블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 


Classification & Clustering 모델 평가


조대협 (http://bcho.tistory.com)


클러스터링과 분류 모델에 대한 성능 평가 방법은 데이타에 라벨이 있는가 없는가에 따라서 방법이 나뉘어 진다. 사실 클러스터링은 라벨이 없는 데이타에 주로 사용을 하고, 라벨이 있는 경우에는 분류 모델을 사용한다. 클러스터링 모델에 대한 평가는 라벨이 없는 상태에서 클러스터의 응집도등을 평가하는데 대부분 그 정확도가 그리 높지 않기 때문에, 도메인 지식을 가지고 있는 전문가에 의한 휴리스틱한 방식의 평가 방식이 대부분이다.


분류 모델(Classification) 에 대한 모델 평가

라벨이 있는 경우에는 분류 모델에 대한 모델 평가 방법을 사용한다.

Confusion matrix

이진 분류 문제에서 암의 양성과 음성 데이타를 가지고 있는 데이타 가 있다고 하자


만약 모델의 정확도가 100%이면, 양성과 음성 데이타를 100% 잘 구분할것이다. 아래 그림과 같이, 양성으로 분 예측된 영역을 Positive prediction, 음성으로 분리된 영역을 Negative prediction 이라고 한다.


그런데 실제 세계에서는 정확도 100% 모델은 매우 드물고 실제로는 아래 그림과 같이 예측이 되는 경우가 많다.


양성과 음성 데이타가 각각 잘못되는 경우가 있다.

  • 양성인데, 양성으로 제대로 검출된것은 True Positive (TP)

  • 음성인데 음성으로 제대로 검출된것은 True Negative (TN)

  • 양성인데 음성으로 잘못 검출된것은 False Negative (FN)

  • 음성인데 양성으로 잘못 검출된것은 False Positive (FP)


라고 하고 그림으로 표현하면 다음과 같은 그림이 된다.


보통 이를 표로 표시하는데, 다음과 같이 표현이 된다.




P = TP + FN

N = FP + TN


그러면 이 지표를 가지고 무엇을 하느냐? 이 값을 기반으로 다음과 같은 지표들을 계산하여 모델 평가에 사용한다.

Accuracy

가장 대표적으로 사용되는 지표로 전체 데이타중에서, 제대로 분류된 데이타의 비율로


ACC = (TP + TN)  / (전체 데이타 수 = P + N)


모델이 얼마나 정확하게 분류를 하는지를 나타낸다.


Error Rate

Error Rate는 Accuracy 와 반대로, 전체 데이타 중에서 잘못 분류한 비율을 나타낸다


ERR = (FN+FP) / (전체 데이타수 = P+N)


Sensitivity (Recall or True positive Rate)

민감도라고도 하는데, Sensitive 또는  Recall이라고도 하는데, 원래 Positive 데이타 수에서 Positive로 분류된 수를 이야기 한다. 에를 들어 원본 데이타에 암 양성이 100개 있었는데, 모델에 있어서 90개가 분류되었으면, Sensitive Rate = 0.9 가된다.


SN = (TP) / P


모델이 얼마나 정확하게 Positive 값을 찾느냐를 나타낸다.

Recall (as opposed to precision) is not so much about answering questions correctly but more about answering all questions that have answer "true" with the answer "true". So if we simply always answer "true", we have 100% recall.


Precision

Precision (정밀성)은 Positive로 예측한 내용 중에, 실제 Positive의 비율을 뜻한다.


PREC = TP / (TP+FP)


Precision is about being precise. In common English, being precise means: if you give an answer, the answer will very likely be correct. So even if you answered only one question, and you answered this question correctly, you are 100% precise.


Specificity (True negative rate)

Specificity 값은 Negative 로 판단한것중에, 실제 Negative 값의 비율이다.


SP = TN / TN+FP


False Positive rate

원래는 Positive 값인데, 잘못해서 Negative로 판단한 비율로


FPR = FP / N


이 된다. 예를 들어 게임에서 어뷰징 사용자를 검출했을때 정확도도 중요하겠지만, FPR 값이 높으면, 정상 사용자를 비정상 사용자로 검출하는 경우가 많다는 의미가 된다. 어뷰징 사용자에 대해서는 계정 정지등 패널티를 주게 되는데, 모델이 아무리 어뷰징 사용자를 잘 찾아낸다 하더라도 FPR 값이 높게 되면, 정상적인 사용자를 어뷰징 사용자로 판단하여 선의의 사용자가 징계를 받게 되서, 전체적인 게임 충성도에 문제가 생길 수 있다. (어뷰징 사용자를 많이 찾아내는 것보다, 정상 사용자가 징계를 받게 되는 경우가 비지니스에 크리티컬 할때) 이런 경우에 FPR 값을 레퍼런스 할 수 있다.



그러면, Confusion Matrix를 통해서 계산된 결과를 가지고 모델을 어떻게 평가를 할까? 앞에서 나온 지표중에서 일반적으로 Accuracy 지표가 많이 사용되고, 그외에, ROC , Precision Recall Plot, F-Score 등이 많이 사용되는데 각각에 대해서 알아보자

ROC (Receiver Operating Characteristics)

ROC 그래프는 가로축을 FP Rate (Specificity) 값의 비율로 하고 세로축을 TP Rate (Sensitive) 로 하여 시각화 한 그래프이다.


  • Specificity = TN / TN+FP

  • Sensitive (Recall) = (TP) / P




보통 다음과 같은 그래프가 되고



(출처 : http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html )


그래프가 위로 갈 수록 좋은 모델이고, 적어도 Y=X 그래프보다 위에 있어야 어느정도 쓸모 있는 모델로 볼 수 있다. 아래 그래프는 3개로 결과를 분류하는 모델에 대한 ROC 그래프 이다.


(출처 : http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html )


ROC 그래프가 class 0, class 2, class 1 순서로 높은것을 볼 수 있다. 즉 이 모델은 class 0 을 제일 잘 분류하고 그 다음은 2,1 순서로 잘 분류 한다는 의미가 된다.

ROC는 그래프이기 때문에, 모델을 정확도를 하나의 숫자로 나타내기 어려워서 AUC (Area Under Curve) 라는 값을 사용하는데, ROC AUC값은 ROC 그래프의 면적이 된다. 최대값은 1이 된다. 위의 그래프를 보면 모델 0,2,1의 AUC값은 0.91, 0.79, 0.60 이 된다.

Precision Recall Plot

Precision Recall Plot (이하 PR 그래프)의 경우도 ROC 와 유사한데, 주로 데이타 라벨의 분포가 심하게 불균등 할때 사용한데, 예를 들어 이상 거래 검출 시나리오의 경우 정상 거래의 비율이 비정상 거래에 비해서 압도적으로 많기 때문에 (98%, 2%) 이런 경우에는 ROC 그래프보다 PR 그래프가 분석에 더 유리하다.


PR 그래프는 X 축을 Recall 값을, Y축을 Precision 값을 사용한다.


  • Sensitive (Recall) = (TP) / P

  • Precision = TP / (TP+FP)



다음은 이진 분류 (binary classification)의 PR 그래프의 예이다. 그래프가 위쪽으로 갈수록 정확도가 높은 모델이고, ROC와 마찬가지로 PR 그래프의 AUC (면적)값을 이용하여 모델의 정확도를 평가할 수 있다.



(출처 : http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html)


그러면 모델이 쓸만한 모델인지 아닌지는 어떤 기준을 사용할까? ROC 그래프의 경우에는 Y=X 그래프를 기준으로 그래프 윗쪽에 있는 경우 쓸만한 모델로 판단을 했는데, PR 그래프의 경우 Base line이라는 것을 사용한다.


Base line = P / (P+N) 으로 정하는데, P는 데이타에서 Positive 레이블의 수, N 은 전체 데이타의 수이다. 예를 들어 암 데이타에서 암 양성이 300개 이고, 전체 데이타가 700이면 Base line은 300/(700+300) = 0.3 이 된다.  


위의 PR 그래프에 Base line을 적용하여 모델이 좋고 나쁜 영역을 판단하는 그림이다.

아래 그림은 두 모델을 비교한 PR 그래프인데, 두 모델 다 베이스라인을 넘어서 쓸만한 모델이기는 하지만, 모델 A가 B모델보다 확연하게 위에 위치하고 있기 때문에, A 모델이 좋다고 이야기할 수 있다.


(출처 : https://classeval.wordpress.com/introduction/introduction-to-the-precision-recall-plot/)

F-Score

모델의 성능을 하나의 수로 표현할때, ROC나 PR 그래프의 AUC를 사용하면 되지만, AUC를 계산하려면 여러 Throughput에 대해서 Precision, Recall, Specificity 값을 측정해야 한다.

그렇다면 Throughput을 이미 알고 있거나 또는 다양한 Throughput에 대해서 어떤 Throughput이 좋은지를 하나의 수로 모델의 성능을 평가하려면 어떻게 해야할까? 이를 위해서 사용하는 것이 F-Score 라는 값이 있다.


When measuring how well you're doing, it's often useful to have a single number to describe your performance

When measuring how well you're doing, it's often useful to have a single number to describe your performance. We could define that number to be, for instance, the mean of your precision and your recall. This is exactly what the F1-score is.

https://www.quora.com/What-is-an-intuitive-explanation-of-F-score

F Score에 대한 계산은 다음 공식을 이용한다. 큰 의미상으로 보자면 Precision과 Recall에 대한 평균인데, 그냥 평균을 내면, 값의 외곡 현상이 생기기 때문에, 가중치를 주는 평균이라고 이해하면 된다.


특히 β가 1인 경우 (즉 F1)를 F1 Score라고 하고, 모델의 성능 평가 지표로 많이 사용한다.


참고 문서


Hierarchical clustering을 이용한 데이타 군집화


조대협 (http://bcho.tistory.com)


Hierarchical clustering (한글 : 계층적 군집 분석) 은 비슷한 군집끼리 묶어 가면서 최종 적으로는 하나의 케이스가 될때까지 군집을 묶는 클러스터링 알고리즘이다.

군집간의 거리를 기반으로 클러스터링을 하는 알고리즘이며, K Means와는 다르게 군집의 수를 미리 정해주지 않아도 된다. 참고로 이 글에서 사용된 예제 코드는 https://github.com/bwcho75/dataanalyticsandML/blob/master/Clustering/3.%20Hierarchical%20clustering-IRIS%204%20feature.ipynb 에 저장되어 있다.


예를 들어서 설명해보자

“진돗개,세퍼드,요크셔테리어,푸들, 물소, 젖소" 를 계층적 군집 분석을 하게 되면

첫번째는 중형견, 소형견, 소와 같은 군집으로 3개의 군집으로 묶일 수 있다.


이를 한번 더 군집화 하게 되면 [진돗개,셰퍼드] 와 [요크셔테리어,푸들] 군집은 하나의 군집(개)로 묶일 수 있다.


마지막으로 한번 더 군집화를 하게 되면 전체가 한군집(동물)으로 묶이게 된다.


이렇게 단계별로 계층을 따라가면서 군집을 하는 것을 계층적 군집 분석이라고 한다.

계층적 군집 분석은 Dendrogram이라는 그래프를 이용하면 손쉽게 시각화 할 수 있다.





계층형 군집화에 대한 좀 더 상세한 개념은 https://www.slideshare.net/pierluca.lanzi/dmtm-lecture-12-hierarchical-clustering?qid=94d8b25a-8cfa-421c-9ed5-03c0b33c29fb&v=&b=&from_search=1 를 보면 잘 나와 있다.


skLearn을 이용한 계층 분석 모델 구현

개념을 잡았으면 실제로 계층 분석 모델을 구현해보자.

데이타는 K Means에서 사용했던 IRIS 데이타를 똑같이 사용한다.

이번에는 4개의 피쳐를 이용해서 사용한다.


from sklearn import datasets
import pandas as pd
iris = datasets.load_iris()

labels = pd.DataFrame(iris.target)
labels.columns=['labels']
data = pd.DataFrame(iris.data)
data.columns=['Sepal length','Sepal width','Petal length','Petal width']
data = pd.concat([data,labels],axis=1)


다음은 IRIS 데이타를 이용하여 dendrogram을 그려보자

# Perform the necessary imports
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# Calculate the linkage: mergings
mergings = linkage(data,method='complete')

# Plot the dendrogram, using varieties as labels
plt.figure(figsize=(40,20))
dendrogram(mergings,
          labels = labels.as_matrix(columns=['labels']),
          leaf_rotation=90,
          leaf_font_size=20,
)
plt.show()


먼저 linkage 함수를 import 한 다음 linkage 함수에 data를 넘겨주면 Hierarchical clustering을 수행한다. 이때 method=’complete’로 정했는데, 이 부분은 뒤에서 설명한다.

Hierarchical clustering 한 결과를 dendrogram 함수를 이용하여 dendrogram 그래프를 표현해 보면 다음과 같이 출력된다.




계층 분석 방식

앞의 코드에서, linkage 함수에서 method 를 사용했다. 이에 대해서 알아보자.

Hierachical clustering의 기본 원리는 두 클러스터 사이의 거리를 측정해서 거리가 가까운 클러스터끼리 묶는 방식이다.  그러면 두 클러스터의 거리를 측정할때 어디를 기준점으로 할것인가를 결정해야 하는데 다음 그림을 보자.



출처 : https://www.multid.se/genex/onlinehelp/hs515.htm


앞의 코드에서 사용한 complete linkage 방식은 두 클러스터상에서 가장 먼 거리를 이용해서 측정하는 방식이고 반대로  single linkage 방식은 두 클러스터에서 가장 가까운 거리를 사용하는 방식이다.

average linkage 방식은 각 클러스터내의 각 점에서 다른 클러스터내의 모든 점사이의 거리에 대한 평균을 사용하는 방식이다.


이 linkage 방식에 따라서 군집이 되는 모양이 다르기 때문에, 데이타의 분포에 따라서 적절한 linkage  방식을 변화 시켜가면서 적용해가는 것이 좋다.


계층 분석을 통한 군집의 결정

계층 분석은 최종적으로 1개의 군집으로 모든 데이타를 클러스터링 하는데, 그렇다면 n개의 군집으로 나누려면 어떻게 해야 하는가?

아래 dendrogram을 보자 y축이 각 클러스터간의 거리를 나타내는데, 위로 올라갈 수 록 클러스터가 병합되는 것을 볼 수 있다.




즉 적정 y 값에서 클러스터링을 멈추면 n개의 군집 까지만 클러스터링이 되는데, 위의 그림은 y 값을 3에서 클러스터링을 멈춰서 총 3개의 클러스터로 구분을 한 결과이다.


이렇게 계층형 분석에서 sklearn을 사용할 경우 fcluster 함수를 이용하면, 특정 y값에서 클러스터링을 멈출 수 있다. 다음 코드를 보자.


from scipy.cluster.hierarchy import fcluster

predict = pd.DataFrame(fcluster(mergings,3,criterion='distance'))
predict.columns=['predict']
ct = pd.crosstab(predict['predict'],labels['labels'])
print(ct)


앞의 코드에서 계층형 클러스터링을 한 mergings 변수를 fcluster 함수에 전달하고 두번째 인자에 y의 임계값을 3으로 지정하였다. Predict 컬럼에는 원본 입력데이타에 대한 예측 결과 (어느 클러스터에 속해있는지를 0,1,2로 입력 데이타의 수만큼 리턴한다.)를 리턴한다.


이를 원본 데이타의 라벨인 labels[‘label’]값과 Cross tabulation 분석을 해보았다.




세로축이 예측 결과, 가로측이 원래 값이다.

원래 label이 0인 데이타와 1인 데이타는 각각 잘 분류가 되었고, 2인 데이타는 34개만 정확하게 분류가 되었고 16개는 원본 레이블이 1인 데이타로 분류가 되었다.


지금까지 Hierachical clustering model에 대해서 알아보았다. K Means와 같은 군집화 모델이라도 내부 알고리즘에 따라서 군집화 결과가 다르기 때문에, 샘플 데이타의 분포를 보고 적절한 클러스터링 모델을 고르는 것이 필요하다. 다행이 sklearn의 경우 복잡한 수식 이해 없이도 간단한 라이브러리 형태로 다양한 클러스터링 모델 사용할 수 있도록 해놨기 때문에, 여러 모델을 적용해가면서 적정한 데이타 분류 방식을 찾아보는 것이 어떨까 한다.




텐서플로우 하이레벨 API Estimator를 이용한 모델 정의 방법


조대협 (http://bcho.tistory.com)


텐서플로우의 하이레벨 API를 이용하기 위해서는 Estimator 를 사용하는데, Estimator 는 Predefined model 도 있지만, 직접 모델을 구현할 수 있다. 하이레벨 API와 Estimator에 대한 설명은 http://bcho.tistory.com/1195 글을 참고하기 바란다.


이 문서는 Custom Estimator를 이용하여 Estimator를 구현하는 방법에 대해서 설명하고 있으며, 대부분 https://www.tensorflow.org/extend/estimators 의 내용을 참고하여 작성하였다.

Custom Estimator

Estimator의 스켈레톤 코드는 다음과 같다. 모델을 정의하는 함수는 학습을 할 feature와, label을 입력 받고, 모델의 모드 (학습, 테스트, 예측) 모드를 인자로 받아서 모드에 따라서 모델을 다르게 정의할 수 있다. 예를 들어 학습의 경우 드롭 아웃을 사용하지만 테스트 모드에서는 드롭 아웃을 사용하지 않는다.

def model_fn(features, labels, mode, params):
  # Logic to do the following:
  # 1. Configure the model via TensorFlow operations
  # 2. Define the loss function for training/evaluation
  # 3. Define the training operation/optimizer
  # 4. Generate predictions
  # 5. Return predictions/loss/train_op/eval_metric_ops in EstimatorSpec object
  return EstimatorSpec(mode, predictions, loss, train_op, eval_metric_ops)

입력 인자에 대한 설명

그러면 각 인자를 구체적으로 살펴보자

  • features : input_fn을 통해서 입력되는 feature로 dict 형태가 된다.

  • labels : input_fn을 통해서 입력되는 label 값으로 텐서 형태이고, predict (예측) 모드 일 경우에는 비어 있게 된다.

  • mode : 모드는 모델의 모드로, tf.estimator.ModeKeys 중 하나를 사용하게 된다.

    • tf.estimator.ModeKeys.TRAIN : 학습 모드로 Estimator의 train()을 호출하였을 경우 사용되는 모드이다.

    • tf.estimator.ModeKeys.EVAL : 테스트 모드로, evaluate() 함수를 호출하였을 경우 사용되는 모드이다.

    • tf.estimator.ModeKeys.PREDICT : 예측모드로,  predict() 함수를 호출하였을 경우에 사용되는 모드이다.  

  • param : 추가적으로 입력할 수 있는 패러미터로, dict 포맷을 가지고 있으며, 하이퍼 패러미터등을 이 변수를 통해서 넘겨 받는다.

Estimator 에서 하는 일

Estimator 를 구현할때, Estimator 내의 내용은 모델을 설정하고, 모델의 그래프를 그린 다음에, 모델에 대한 loss 함수를 정의하고, Optimizer를 정의하여 loss 값의 최소값을 찾는다. 그리고 prediction 값을 계산한다.


Estimator의 리턴값

Estimator에서 리턴하는 값은 tf.estimator.EstimatorSpec 객체를 리턴하는데, 이 객체는 다음과 같은 값을 갖는다.

  • mode : Estimator가 수행한 모드. 보통 입력값으로 받은 모드 값이 그대로 리턴된다.

  • prediction (PREDICT 모드에서만 사용됨) : PREDICT 모드에서 예측을 수행하였을 경우, 예측된 값을 dict 형태로 리턴한다.

  • loss (EVAL 또는, TRAIN 모드에서 사용됨) : 학습과 테스트중에 loss 값을 리턴한다.

  • train_op (트레이닝 모드에서만 필요함) : 한 스텝의 학습을 수행하기 위해서 호출하는 함수를 리턴한다. 보통 옵티마이져의  minimize()와 같은 함수가 사용된다.
           optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
           train_op = optimizer.minimize(loss, global_step=global_step)
           return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)

  • eval_metrics_ops (optional) : EVAL (테스트) 모드에서 테스트를 위해서 사용된 인자들을 dict 형태로 리턴한다. tf.metrics에는 미리 정의된 일반적인 메트릭들이 정의되어 있는데, 예를 들어 accuracy 등이 이에 해당한다. 아래는 tf.metrics.accuracy를 이용하여 예측값 (predictions)과 라벨(labels)의 값을 계산하여, 메트릭으로 리턴하는 방법이다.

    eval_metric_ops = {
    "accuracy": tf.metrics.accuracy(labels, predictions) }

    만약 rmse를 evaluation metric으로 사용하고자 하면 다음과 같이 정의한다.
    eval_metric_ops = {
       "rmse": tf.metrics.root_mean_squared_error(
           tf.cast(labels, tf.float64), predictions)
    }

    만약에 별도의 메트릭을 정의하지 않으면, 디폴트로 loss 값만 EVAL 단계에서 계산되게 된다.

데이타 입력 처리

모델로의 데이타 입력은 Esitmator의 모델 함수로 입력되는 features 변수를 통해서 입력 된다.

features는 컬럼명으로된 키와, 컬럼 값으로 이루어진 dict 형태의 데이타 형으로, 뉴럴 네트워크 모델에 데이타를 입력하기 위해서는 이중에서 학습에 사용할 컬럼만을 추출하여, 입력 레이어에 넣어 줘야 한다.

이 features 에서 특정 컬럼만을 지정하여 추출한 후에, 그 컬럼의 값을 넣어주는 것은 tf.feature_column.input_layer 함수를 사용하면 된다.


예제를 보자

input_layer = tf.feature_column.input_layer(
 features=features, feature_columns=[age, height, weight])


위의 예제는 features 에서 age,height,weight 컬럼을 추출하여 input layer로 넣는 코드이다.

네트워크 정의

데이타를 읽었으면 이제 뉴럴네트워크를 구성해야 한다. 네트워크의 레이어는 tf.layers 로 간단하게 구현할 수 있다. tf.layer에는 풀링,드롭아웃,일반적인 뉴럴네트워크의 히든 레이어, 컨볼루셔널 네트워크들이 함수로 구현되어 있기 때문에 각 레이어를 하나의 함수로 간단하게 정의가 가능하다.


아래는 히든레이어를 구현하는 tf.layers.dense 함수이다.


tf.layers.dense( inputs, units, activation)


  • inputs는 앞의 레이어를 정의하고

  • units는 이 레이어에 크기를 정의하고

  • 마지막으로 activation은 sigmoid나,ReLu와 같은 Activation 함수를 정의한다.


다음 예제는 5개의 히든 레이어를 가지는 오토 인코더 네트워크를 정의한 예이다.

 input_layer = features['inputs'] # 784 pixels
   dense1 = tf.layers.dense(inputs=input_layer, units=256, activation=tf.nn.relu)
   dense2 = tf.layers.dense(inputs=dense1, units=128, activation=tf.nn.relu)
   dense3 = tf.layers.dense(inputs=dense2, units=16, activation=tf.nn.relu)
   dense4 = tf.layers.dense(inputs=dense3, units=128, activation=tf.nn.relu)
   dense5 = tf.layers.dense(inputs=dense4, units=256, activation=tf.nn.relu)
   output_layer = tf.layers.dense(inputs=dense5, units=784, activation=tf.nn.sigmoid)


5개의 히든 레이어는 각각 256,128,16,128,256 개의 노드를 가지고 있고, 각각 ReLu를 Activation 함수로 사용하였다.

그리고 마지막 output layer는 784개의 노드를 가지고 sigmoid 함수를 activation 함수로 사용하였다.

Loss 함수 정의

다음 모델에 대한 비용함수(loss/cost function)을 정의한다. 이 글을 읽을 수준이면 비용함수에 대해서 별도로 설명하지 않아도 되리라고 보는데, 비용함수는 예측값과 원래 라벨에 대한 차이의 합을 나타내는 것이 비용함수이다.


 # Connect the output layer to second hidden layer (no activation fn)

 output_layer = tf.layers.dense(second_hidden_layer, 1)
 # Reshape output layer to 1-dim Tensor to return predictions
 predictions = tf.reshape(output_layer, [-1])
 predictions_dict = {"ages": predictions}

 # Calculate loss using mean squared erro
 loss = tf.losses.mean_squared_error(labels, predictions)

코드를 보면, 최종 예측된 값은 predictions에 저장되고, 학습 데이타로 부터 받은 라벨 값은 labels에 저장된다. 이 차이를 계산할때, MSE (mean square error)를 사용하였다.

Training Op 정의

비용 함수가 적용되었으면, 이 비용함수의 값을 최적화 하는 것이 학습이기 때문에, 옵티마이저를 정의하고, 옵티마이저를 이용하여 비용함수의 최적화가 되도록 한다.

아래 코드는  Optimizer를 GradientDescentOptimizer로 정의하고, 이 옵티마이저를 이용하여 이용하여 loss 값을 최소화 하도록 하였다.

optimizer = tf.train.GradientDescentOptimizer(
   learning_rate=params["learning_rate"])

train_op = optimizer.minimize(
   loss=loss, global_step=tf.train.get_global_step())

전체 코드

그러면 위의 내용을 모두 합쳐서 model_fn으로 모아서 해보자.

def model_fn(features, labels, mode, params):
 """Model function for Estimator."""
 # Connect the first hidden layer to input layer
 # (features["x"]) with relu activation
 first_hidden_layer = tf.layers.dense(features["x"], 10, activation=tf.nn.relu)

 # Connect the second hidden layer to first hidden layer with relu
 second_hidden_layer = tf.layers.dense(
     first_hidden_layer, 10, activation=tf.nn.relu)

 # Connect the output layer to second hidden layer (no activation fn)
 output_layer = tf.layers.dense(second_hidden_layer, 1)


 # Reshape output layer to 1-dim Tensor to return predictions
 predictions = tf.reshape(output_layer, [-1])

 # Provide an estimator spec for `ModeKeys.PREDICT`.
 if mode == tf.estimator.ModeKeys.PREDICT:
   return tf.estimator.EstimatorSpec(
       mode=mode,
       predictions={"ages": predictions})

 # Calculate loss using mean squared error
 loss = tf.losses.mean_squared_error(labels, predictions)

 # Calculate root mean squared error as additional eval metric
 eval_metric_ops = {
     "rmse": tf.metrics.root_mean_squared_error(
         tf.cast(labels, tf.float64), predictions)
 }

 optimizer = tf.train.GradientDescentOptimizer(
  learning_rate=params["learning_rate"])

 train_op = optimizer.minimize(
     loss=loss, global_step=tf.train.get_global_step())

 # Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.

 return tf.estimator.EstimatorSpec(
     mode=mode,
     loss=loss,
     train_op=train_op,
     eval_metric_ops=eval_metric_ops)

데이타 입력

 first_hidden_layer = tf.layers.dense(features["x"], 10, activation=tf.nn.relu)

네트워크 정의

 # Connect the second hidden layer to first hidden layer with relu
 second_hidden_layer = tf.layers.dense(
     first_hidden_layer, 10, activation=tf.nn.relu)

 # Connect the output layer to second hidden layer (no activation fn)
 output_layer = tf.layers.dense(second_hidden_layer, 1)

first_hidden_layer의 입력값을 가지고 네트워크를 구성한다. 두번째 레이어는 first_hidden_layer를 입력값으로 하여, 10개의 노드를 가지고, ReLu를 activation 레이어로 가지도록 하였다.  

마지막 계층은 두번째 계층에서 나온 결과를 하나의 노드를 이용하여 합쳐서 activation 함수 없이 결과를 냈다.

 # Reshape output layer to 1-dim Tensor to return predictions
 predictions = tf.reshape(output_layer, [-1])

 # Provide an estimator spec for `ModeKeys.PREDICT`.
 if mode == tf.estimator.ModeKeys.PREDICT:
   return tf.estimator.EstimatorSpec(
       mode=mode,
       predictions={"ages": predictions})

예측 모드에서는 prediction 값을 리턴해야 하기 때문에, 먼저 예측값을 output_layer에서 나온 값으로, 행렬 차원을 변경하여 저장하고, 만약에 예측 모드 tf.estimator.ModeKeys.PREDICT일 경우 EstimatorSpec에 predction 값을 넣어서 리턴한다. 이때 dict 형태로 prediction 결과 이름을 age로 값을 predictions 값으로 채워서 리턴한다.

Loss 함수 정의

다음 비용 함수를 정의하고, 테스트 단계(EVAL)에서 사용할 evaluation metrics에 rmse를 테스트 기준으로 메트릭으로 정의한다.

 # Calculate loss using mean squared error
 loss = tf.losses.mean_squared_error(labels, predictions)

 # Calculate root mean squared error as additional eval metric
 eval_metric_ops = {
     "rmse": tf.metrics.root_mean_squared_error(
         tf.cast(labels, tf.float64), predictions)
 }

Training OP 정의

비용 함수를 정했으면, 비용 함수를 최적화 하기 위한 옵티마이져를 정의한다. 아래와 같이 GradientDescentOptimzer를 이용하여 loss 함수를 최적화 하도록 하였다.

 optimizer = tf.train.GradientDescentOptimizer(
  learning_rate=params["learning_rate"])

 train_op = optimizer.minimize(
     loss=loss, global_step=tf.train.get_global_step())

 # Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.

마지막으로, PREDICTION이 아니고, TRAIN,EVAL인 경우에는 EstimatorSpec을 다음과 같이 리턴한다.

Loss 함수와, Training Op를 정의하고 평가용 매트릭스를 정의하여 리턴한다.

 return tf.estimator.EstimatorSpec(
     mode=mode,
     loss=loss,
     train_op=train_op,
     eval_metric_ops=eval_metric_ops)

실행

그러면 완성된 Estimator를 사용해보자

train_input_fn = tf.estimator.inputs.numpy_input_fn(
   x={"x": np.array(training_set.data)},
   y=np.array(training_set.target),
   num_epochs=None,
   shuffle=True)

# Train

nn.train(input_fn=train_input_fn, steps=5000)

# Score accuracy

test_input_fn = tf.estimator.inputs.numpy_input_fn(
   x={"x": np.array(test_set.data)},
   y=np.array(test_set.target),
   num_epochs=1,
   shuffle=False)

ev = nn.evaluate(input_fn=test_input_fn)
print("Loss: %s" % ev["loss"])
print("Root Mean Squared Error: %s" % ev["rmse"])

각 코드를 보면

train_input_fn = tf.estimator.inputs.numpy_input_fn(
   x={"x": np.array(training_set.data)},
   y=np.array(training_set.target),
   num_epochs=None,
   shuffle=True)

를 이용하여 numpy 의 데이타로 input_fn 함수를 만들었다. training_set.data는 학습 데이타, training_set.target을 학습용 라벨로 설정하고, epoch는 무제한, 그리고 데이타는 셔플 하도록 하였다.

nn.train(input_fn=train_input_fn, steps=5000)

앞서 정의된 모델에 train_input_fn을 넣어서 총 5000 번 학습을 하도록 하였다.

학습이 끝난 모델을 테스트 해야 하는데, 같은 방법으로 test_input_fn을 정의하고

ev = nn.evaluate(input_fn=test_input_fn)

evaluate를 이용하여, 학습된 모델을 평가한다.

평가된 결과를 보기 위해서 loss 값과 rmse 값을 ev[‘loss’], ev[‘rmse’]로 출력하였다.

지금까지 Estimator를 만드는 방법에 대해서 알아보았다. 다음 글에서는 Auto Encoder 네트워크를 Estimator로 구현해보도록 하겠다.





Django는 기본적으로 MVC 모델을 가지고 있고, DB 접근에 대해서는 OR Mapper와 같은 기능을 model 기능을 이용해서 제공한다.  

사실 최적화 정도는 조금 고려해봐야 겠지만, 기본적인 사용 방법은 다음과 같다.


==

python manage.py syncdb

- setting.py를 참고로 하여, default table을 데이타베이스에 생성


python startapp {appname}

- 새로운 app을 생성함. 

- 생성후에는 setting.py에 가서, INSTALLED_APPS 부분에 생성한 app이름을 넣어줘야 컨테이너가 인식함

INSTALLED_APPS = (

   'django.contrib.auth',

   'django.contrib.contenttypes',

   'django.contrib.sessions',

   'django.contrib.sites',

   'django.contrib.messages',

   'django.contrib.staticfiles',

   # Uncomment the next line to enable the admin:

   # 'django.contrib.admin',

   # Uncomment the next line to enable admin documentation:

   # 'django.contrib.admindocs',

   'polls' <-- 요렇게 추가

)

- models.py 파일에 데이타 클래스를 정의

  Value Object을 정의하는데, Java와는 다르게, Data Type이나 객체간 relationship도 지정함

  

class Choice(models.Model):

    poll = models.ForeignKey(Poll) <-- Poll Class에 대한 FK

    choice = models.CharField(max_length=200) <-- varchar(200)

    votes = models.IntegerField() <-- Int type

    

- 마지막으로 model.py sql {appname} 해주면, 해당 DBMS에 테이블을 생성 SQL문을 만들어서 보여줌 (실제 실행은 안됨)

  테이블명은 {appname}_{modelclass명} 식으로 생성됨

  예를 들어 appname이 polls이고, VO가 위에 클래스 명처럼 Choice일 경우 테이블은 아래와 같은 형태로 생성됨

  CREATE TABLE "polls_choice" (

    "id" integer NOT NULL PRIMARY KEY,

    "poll_id" integer NOT NULL REFERENCES "polls_poll" ("id"),

    "choice" varchar(200) NOT NULL,

    "votes" integer NOT NULL

  );

  테이블명과 Index등의 생성 규칙

The exact output will vary depending on the database you are using.

Table names are automatically generated by combining the name of the app (polls) and the lowercase name of the model -- poll and choice. (You can override this behavior.)

Primary keys (IDs) are added automatically. (You can override this, too.)

By convention, Django appends "_id" to the foreign key field name. (Yes, you can override this, as well.)

The foreign key relationship is made explicit by a REFERENCES statement.

It's tailored to the database you're using, so database-specific field types such as auto_increment (MySQL), serial (PostgreSQL), or integer primary key (SQLite) are handled for you automatically. Same goes for quoting of field names -- e.g., using double quotes or single quotes. The author of this tutorial runs PostgreSQL, so the example output is in PostgreSQL syntax.

The sql command doesn't actually run the SQL in your database - it just prints it to the screen so that you can see what SQL Django thinks is required. If you wanted to, you could copy and paste this SQL into your database prompt. However, as we will see shortly, Django provides an easier way of committing the SQL to the database.


- insert는 객체를 만든후에, object.save()를 하면됨

- select는 {ClassName}.objects.get({key}={value}) 를 하면 select x from ClassName where {key}={value} 와 같은 효과

  {ClassName}.objects.filter 하면 조건 검색

- 해당 object.delete() 하면 삭제


reference https://docs.djangoproject.com/en/1.4/intro/tutorial01/