인 의견으로는 직접 모니터링 솔루션을 구축해서 사용하는 것보다는 비용은 약간 들지만 클라우드 벤더에서 제공되는 모니터링 도구나 또는 데이타독과 같은 전문 모니터링 솔루션을 이용하는 것을 추천한다.


직접 모니터링 솔루션을 구축할 경우 구축과 운영에 드는 노력도 꽤 크고, 또한 어떠한 지표를 모니터링해야할지 등에 대한 추가적인 노하우가 필요하다. 또한 cAdvisor,Heapster,Promethues 조합은 호스트와 컨테이너 그리고 쿠버네티스에 대한 모니터링은 제공하지만 애플리케이션 지표에 대한 모니터링과 로깅 기능은 제공하지 않기 때문에 별도의 구축이 필요하다. 이런 노력을 들이는 것 보다는 모든 기능이 한번에 제공되고 운영을 대행해주는 데이타독이나 클라우드에서 제공해주는 모니터링 솔루션을 사용하는 것을 추천한다.

Heapster 기반 모니터링 아키텍처

이러한 모니터링 요건을 지원하기 위해서, 쿠버네티스는 자체적인 모니터링 컴포넌트를 가지고 있는데, 그 구조는 다음과 같다.



<그림. 쿠버네티스 모니터링 시스템 아키텍쳐>

출처 Source : https://www.datadoghq.com/blog/how-to-collect-and-graph-kubernetes-metrics/


cAdvisor

cAdvisor는 모니터링 에이전트로, 각 노드마다 설치되서 노드에 대한 정보와 컨테이너 (Pod)에 대한 지표를 수집하여, Kubelet으로 전달한다.

Heapster

cAdvisor에 의해 수집된 지표는 Heapster 라는 중앙 집중화된 지표 수집 시스템에 모이게 되고, Heapster는 수집된 지표를 스토리지 백앤드에 저장한다.

Storage backend

Heapster가 지표를 저장하는 데이타베이스를 스토리지 백앤드라고 하는데, Heapster는 확장성을 위해서 다양한 스토리지 백앤드를 플러그인 구조를 선택하여 연결할 수 있다.

현재 제공되는 대표적인 스토리지 백앤드는 구글 클라우드의 모니터링 시스템인 스택드라이버 (stackdriver), 오픈 소스 시계열 데이타베이스인 인플럭스 디비 (InfluxDB) 등을 지원한다.

그래프 대쉬 보드

이렇게 저장된 모니터링 지표는 그래프와 같은 형태로 시각화 될필요가 있는데, 스토리지 백앤드를 지원하는 다양한 시각화 도구를 사용할 수 있다. 구글의 모니터링 시스템인 스택드라이버의 경우에는 자체적인 대쉬보드 및 그래프 인터페이스가 있고, 인플럭스 디비나 프로메테우스의 경우에는 오픈소스 시각화 도구인 그라파나(Grafana)를 사용할 수 있다.


<그림. 그라파나와 프로메테우스를 연결하여, 지표 모니터링을 시각화 한 예제>


그러나 이 아키텍쳐는 deprecation 계획이 시작되서 1.13 버전 부터는 완전히 제거될 예정이다.

https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md


쿠버네티스 대시보드

다른 방법으로는 쿠버네티스를 모니터링 하고 관리할 수 있는 쉬운 방법이 하나 있는데, 쿠버네티스 대시보드를 사용하는 방법이다. 쿠버네티스는 기본적으로 kubectl이라는 커맨드 라인 인터페이스 (이하 CLI : Command Line Interface)를 사용하지만, 추가적으로 웹 기반의 관리 콘솔을 제공한다. 이를 쿠버네티스 대시보드라고 한다. (https://github.com/kubernetes/dashboard)

대시 보드 설치

쿠버네티스 대시 보드 설치 방법은 간단하다. 아래와 같이 대시보드 설정 yaml 파일을 이용하면 간단하게 대시 보드를 쿠버네티스 클러스터에 설치할 수 있다.


% kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml


일반적인 경우에는 위의 스크립트로 설치가 가능하지만, 구글 클라우드 쿠버네티스 엔진의의 경우에는 설치 중에 권한 관련 에러가 나올 수 있는데, 구글 클라우드 쿠버네티스 엔진의 경우에는 보안을 이유로 일반적인 쿠버네티스보다 권한 설정 레벨이 높게 설정되어 있기 때문이다. 구글 클라우드 쿠버네티스 엔진에서 대시보드를 설치하고자할때에는 위의 스크립트를 실행하기 전에 먼저 아래 명령어를 이용해서, 현재 사용자 계정에 대해서 cluster-admin 롤을 부여해줘야 한다.  


%kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole cluster-admin --user $(gcloud config get-value account)

대시 보드 접속

대시보드 설치가 끝났으면, 대시보드를 접속해보자

대시보드는 외부 서비스로 제공되지 않고, 내부 IP로만 접속이 가능한데, 클러스터 외부에서 접근하려면 kubectl proxy를 이용하면, 간단하게 접근이 가능하다.

kubectl proxy는 로컬 머신 (예를 들어 노트북)과 쿠버네티스 클러스터간의 통신을 프록싱해줘서, 로컬 머신에서 쿠버네티스 클러스터내의 HTTP 서비스를 접근할 수 있도록 해준다.

사용 방법은 로컬 머신에서 간단하게

%kubectl proxy

명령을 실행해주면 localhost:8001 포트를 통해서 쿠버네티스 클러스터로 트래픽을 프록시 해준다.

위와 같이 proxy를 실행한후에,  아래 URL로 접근을 하면, 대시보드 콘솔에 접근할 수 있다.

http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/


URL에 접근하면 아래와 같이 로그인 창이 나타난다.



사용자 계정 및 토큰등에 대해서는 보안 부분에서 별도로 다루기로 하겠다.

대쉬보드를 사용하기 위해서는 사용자 인증이 필요한데, 간단하게 인증을 위한 토큰을 사용하는 방법을 이용하도록 하겠다.

토큰은 쿠버네티스 API 인증 메커니즘중의 하나로, 여기서는 admin-user라는 계정을 하나 만든후에, 그 계정에, 클러스터 관리자롤을 부여한 후에, 그 사용자의 토큰을 사용하는 방법을 사용하겠다.


먼저 아래 스크립트를 이용해서 admin-user 라는 사용자를 생성한다.

admin-user.yaml 파일

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kube-system


다음 아래 스크립트를 이용해서 cluster-admin 롤을 앞에서 생성한 admin-user에 부여한다.

admin-rolebinding.yaml 파일

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: admin-user

 namespace: kube-system


다음 아래 명령어를 이용하면 admin-user의 토큰 값을 알 수 있다.

% kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')


명령을 실행하면 아래와 같이 토큰이 출력된다.


이 토큰 값을 앞의 로그인 창에 입력하면, 대시보드에 로그인할 수 있다.

대시 보드에 로그인하면 아래와 같이 노드나, Pod, 서비스등 쿠버네티스의 자원의 대부분의 정보에 대한 모니터링이 가능하다.




또한 kubectl CLI 명령을 사용하지 않고도 손쉽게 Deployment 등 각종 자원을 생성할 수 있다.


로그 부분에 들어가면 아래와 같이 로그 정보를 볼 수 있다



재미있는 기능중 하나는 아래 그림과 같이 특정 Pod의 컨테이너를 선택하면, 웹콘솔상에서 해당 컨테이너로 SSH 로그인이 가능하다.



여기서 다룬 쿠버네티스 대시보드 설정 및 로그인 부분은 프록시 사용, 로그인을 토큰을 사용하는 등, 운영환경에는 적절하지 않은 방법이다. 개발환경이나 테스트 용도로만 사용하도록 하고, 운영 환경에서는 사용자 계정 시스템 생성과 적절한 권한 배정을 한 후에, 적절한 보안 인증 시스템을 마련한 후에 적용하도록 하자.



쿠버네티스 #12

Secret


조대협 (http://bcho.tistory.com)


Secret

configMap이 일반적인 환경 설정 정보나 CONFIG정보를 저장하도록 디자인 되었다면, 보안이 중요한 패스워드나, API 키, 인증서 파일들은 secret에 저장할 수 있다. Secret은 안에 저장된 내용을 지키기 위해서 추가적인 보안 기능을 제공한다. 예를 들어 secret의 값들은 etcd에 저장될때 암호화된 형태로 저장되고 API server나 node의 파일에는 저장되지 않고, 항상 메모리에 저장되어 있기 때문에 상대적으로 접근이 어렵다.

하나의 secret의 사이즈는 최대 1M까지 지원되는데, 메모리에 지원되는 특성 때문에, secret을 여러개 저장하게 되면 API Server나 노드에서 이를 저장하는 kubelet의 메모리 사용량이 늘어나서 Out Of Memory와 같은 이슈를 유발할 수 있기 때문에, 보안적으로 꼭 필요한 정보만 secret에 저장하도록 하는게 좋다.


사용 방법에 있어서는 secret와 configmap은 기본적으로 거의 유사하다. 기본적으로 키/밸류 형태의 저장구조를 가지고 있으며, 사용시 환경 변수를 통해서 Pod에 그 값을 전달하거나, 또는 디스크 볼륨으로 마운트가 가능한데, secret은 정의하는 방법이 다소 차이가 있다.

예를 들어 language라는 키로 java라는 값을 저장하고자 할때, configmap의 경우에는 이를 language:java 식으로 일반 문자열로 저장했지만 secret의 경우에는 값에 해당하는 부분을 base64 포맷으로 인코딩해야 한다.

즉 java라는 문자열을 base64로 인코딩을 하면, amF2YQo= 가 된다.

문자열을 base64포맷으로 인코딩 하려면 맥이나 리눅스에서 다음과 같은 명령을 이용하면 된다.

%echo java | base64

이렇게 인코딩 된 문자열을 이용해서 secret을 정의해보면 다음과 같다.


hello-secret.yaml 파일

apiVersion: v1
kind: Secret
metadata:
 name: hello-secret
data:
 language: amF2YQo=

base64로 인코딩이 되어 있지만 이를 환경변수로 넘길때나 디스크볼륨으로 마운트해서 읽을 경우에는 디코딩이되서 읽어진다. base64는 단순 인코딩이지 암호화가 아닌데, 왜 궂이 base64로 인코딩을 하는 것일까? secret에 저장되는 내용은 패스워드와 같은 단순 문자열의 경우에는 바로 저장이 가능 하지만, SSL 인증서와 같은 바이너리 파일의 경우에는 문자열로 저장이 불가능하다. 그래서 이러한 바이너리 파일 저장을 지원하기 위해서 secret의 경우에는 저장되는 값을 base64로 인코딩을 하여 저장하도록 되어 있다.


그러면 앞에서 작성한 secret을 테스트하기 위해서 node.js로 간단한 server.js 애플리케이션을 만들어보자.


var os = require('os');


var http = require('http');

var handleRequest = function(request, response) {

 response.writeHead(200);

 response.end(" my prefered secret language is "+process.env.LANGUAGE+ "\n");


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 코드는 LANGUAGE라는 환경 변수에서 값을 읽어서 출력하는 코드이다. (앞의 configmap 코드와 동일)

이 파일을 도커 컨테이너 이미지로 만든후에 gcr.io/terrycho-sandbox/hello-secret:v1 이름으로 등록한 후에, 아래와 같이 Deployment 코드를 작성해보자


hello-secret-literal-deployment.yaml 파일


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: hello-secret-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: hello-secret-literal

 template:

   metadata:

     name: hello-secret-literal-pod

     labels:

       app: hello-secret-literal

   spec:

     containers:

     - name: cm

       image: gcr.io/terrycho-sandbox/hello-secret:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       env:

       - name: LANGUAGE

         valueFrom:

           secretKeyRef:

              name: hello-secret

              key: language


Deployment 파일은 configMap과 크게 다를 것이 없다. configMapKeyRef를 secrectKeyRef로 변경하였고, configMap과 마찬가지로 secret의 이름(hello-secret)을 정하고, 키 이름 (language)을 지정하였다. Deployment를 배포한후에, 서비스를 배포해서 웹으로 접속하면 아래와 같이 secret에 base64로 저장된 “java”라는 문자열이 디코딩되서 출력되는 것을 확인할 수 있다.



파일로 마운트 하기

secret도 configMap과 마찬가지로, 설정 값들을 환경변수 뿐만 아니라, 파일로도 넘길 수 있다. 환경변수로 넘기는 방법과 마찬가지로 파일을 base64로 인코딩해서 secret을 생성해야 하며, 인코딩된 secret을 Pod에 파일로 마운트될때는 디코딩된 상태로 마운트가 된다.


이번에는 secret을 파일에서 부터 만들어보자 사용자 ID를 저장한 user.property 파일과, 비밀 번호를 저장한 password.property 파일 두개가 있다고 하자.각 파일의 내용은 다음과 같다.



Filename : user.property

terry



Filename : password.property

mypassword


이 두개의 파일을 secret에 저장을 할것이다. 명령은 다음과 같다.

% kubectl create secret generic db-password --from-file=./user.property  --from-file=./password.property


db-password라는 secret을 생성하고, user.property, password.property에서 secret을 생성하게 된다. 생성된 secret은 user.property, password.property라는 파일명을 각각 키로하여 파일의 내용이 저장된다.

이때 파일을 통해서 secret을 만들경우에는 별도로 base64 인코딩을 하지 않더라도 자동으로 base64로 인코딩 되어 저장된다.


위의 명령을 보면 kubectl create secret 명령어 뒤에 generic 이라는 키워드를 붙였는데, 이는 secret을 generic이라는 타입으로 생성하기 위함이다. secret의 타입에 대해서는 뒤에서 설명하도록 한다.


이렇게 생성된 secret을 확인해보면 아래와 같이 user.property, password.property 두개의 키로 데이타를 저장하고 있는 것을 확인할 수 있다.




시크릿을 디스크로 마운트해서 읽는 것을 테스트해보기 위해서 간단하게 node.js로 server.js 라는 코드를 아래와 같이 작성한다. 아래 코드는 /tmp/db-password 디렉토리에서 user.property와 password.property 파일을 읽어서 화면에 출력하는 코드이다.


var os = require('os');

var fs = require('fs');

var http = require('http');


var handleRequest = function(request, response) {

 fs.readFile('/tmp/db-password/user.property',function(err,userid){

   response.writeHead(200);

   response.write("user id  is "+userid+" \n");

   fs.readFile('/tmp/db-password/password.property',function(err,password){

     response.end(" password is "+password+ "\n");

   })

 })


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


다음 이 코드에서 user.property와 password.property 를 /tmp/db-password 디렉토리에서 읽어올 수 있도록, 앞에서 만든 db-password 라는 시크릿을 /tmp/db-password  디렉토리에 마운트 하도록 deployment를 정의한다.

hello-secret-file-deployment.yaml


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: hello-serect-file-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: hello-secret-file

 template:

   metadata:

     name: hello-secret-file

     labels:

       app: hello-secret-file

   spec:

     containers:

     - name: hello-secret-file

       image: gcr.io/terrycho-sandbox/hello-secret-file:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       volumeMounts:

         - name: db-password

           mountPath: "/tmp/db-password"

           readOnly: true

     volumes:

     - name: db-password

       secret:

         secretName: db-password

         defaultMode: 0600


configMap과 차이가 거의 없다.  configMap이 secret으로만 바뀐건데, 이번에는 마운트 되는 파일의 퍼미션을 지정하였다. (configMap도 지정이 가능하다.) defaultMode로 파일의 퍼미션을 정의해놓으면, 파일 생성시, 해당 퍼미션으로 파일이 생성된다. 여기서는 0600으로 정의했기 때문에, rw-------으로 파일이 생성될것이다. 만약에 퍼미션을 지정하지 않았을 경우에는 디폴트로 0644 퍼미션으로 파일이 생성된다.


위의 스크립트로 생성한 Pod에 SSH로 들어가 보면 아래와 같이 /tmp/db-password에 user.property파일과 password.property 파일이 생성된것을 확인할 수 있다.




그런데 파일 퍼미션을 보면 우리가 지정한 0600이 아닌데, 잘 보면 user.property와 password.property는 링크로 ..data/user.property 와  ..data/password.property 파일로 연결이 되어 있다.




Deployment 배포가 끝났으면, 서비스를 배포해서 웹으로 접속해보자


위와 같이 마운트된 시크릿 파일에서 데이타를 읽어와서 제대로 출력한것을 확인할 수 있다.

시크릿 타입

시크릿은 configMap과는 다르게 타입




쿠버네티스 #11

ConfigMap


조대협 (http://bcho.tistory.com)



애플리케이션을 배포하다 보면, 환경에 따라서 다른 설정값을 사용하는 경우가 있다. 예를 들어, 데이타베이스의 IP, API를 호출하기 위한 API KEY, 개발/운영에 따른 디버그 모드, 환경 설정 파일들이 있는데, 애플리케이션 이미지는 같지만, 이런 환경 변수가 차이가 나는 경우 매번 다른 컨테이너 이미지를 만드는 것은 관리상 불편할 수 밖에 없다.

이러한 환경 변수나 설정값들을 변수로 관리해서 Pod가 생성될때 이 값을 넣어줄 수 있는데, 이러한 기능을 제공하는 것이 바로 Configmap과 Secret이다.


아래 그림과 같이 설정 파일을 만들어놓고, Pod 를 배포할때 마다 다른 설정 정보를 반영하도록 할 수 있다.



Configmap이나 secret에 정의해놓고, 이 정의해놓은 값을 Pod로 넘기는 방법은 크게 두가지가 있다.

  • 정의해놓은 값을 Pod의 환경 변수 (Environment variable)로 넘기는 방법

  • 정의해놓은 값을 Pod의 디스크 볼륨으로 마운트 하는 방법

ConfigMap

configmap은 앞서 설명한것과 같이 설정 정보를 저장해놓는 일종의 저장소 역할을 한다.

configmap은 키/밸류 형식으로 저장이된다.

configmap을 생성하는 방법은 literal (문자)로 생성하는 방법과 파일로 생성하는 방법 두가지가 있다.

Literal

먼저 간단하게 문자로 생성하는 방법을 알아보자

키가 “language”로 하고 그 값이 “java”인 configMap을 생성해보자

Kubectl create configmap [configmap 이름] --from-literal=[키]=[값] 식으로 생성하면 된다.

아래 명령을 이용하면, hello-cm 이라는 이름의 configMap에 키는 language, 값은 java인 configMap이 생성된다.

% kubectl create configmap hello-cm --from-literal=language=java


또는 아래와 같이 YAML파일로도 configMap을 생성할 수 있다.

hello-cm.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: hello-cm

data:

 language: java


데이타 항목에 [키]:[값] 형식으로 라인을 추가하면 여러개의 값을 하나의 configMap에 저장할 수 있다.

configmap이 생성되었으면 이 값을 Pod에서 환경 변수로 불러서 사용해보도록 하자.

node.js로 간단한 웹 애플리케이션을 만든후에 “LANGUAGE”라는 환경 변수의 값을 읽어서 출력하도록 할것이다.

아래와 같이 server.js node.js 애플리케이션을 만든다.


var os = require('os');


var http = require('http');

var handleRequest = function(request, response) {

 response.writeHead(200);

 response.end(" my prefered language is "+process.env.LANGUAGE+ "\n");


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 파일을 컨테이너로 패키징한 후에, 아래와 같이 Deployment를 정의한다

apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: cm-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: cm-literal

 template:

   metadata:

     name: cm-literal-pod

     labels:

       app: cm-literal

   spec:

     containers:

     - name: cm

       image: gcr.io/terrycho-sandbox/cm:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       env:

       - name: LANGUAGE

         valueFrom:

           configMapKeyRef:

              name: hello-cm

              key: language


configMap에서 데이타를 읽는 부분은 맨 아래에 env 부분인데, env 부분에 환경 변수를 정의하는데, name은 LANGUAGE라는 이름으로 정의하고 데이타는 valueFrom을 이용해서 configMap에서 읽어오도록 하였다. name에는 configMap의 이름인 hello-cm을, 그리고 읽어오고자 하는 데이타는 키 값이 “language”인 값을 읽어오도록 하였다. 이렇게 하면, LANGUAGE 환경 변수에, configMap에 “language” 로 저장된 “java”라는 문자열을 읽어오게 된다.


이 스크립트를 이용하여 Deployment를 생성한 후에, 이 Deployment 앞에 Service (Load balancer)를 붙여 보자.


apiVersion: v1

kind: Service

metadata:

 name: cm-literal-svc

spec:

 selector:

   app: cm-literal

 ports:

   - name: http

     port: 80

     protocol: TCP

     targetPort: 8080

 type: LoadBalancer


서비스가 생성이 되었으면 웹 브라우져에서 해당 Service의 URL을 접속해보자.



위와 같이 환경 변수에서 “java”라는 문자열을 읽어와서 출력한것을 확인할 수 있다.

File

위와 같이 개개별 값을 공유할 수 도 있지만, 설정을 파일 형태로 해서 Pod에 공유하는 방법도 있다.

예제를 보면서 이해하도록 하자.

profile.properties라는 파일이 있고 파일 내용이 아래와 같다고 하자

myname=terry

email=myemail@mycompany.com

address=seoul


파일을 이용해서 ConfigMap을 만들때는 아래와 같이 --from-file 을 이용해서 파일명을 넘겨주면 된다.

kubectl create configmap cm-file --from-file=./properties/profile.properties

이렇게 파일을 이용해서 configMap을 생성하면, 아래와 같이 키는 파일명이 되고, 값은 파일 내용이 된다.


환경변수로 값을 전달하기

생성된 configMap 내의 값을 Pod로 전달하는 방법은,앞에서 예를 든것과 같이 환경 변수로 넘길 수 있다.

아래 Deployment 예제를 보면


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: cm-file-deployment

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: cm-file

 template:

   metadata:

     name: cm-file-pod

     labels:

       app: cm-file

   spec:

     containers:

     - name: cm-file

       image: gcr.io/terrycho-sandbox/cm-file:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       env:

       - name: PROFILE

         valueFrom:

           configMapKeyRef:

              name: cm-file

              key: profile.properties


cm-file configMap에서 키가 “profile.properties” (파일명)인 값을 읽어와서 환경 변수 PROFILE에 저장한다. 저장된 값은 파일의 내용인 아래 문자열이 된다.

myname=terry

email=myemail@mycompany.com

address=seoul


혼동하지 말아야 하는 점은, profile.properties 파일안에 문자열이 myname=terry 처럼 키/밸류 형식으로 되어 있다고 하더라도, myname 을 키로 해서 terry라는 값을 가지고 오는 것처럼 개개별 문자열을 키/밸류로 인식하는 것이 아니라 전체 파일 내용을 하나의 문자열로 처리한다는 점이다.


디스크 볼륨으로 마운트하기

configMap의 정보를 pod로 전달하는 방법은 앞에 처럼 환경 변수를 사용하는 방법도 있지만, Pod의 디스크 볼륨으로 마운트 시키는 방법도 있다.

앞의 cm-file configMap을 /tmp/config/에 마운트 해보도록 하자.

아래와 같이 Deployment 스크립트를 작성한다.


apiVersion: apps/v1beta2

kind: Deployment

metadata:

 name: cm-file-deployment-vol

spec:

 replicas: 3

 minReadySeconds: 5

 selector:

   matchLabels:

     app: cm-file-vol

 template:

   metadata:

     name: cm-file-vol-pod

     labels:

       app: cm-file-vol

   spec:

     containers:

     - name: cm-file-vol

       image: gcr.io/terrycho-sandbox/cm-file-volume:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080

       volumeMounts:

         - name: config-profile

           mountPath: /tmp/config

     volumes:

       - name: config-profile

         configMap:

           name: cm-file


configMap을 디스크 볼륨으로 마운트해서 사용하는 방법은 volumes 을 configMap으로 정의하면 된다. 위의 예제에서 처럼 volume을 정의할때, configMap으로 정의하고 configMap의 이름을 cm-file로 정의하여, cm-file configMap을 선택하였다. 이 볼륨을 volumeMounts를 이용해서 /tmp/config에 마운트 되도록 하였다.

이때 중요한점은 마운트 포인트에 마운트 될때, 파일명을 configMap내의 키가 파일명이 된다.


다음 테스트를 위해서 server.js 애플리케이션에 /tmp/config/profile.properties 파일을 읽어서 출력하도록 아래와 같이 코드를 작성한다.

var os = require('os');

var fs = require('fs');


var http = require('http');

var handleRequest = function(request, response) {

 fs.readFile('/tmp/config/profile.properties',function(err,data){

   response.writeHead(200);

   response.end("Read configMap from file  "+data+" \n");

 });


 //log

 console.log("["+

Date(Date.now()).toLocaleString()+

"] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 server.js를 도커로 패키징해서 배포한후, service를 붙여서 테스트해보면 다음과 같은 결과를 얻을 수 있다.



파일 내용이 출력되는 것을 확인할 수 있다

디스크에 마운트가 제대로 되었는지를 확인하기 위해서 Pod에 쉘로 로그인해서 확인해보자


그림과 같이 /tmp/config/profile.properties 파일이 생성된것을 확인할 수 있다.