블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

Istio #4 - 설치 및 BookInfo 예제

조대협 (http://bcho.tistory.com)

Istio 설치

그러면 직접 Istio 를 설치해보자, 설치 환경은 구글 클라우드의 쿠버네티스 환경을 사용한다. (쿠버네티스는 오픈소스이고, 대부분의 클라우드에서 지원하기 때문에 설치 방법은 크게 다르지 않다.)


참고 https://docs.google.com/document/d/1S5EaVR3Xq011JHcJQ0G84hkasboVUNUrcQzBlq9mJ14/edit

쿠버네티스 클러스터 생성

콘솔에서 아래 그림과 같이 istio 라는 이름으로 쿠버네티스 클러스터를 생성한다. 테스트용이기 때문에, 한존에 클러스터를 생성하고, 전체 노드는 3개 각 노드는 4 CPU/15G 메모리로 생성하였다.



다음 작업은 구글 클라우드 콘솔에서 Cloud Shell내에서 진행한다.

커맨드 라인에서 작업을 할것이기 때문에, gCloud SDK를 설치(https://cloud.google.com/sdk/gcloud/) 한후에,

%gcloud auth login

gcloud 명령어에 사용자 로그인을 한다.


그리고 작업을 편리하게 하기 위해서 아래와 같이 환경 변수를 설정한다. 쿠버네티스 클러스터를 생성한 리전과 존을 환경 변수에 아래와 같이 설정한다. 예제에서는 asia-southeast1 리전에 asia-southeast1-c 존에 생성하였다. 그리고 마지막으로 생성한 쿠버네티스 이름을 환경 변수로 설정한다. 예제에서 생성한 클러스터명은 istio이다.

export GCP_REGION=asia-southeast1
export GCP_ZONE=asia-southeast1-c
export GCP_PROJECT_ID=$(gcloud info --format='value(config.project)')
export K8S_CLUSTER_NAME=istio

다음 kubectl 명령어를 사용하기 위해서, 아래과 같이 gcloud 명령어를 이용하여 Credential을 세팅한다

% gcloud container clusters get-credentials $K8S_CLUSTER_NAME \
   --zone $GCP_ZONE \
   --project $GCP_PROJECT_ID

Credential 설정이 제대로 되었는지

% kubectl get pod -n kube-system

명령어를 실행하여, 쿠버네티스 시스템 관련 Pod 목록이 잘 나오는지 확인한다.

Istio 설치

쿠버네티스 클러스터가 준비되었으면, 이제 Istio를 설치한다.

Helm 설치

Istio는 Helm 패키지 매니져를 통해서 설치 한다.

% curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get > get_helm.sh
% chmod 700 get_helm.sh
% ./get_helm.sh

Istio 다운로드

Istio 를 다운로드 받는다. 아래는 1.0.4 버전을 다운 받는 스크립트이다.

% cd ~

% curl -L https://git.io/getLatestIstio | sh -

% cd istio-1.0.4

% export PATH=$PWD/bin:$PATH

Helm 초기화

Istio를 설치하기 위해서 Helm용 서비스 어카운트를 생성하고, Helm을 초기화 한다.

% kubectl create -f install/kubernetes/helm/helm-service-account.yaml

% helm init --service-account tiller

Istio 설치

다음 명령어를 이용하여 Istio를 설치한다. 설치시 모니터링을 위해서 모니터링 도구인 kiali,servicegraph 그리고 grafana 설치 옵션을 설정하여 아래와 같이 추가 설치 한다.

% helm install install/kubernetes/helm/istio \

--name istio \

--namespace istio-system \

--set tracing.enabled=true \

--set global.mtls.enabled=true \

--set grafana.enabled=true \

--set kiali.enabled=true \

--set servicegraph.enabled=true


설치가 제대로 되었는지 kubectl get pod명령을 이용하여, istio 네임스페이스의 Pod 목록을 확인해보자

% kubectl get pod -n istio-system




BookInfo 샘플 애플리케이션 설치

Istio 설치가 끝났으면, 사용법을 알아보기 위해서 간단한 예제 애플리케이션을 설치해보자, Istio에는 BookInfo (https://istio.io/docs/examples/bookinfo/)  라는 샘플 애플리케이션이 있다.

BookInfo 애플리케이션의 구조

아래 그림과 같이 productpage 서비스 안에, 책의 상세 정보를 보여주는 details 서비스와 책에 대한 리뷰를 보여주는 reviews 서비스로 구성이 되어 있다.  


시스템의 구조는 아래와 같은데, 파이썬으로 개발된 productpage 서비스가, 자바로 개발된 review 서비스과 루비로 개발된 details 서비스를 호출하는 구조이며, review 서비스는 v1~v3 버전까지 배포가 되어 있다. Review 서비스 v2~v3는 책의 평가 (별점)를 보여주는  Rating 서비스를 호출하는 구조이다



< 그림 Book Info 마이크로 서비스 구조 >

출처 : https://istio.io/docs/examples/bookinfo/

BookInfo 서비스 설치

Istio의 sidecar injection 활성화

Bookinfo 서비스를 설치하기 전에, Istio의 sidecar injection 기능을 활성화 시켜야 한다.

앞에서도 설명하였듯이 Istio는 Pod에 envoy 를 sidecar 패턴으로 삽입하여, 트래픽을 컨트롤 하는 구조이 다. Istio는 이 sidecar를 Pod 생성시 자동으로 주입 (inject)하는 기능이 있는데, 이 기능을 활성화 하기 위해서는 쿠버네티스의 해당 네임스페이스에 istio-injection=enabled 라는 라벨을 추가해야 한다.

다음 명령어를 이용해서 default 네임 스페이스에 istio-injection=enabled 라벨을 추가 한다.

% kubectl label namespace default istio-injection=enabled


라벨이 추가되었으면

% kubectl get ns --show-labels

를 이용하여 라벨이 제대로 적용이 되었는지 확인한다.


Bookinfo 애플리케이션 배포

Bookinfo 애플리케이션의 쿠버네티스 배포 스크립트는 samples/bookinfo 디렉토리에 들어있다. 아래 명령어를 실행해서 Bookinfo 앺ㄹ리케이션을 배포하자.

% kubectl apply -f samples/bookinfo/platform/kube/bookinfo.yaml


배포를 완료한 후 kubectl get pod 명령어를 실행해보면 다음과 같이 productpage, detail,rating 서비스가 배포되고, reviews 서비스는 v1~v3까지 배포된것을 확인할 수 있다.



Kubectl get svc 를 이용해서 배포되어 있는 서비스를 확인하자



Prodcutpcage,rating,reviews,details 서비스가 배포되어 있는데, 모두 ClusterIP 타입으로 배포가 되어 있기 때문에 외부에서는 접근이 불가능하다.


Istio gateway 설정

이 서비스를 외부로 노출 시키는데, 쿠버네티스의 Ingress나 Service는 사용하지 않고, Istio의 Gateway를 이용한다.

Istio의 Gateway는 쿠버네티스의 커스텀 리소스 타입으로, Istio로 들어오는 트래픽을 받아주는 엔드포인트 역할을 한다. 여러 방법으로 구현할 수 있으나, Istio에서는 디폴트로 배포되는 Gateway는 Pod 형식으로 배포되어 Load Balancer 타입의 서비스로 서비스 된다.


먼저 Istio Gateway를 등록한후에, Gateway를 통해 서비스할 호스트를 Virtual Service로 등록한다.


아래는 bookinfo에 대한 Gateway를 등록하는 Yaml 파일이다.


apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: bookinfo-gateway

spec:

 selector:

   istio: ingressgateway # use istio default controller

 servers:

 - port:

     number: 80

     name: http

     protocol: HTTP

   hosts:

   - "*"


selector를 이용해서 gateway 타입을 istio에서 디폴트로 제공하는 Gateway를 사용하였다. 그리고, HTTP프로토콜을 80 포트에서 받도록 하였다.

다음에는 이 Gateway를 통해서 트래픽을 받을 서비스를 Virtual Service로 등록해야 하는데, 그 구조는 다음과 같다.


apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: bookinfo

spec:

 hosts:

 - "*"

 gateways:

 - bookinfo-gateway

 http:

 - match:

   - uri:

       exact: /productpage

   - uri:

       exact: /login

   - uri:

       exact: /logout

   - uri:

       prefix: /api/v1/products

   route:

   - destination:

       host: productpage

       port:

         number: 9080


spec에서 gateways 부분에 앞에서 정의한 bookinfo-gateway를 사용하도록 한다. 이렇게 하면 앞에서 만든 Gateway로 들어오는 트래픽은 이 Virtual Servivce로 들어와서 서비스 디는데, 여기서 라우팅 룰을 정의 한다 라우팅룰은 URL에 때해서 어느 서비스로 라우팅할 지를 정하는데 /productpage,/login,/lougout,/api/v1/products URL은 productpage:9080 으로 포워딩해서 서비스를 제공한다.


Gateway와 Virtual service 배포에 앞서서, Istio에 미리 설치되어 있는 gateway를 살펴보면, Istio default gateway는 pod로 배포되어 있는데, istio=ingressgateway 라는 라벨이 적용되어 있다. 확인을 위해서 kubectl get 명령을 이용해서 확인해보면 다음과 같다.

%kubectl get pod -n istio-system -l istio=ingressgateway



이 pod들은 istio-ingressgateway라는 이름으로 istio-system 네임스페이스에 배포되어 있다. kubectl get svc로 확인해보면 다음과 같다.

%kubectl get svc istio-ingressgateway -n istio-system --show-labels



그러면 bookinfo를 istio gateway에 등록해서 외부로 서비스를 제공해보자

% istioctl create -f samples/bookinfo/networking/bookinfo-gateway.yaml


게이트 웨이 배포가 끝나면, 앞에서 조회한 Istio gateway service의 IP (여기서는 35.197.159.13)에 접속해서 확인해보자

브라우져를 열고 http://35.197.159.13/productpage 로 접속해보면 아래와 같이 정상적으로 서비스에 접속할 수 있다.



모니터링 툴

서비스 설치가 끝났으면 간단한 테스트와 함께 모니터링 툴을 이용하여 서비스를 살펴보자

Istio를 설치하면 Prometheus, Grafana, Kiali,Jaeger 등의 모니터링 도구가 기본적으로 인스톨 되어 있다. 각각의 도구를 이용해서 지표들을 모니터링 해보자

Grafana를 이용한 서비스별 지표 모니터링

Grafana를 이용해서는 각 서비스들의 지표를 상세하게 모니터링할 수 있다.

먼저 아래 스크립트를 사용해서 간단하게 부하를 주자. 아래 스크립트는 curl 명령을 반복적으로 호출하여 http://35.197.159.13/productpage 페이지를 불러서 부하를 주는 스크립이다.


for i in {1..100}; do

curl -o /dev/null -s -w "%{http_code}" http://35.197.159.13/productpage

done


다음 Grafana 웹 콘솔에 접근해야 하는데, Grafana는 외부 서비스로 노출이 안되도록 설정이 되어 있기 때문에 kubectl을 이용해서 Grafana 콘솔에 트래픽을 포워딩 하도록 하자. Grafana는 3000번 포트에서 돌고 있기 때문에, localhost:3000 → Grafana Pod의 3000 번 포트로 트래픽을 포워딩 하도록 설정하자


kubectl -n istio-system port-forward $(kubectl -n istio-system get pod -l app=grafana -o jsonpath='{.items[0].metadata.name}') 3000:3000 &


다음 localhost:3000 번으로 접속해보면 다음과 같은 화면을 볼 수 있다.

각 서비스 productpage,review,rating,detail 페이지의 응답시간과 OPS (Operation Per Sec : 초당 처리량)을 볼 수 있다.




각 서비스를 눌러보면 다음과 같이 서비스별로 상세한 내용을 볼 수 있다. 응답 시간이나 처리량에 대한 트렌드나, Request의 사이즈등 다양한 정보를 볼 수 있다.



Jaeger를 이용한 분산 트렌젝션 모니터링

다음은 Jaeger 를 이용해 개별 분산 트렌젝션에 대해서 각 구간별 응답 시간을 모니터링 할 수 있다.

Istio는 각 서비스별로 소요 시간을 수집하는데, 이를 Jaeger 오픈소스를 쓰면 손쉽게 모니터링이 가능하다.

마찬가지로 Jaeger 역시 외부 서비스로 노출이 되지 않았기 때문에, kubectl 명령을 이용해서 로컬 PC에서 jaeger pod로 포트를 포워딩하도록 한다. Jaerger는 16686 포트에서 돌고 있기 localhost:16686 → Jaeger pod:16686으로 포워딩한다.


kubectl port-forward -n istio-system $(kubectl get pod -n istio-system -l app=jaeger -o jsonpath='{.items[0].metadata.name}') 16686:16686 &


Jaeger UI에 접속해서, 아래는 productpage의 호출 기록을 보는 화면이다. 화면 상단에는 각 호출별로 응답시간 분포가 나오고 아래는 개별 트렉젝션에 대한 히스토리가 나온다.



그중 하나를 선택해보면 다음과 같은 그림을 볼 수 있다.



호출이 istio-ingressgateway로 들어와서 Productpage를 호출하였다.

productpage는 순차적으로 productpage → detail 서비스를 호출하였고, 다음 productpage→ reviews → ratings 서비스를 호출한것을 볼 수 있고, 많은 시간이 reviews 호출에 소요된것을 확인할 수 있다.


Servicegraph를 이용한 서비스 토폴로지 모니터링

마이크로 서비스는 서비스간의 호출 관계가 복잡해서, 각 서비스의 관계를 시각화 해주는 툴이 있으면 유용한데, 대표적인 도구로는 service graph라는 툴과 kiali 라는 툴이 있다. BookInfo 예제를 위한 Istio 설정에는 servicegraph가 디폴트로 설치되어 있다.


마찬가지로 외부 서비스로 노출 되서 서비스 되지 않고 클러스터 주소의 8088 포트를 통해서 서비스 되고 있기 때문에, 아래와 같이 kubectl 명령을 이용해서 localhost:8088 → service graph pod의 8088포트로 포워딩하도록 한다.


kubectl -n istio-system port-forward $(kubectl -n istio-system get pod -l app=servicegraph -o jsonpath='{.items[0].metadata.name}') 8088:8088 &


그 후에, 웹 브루우져에서 http://localhost:8088/dotviz 를 접속해보면 서비스들의 관계를 볼 수 있다.



다음 글에서는 예제를 통해서 Istio에서 네트워크 경로 설정하는 부분에 대해서 더 자세히 알아보도록 하겠다.


Istio #1

마이크로 서비스 아키텍처와 서비스 매쉬

조대협 (http://bcho.tistory.com)


마이크로 서비스 아키텍쳐는 여러가지 장점을 가지고 있는 아키텍쳐 스타일이기는 하지만, 많은 단점도 가지고 있다. 마이크로 서비스는 기능을 서비스라는 단위로 잘게 나누다 보니, 전체 시스템이 커질 수 록 서비스가 많아지고, 그로 인해서 서비스간의 연결이 복잡해지고 여러가지 문제를 낳게 된다



<그림. 넷플릭스의 마이크로 서비스 구조 >

출처 : https://www.slideshare.net/BruceWong3/the-case-for-chaos?from_action=save


서비스간의 전체 연결 구조를 파악하기 어려우며 이로 인해서 장애가 났을때, 어느 서비스에서 장애가 났는지 추적이 어려워진다.

또한 특정 서비스의 장애가 다른 서비스에 영향을 주는 문제들을 겪을 수 있다.



예를 들어 클라이언트→ 서비스 A → 서비스 B의 호출 구조가 있다고 하자. 만약 서비스 B가 느려지거나 응답이 없는 상태가 되어 버리면, 서비스 B를 호출 하는 서비스 A 안의 쓰레드는 서비스 B로 부터 응답을 기다리기 위해 대기 상태가 되고, 이 상태에서 클라이언트에서 호출이 계속 되면, 같은 원리로 서비스 A의 다른 쓰레드들도 응답을 받기 위해서 대기 상태가 된다. 이런 상태가 반복되면, 서비스 A에 남은 쓰레드는 없어지고 결과적으로 서비스 A도 응답을 할 수 없는 상태가 되서 장애 상태가 된다. 이런 현상을 장애 전파 현상이라고 한다.  

마이크로 서비스 아키텍쳐 패턴

이런 문제들이 패턴화 되고 이를 풀어내기 위한 방법이 디자인 패턴으로 묶이기 시작하였다.

예를 들어 앞의 문제와 같은 장애 전파의 예는 써킷 브레이커 (Circuit breaker)라는 디자인 패턴으로 해결할 수 있다.



<그림, 써킷 브레이커(Circuit breaker) 패턴 >


서비스 A와 서비스 B에 써킷 브레이커라는 개념을 정의해서, 네트워크 트래픽을 통과 시키도록 하고, 서비스 B가 장애가 나거나 응답이 없을 경우에는 그 네트워크 연결을 끊어서 서비스 A가 바로 에러를 받도록 하는 것이다. 이렇게 하면 서비스 B가 응답이 느리거나 또는 응답을 할 수 없는 상태일 경우에는 써킷 브레이커가 바로 연결을 끊어서, 서비스 A내에서 서비스 B를 호출한 쓰레드가 바로 에러를 받아서 더 이상 서비스 B로 부터 응답을 기다리지 않고, 쓰레드를 풀어주서 서비스 A가 쓰레드 부족으로 장애가 되는 것을 막는다.

이 외에도 분산 시스템에 대한 로그 수집등 다양한 패턴들이 있는데, https://microservices.io/ 를 보면 잘 정리가 되어 있다.

이런 패턴은 디자인 패턴일 뿐이고, 이를 사용하기 위해서는 시스템에서 구현을 해야 하는데, 당연히 구현에 대한 노력이 많이 들어서 구체화 하기가 어려웠는데, 넷플릭스에서 이러한 마이크로 서비스 아키텍쳐 패턴을 오픈소스화 하여 구현하여 공개하였다. 예를 들어 위에서 언급한 써킷 브레이커 패턴의 경우에는 Hystrix (https://github.com/Netflix/hystrix/wiki)라는 오픈 소스로 공개가 되어 있다.

Hystrix 이외에도, 서비스 디스커버리 패턴은 Eureka, 모니터링 서비스인 Turbine 등 다양한 오픈 소스를 공개했다.



<그림. 넷플릭스의 마이크로 서비스 프레임웍 오픈소스 >

출처 : https://jsoftgroup.wordpress.com/2017/05/09/micro-service-using-spring-cloud-and-netflix-oss/


문제는 이렇게 오픈소스로 공개를 했지만, 여전히 그 사용법이 복잡하다는 것이다. Hystrix 하나만을 적용하는데도 많은 노력이 필요한데, 여러개의 프레임웍을 적용하는 것은 여간 어려운 일이 아니다.

그런데 여기서 스프링 프레임웍이 이런 문제를 풀어내는 기여를 한다. 스프링 프레임웍에 넷플릭스의 마이크로 서비스 오픈 소스 프레임웍을 통합 시켜 버린것이다. (http://spring.io/projects/spring-cloud-netflix)

복잡한 부분을 추상화해서 스프링 프레임웍을 적용하면 손쉽게 넷플릭스의 마이크로 서비스 프레임웍을 사용할 수 있게 해줬는데, 마지막 문제가 남게 된다. 스프링은 자바 개발 프레임웍이다. 즉 자바에만 적용이 가능하다.

서비스 매쉬

프록시

이러한 마이크로 서비스의 문제를 풀기 위해서 소프트웨어 계층이 아니라 인프라 측면에서 이를 풀기 위한 노력이 서비스 매쉬라는 아키텍쳐 컨셉이다.

아래와 같이 서비스와 서비스간의 호출이 있을때


이를 직접 서비스들이 호출을 하는 것이 아니라 서비스 마다 프록시를 넣는다.


이렇게 하면 서비스로 들어오거나 나가는 트래픽을 네트워크 단에서 모두 통제가 가능하게 되고, 트래픽에 대한 통제를 통해서 마이크로 서비스의 여러가지 문제를 해결할 수 있다.

예를 들어 앞에서 설명한 써킷 브레이커와 같은 경우에는 호출되는 서비스가 응답이 없을때 프록시에서 이 연결을 끊어서 장애가 전파되지 않도록 하면된다.


또는 서비스가 클라이언트 OS에 따라서 다른 서비스를 호출해야 한다면, 서비스가 다른 서비스를 호출할때, 프록시에서 메세지의 헤더를 보고 “Client”라는 필드가 Android면, 안드로이드 서비스로 라우팅을 하고, “IOS”면 IOS 서비스로 라우팅 하는 지능형 라우팅 서비스를 할 수 있다.


이런 다양한 기능을 수행하기 위해서는 기존의 HA Proxy,nginx, Apache 처럼 TCP 기반의 프록시로는 한계가 있다. 예를 들어서 위에서 언급한 HTTP 헤더 기반의 라우팅이나 조금더 나가면 메세지 본문을 기반으로 하는 라우팅들이 필요하기 때문에, L7 계층의 지능형 라우팅이 필요하다.

서비스 매쉬

그러면 이러한 마이크로 서비스에 대한 문제를 소프트웨어 계층이 아니라, 프록시를 이용해서 인프라 측면에서 풀어낼 수 있다는 것을 알았다. 그렇지만 마이크로 서비스는 한두개의 서비스가 아니라 수백, 수천의 서비스로 구성된다. 프록시를 사용해서 여러 기능을 구성할 수 있지만 문제는 서비스 수에 따라 프록시 수도 증가하기 때문에, 이 프록시에 대한 설정을 하기가 어려워진다는 것이다.



그래서 이런 문제를 해결하기 위해서, 각 프록시에 대한 설정 정보를 중앙 집중화된 컨트롤러가 통제하는 구조를 취할 수 있다. 아래 구조와 같이 되는데,

각 프록시들로 이루어져서 트래픽을 설정값에 따라 트래픽을 컨트롤 하는 부분을 데이타 플레인(Data Plane)이라고 하고, 데이타 플레인의 프록시 설정값들을 저장하고, 프록시들에 설정값을 전달하는 컨트롤러 역할을 하는 부분을 컨트롤 플레인(Control Plane) 이라고 한다.


다음 글에서는 이러한 서비스 매쉬 구조를 구현한 오픈 소스 솔루션인 Istio에 대해서 알아보도록 하겠다.