블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

NMF 알고리즘을 이용한 유사 문서 검색과 구현(2/2)

sklearn을 이용한 구현


조대협 (http://bcho.tistory.com)


http://bcho.tistory.com/1216 를 통하여 tf-idf를 이용하여 문서를 벡터화 하고, nmf를 이용하여 문서의 특성을 추출한 다음, 코싸인 유사도를 이용하여 유사 문서를 검색하는 알고리즘에 대해서 알아보았다. 이번글에서는 이 알고리즘을 직접 sklearn을 이용해서 구현해보도록 하자. sklearn은 이용하면 분산 학습을 이용한 대규모 데이타 처리는 불가능하지만, 작은 수의 문서나 모델에는 사용이 가능하다. 무엇보다 sklearn의 경우 대부분의 모델을 라이브러리화 해놓았기 때문에, 복잡한 구현이 없이 쉽게 사용이 가능하다.


전체 소스 코드는 https://github.com/bwcho75/dataanalyticsandML/blob/master/NMF%20based%20document%20recommendation/NMF%20based%20similar%20document%20recommendation.ipynb 에 공유되어 있다.


샘플 데이타

여기서 사용할 데이타 셋은 sklearn 테스트 데이타셋에 있는 20개의 뉴스 그룹의 이메일 데이타를 사용한다. 총 20개의 토픽으로 약 18000개의 포스팅으로 구성되어 있다.


이메일 텍스트 형식으로, 제목과, 날짜등의 헤더 정보와 이메일 내용으로 구성되어 있다. 첫번째 코드에서는 이 데이타를 읽어서 제목과 본문만을 추출하여, Pandas data frame에 저장하도록 한다.


from sklearn.datasets import fetch_20newsgroups
import StringIO
import pandas as pd

newsgroups_train = fetch_20newsgroups(subset='train')

def parseDocument(data):
   buf = StringIO.StringIO(data)
   line=buf.readline()
   data=[]
   subject=''
   while line:
       if(line.startswith('Subject:')):
           subject = line[8:].strip()
       elif (line.startswith('Lines:')):
              lines = line[6:]
              while line :
                   line = buf.readline()
                   data.append(line)
       line=buf.readline()
   text = ''.join(data)
   
   return subject,text


textlist = []
df = pd.DataFrame(columns=['text'])
for data in newsgroups_train.data[0:1000]:
   subject,text = parseDocument(data)
   df.loc[subject]=text
df.head()


제목은 ‘Subject:’로 시작하는 줄에 들어 있고, 본문은 ‘Lines:’로 시작하는 줄에 있다. 이 내용들만을 추출하여 pandas data frame에 저장하였다. 본문은 data frame 상에 ‘text’라는 이름으로된 컬럼에 저장하였다.

Tfidf 를 이용한 단어의 벡터화 구현

단어를 벡터로 변환하기 위해서 앞에서 설명한 tfidf 모델을 이용한다. sklearn에 이미 구현이 되어 있기 때문에 어렵지 않게 구현이 가능하다.


from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(df['text'].tolist())
print(vectors.shape)


간단하게, TfidfVectorizer를 로딩한다음에, fit_transform을 이용하여, 문장의 본문이 있는 데이타 프레임의 ‘text’ 컬럼을 배열 형태로 변환하여 리턴해주면 된다.


NMF를 이용하여 본문에서 특성 추출

문서가 tf-idf를 이용하여 벡터화가 되었으면, NMF를 이용하여, 각 문서별로 특성을 추출한다.

NMF역시 sklearn에 NMF라는 모듈로 미리 정의되어 있다. 단지, 몇개의 특징으로 압축을 해낼것인지만 지정하면 되는데, 여기서는 n_components 인자를 이용하여 총 40개의 특징으로 특성을 압축하여 추출하도록 하였다.


from sklearn.decomposition import NMF

vector_array = vectors.toarray()
nmf = NMF(n_components=40)
nmf.fit(vector_array)
features = nmf.transform(vector_array)


추출된 피쳐는 features 변수에 저장하였다.

피쳐 정규화

추출된 피쳐가 피쳐마다 또는 문서마다 변화의 폭이 클 수 있기 때문에, Normalizer를 이용하여 0~1사이로 스케일링을 한다. 이 정규화 역시 간단하게 아래와 같이 Normalizer 모듈을 이용하면 된다.


from sklearn.preprocessing import Normalizer

normalizer = Normalizer()
norm_features=normalizer.fit_transform(features)

print(norm_features[0:2])


정규화된 피쳐가 배열 형태이기 때문에, 사용 편의상 데이타 프레임에 로딩한다.


df_features = pd.DataFrame(norm_features,index=df.index.tolist())


df_features 변수에 문서별 특징과 문서 제목을 가지고 데이타 프레임을 만들어서 생성하였다.

인덱스는 문서의 이름이 될것이고 0~39 컬럼은 각문서별 특징이 된다. 출력해보면 대략 다음과 같은 모양이 된다.


문서 유사도 계산

문서별로 특징을 계산이 끝났으면 특정 문서와 유사한 문서를 찾도록 해보자.

앞의 글에서도 설명했지만, 문서의 유사도는 코싸인 유사도를 사용한다.

공식을 다시 기억해보면


여기서 A는 문서 A의 특성 행렬, B는 B 의 특성 행렬이 된다. |A|와 |B|는 각 문서 특성 행렬의 벡터의 길이인데, 앞에서 정규화 Normalization 을 하면서 각 문서의 행렬의 크기가 1이 되었기 때문에, 여기서 코싸인 유사도는 A*B / |A|*|B| = A*B / 1*1 = A*B 가된다.

즉 두 문서의 특성 행렬을 곱한 값이 코싸인 유사도가 된다.


데이타 프레임을 이용하면, 하나의 문서 특성 행렬을 전체 문서에 대해서 곱할 수 있다. .dot 함수를 이용하면 되는데,


article = df_features.loc['WHAT car is this!?']


“WHAT car is this!?” 라는 문서의 유사한 문서를 찾아보도록 하자. df_features에서 “WHAT car is this!?” 의 특성 행렬을 찾아내서 article 변수에 저장하고


similarities=df_features.dot(article)


전체 문서의 특성행렬에서 각 문서의 특성 행렬과 article 문서의 특성행렬을 곱한다. 그러면 article 문서에 대해서 각문서에 대한 유사도가 계산이된다.


top=similarities.nlargest()


이 값을 큰 순서대로 소팅해서 top 이라는 변수에 저장해놓고, 유사도가 높은 문서데로 문서의 제목과 유사도를 출력해본다.


texts = df.loc[top.index]['text'].tolist()
i = 0
for text in texts:
   print('TITLE :'+top.index[i]+" Similarities:"+ str(top[i]))
   #print(text+'\n')
   i = i+1



다음은 실행 결과이다.

TITLE :WHAT car is this!? Similarities:1.0
TITLE :Re: WHAT car is this!? Similarities:0.999080385281
TITLE :Re: New break pads & exhausts after 96K km (60K mi) on '90 Maxima? Similarities:0.980421814633
TITLE :Insurance Rates on Performance Cars SUMMARY Similarities:0.945184088039
TITLE :Re: What is " Volvo " ? Similarities:0.935911211878


간단하게 tf-idf와 NMF를 이용한 문서 유사도 측정을 구현해봤다. 조금 더 높은 정확도와 대규모 학습을 위해서는 이보다는 Word2Vector를 이용한 문서의 벡터화와, 딥러닝을 이용한 문서의 유사도 분석을 하면 훨씬 정확도를 높일 수 있다. 전체 기본 개념은 유사하다고 보면 된다.


t-SNE를 이용한 차원 감소


조대협 (http://bcho.tistory.com)


PCA 기반 차원 감소의 문제점

앞의 글에서 차원 감소에 대한 개념과, 차원 감소 알고리즘의 하나인 PCA 알고리즘에 대해서 살펴보았다.

PCA의 경우 선형 분석 방식으로 값을 사상하기 때문에 차원이 감소되면서 군집화 되어 있는 데이타들이 뭉게져서 제대로 구별할 수 없는 문제를 가지고 있다. 아래 그림을 보자


출처 https://www.youtube.com/watch?v=NEaUSP4YerM


이 그림은 2차원에서 1차원으로 PCA 분석을 이용하여 차원을 줄인 예인데, 2차원에서는 파란색과 붉은색이 구별이 되는데, 1차원으로 줄면서 1차원상의 위치가 유사한 바람에, 두 군집의 변별력이 없어져 버렸다.

t-SNE

이런 문제를 해결하기 위한 차원 감소 방법으로는 t-SNE (티스니라고 읽음) 방식이 있는데, 대략적인 원리는 다음과 같다.


먼저 점을 하나 선택한다. 아래는 검정색점을 선택했는데, 이 점에서 부터 다른점까지의 거리를 측정한다.



다음 T 분포 그래프를 이용하여, 검정 점(기준점) 을 T 분포 상의 가운데 위치한다면, 기준점으로부터 상대점 까지 거리에 있는 T 분포의 값을 선택(위의 T 분포 그래프에서 파란점에서 위로 점섬이 올라가서 T분포 그래프상에 붉은 색으로 X 표가 되어 있는 값)하여, 이 값을 친밀도 (Similarity)로 하고, 이 친밀도가 가까운 값끼리 묶는다.


이 경우 PCA 처럼 군집이 중복되지 않는 장점은 있지만, 매번 계산할때 마다 축의 위치가 바뀌어서, 다른 모양으로 나타난다. 단 데이타의 군집성과 같은 특성들은 유지 되기 때문에 시각화를 통한 데이타 분석에는 유용하지만, 매번 값이 바뀌는 특성으로 인하여, 머신러닝 모델의 학습 피쳐로 사용하기는 다소 어려운점이 있다.


아래 그림은 같은 데이타로 t-SNE 분석을 각각 한번씩한 결과를 시각화 해서 표현한 결과 인데, 보는 것과 같이 군집에 대한 특성은 그대로 유지 되지만 값 자체는 변화가 된것을 확인할 수 있다.




sklearn 을 이용한 t-SNE 구현

전체 코드는 https://github.com/bwcho75/dataanalyticsandML/blob/master/dimension%20reduction/2.%20t-SNE%20visualization.ipynb 에 공개되어 있으니 참고하기 바란다.


# Perform the necessary imports
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

model = TSNE(learning_rate=100)
transformed = model.fit_transform(feature)

xs = transformed[:,0]
ys = transformed[:,1]
plt.scatter(xs,ys,c=labels)

plt.show()


사실 코드가 너무 간단해서 설명할것이 없다. TSNE 객체를 선언하고 학습속도 (learning_rate)를 지정한다음 fit_transform 하면 끝이다. (싸이킷런 만세…)


다음글에서는 차원 감소 방법중에 마지막을 Matrix Factorization (행렬 인수 분해) 방법에 대해서 알아보도록 하겠다.






DBSCAN (밀도 기반 클러스터링)


조대협(http://bcho.tistory.com)

기본 개념

이번에는 클러스터링 알고리즘중 밀도 방식의 클러스터링을 사용하는 DBSCAN(Density-based spatial clustering of applications with noise) 에 대해서 알아보도록 한다.

앞에서 설명한 K Means나 Hierarchical 클러스터링의 경우 군집간의 거리를 이용하여 클러스터링을 하는 방법인데, 밀도 기반의 클러스터링은 점이 세밀하게 몰려 있어서 밀도가 높은 부분을 클러스터링 하는 방식이다.

쉽게 설명하면, 어느점을 기준으로 반경 x내에 점이 n개 이상 있으면 하나의 군집으로 인식하는 방식이다.


그러면 조금 더 구체적인 개념과 용어를 이해해보자

먼저 점 p가 있다고 할때, 점 p에서 부터 거리 e (epsilon)내에 점이 m(minPts) 개 있으면 하나의 군집으로 인식한다고 하자. 이 조건 즉 거리 e 내에 점 m개를 가지고 있는 점 p를 core point (중심점) 이라고 한다.

DBSCAN 알고리즘을 사용하려면 기준점 부터의 거리 epsilon값과, 이 반경내에 있는 점의 수 minPts를 인자로 전달해야 한다.


아래 그림에서 minPts = 4 라고 하면, 파란점 P를 중심으로 반경 epsilon 내에 점이 4개 이상 있으면 하나의 군집으로 판단할 수 있는데, 아래 그림은 점이 5개가 있기 때문에 하나의 군집으로 판단이 되고, P는 core point가 된다.



아래 그림에서 회색점 P2의 경우 점 P2를 기반으로 epsilon 반경내의 점이 3개 이기 때문에, minPts=4에 미치지 못하기 때문에, 군집의 중심이 되는 core point는 되지 못하지만, 앞의 점 P를 core point로 하는 군집에는 속하기 때문에 이를 boder point (경계점)이라고 한다.



아래 그림에서 P3는 epsilon 반경내에 점 4개를 가지고 있기 때문에 core point가 된다.



그런데 P3를 중심으로 하는 반경내에 다른 core point P가 포함이 되어 있는데, 이 경우 core point P와  P3는 연결되어 있다고 하고 하나의 군집으로 묶이게 된다.


마지막으로 아래 그림의 P4는 어떤 점을 중심으로 하더라도 minPts=4를 만족하는 범위에 포함이 되지 않는다. 즉 어느 군집에도 속하지 않는 outlier가 되는데, 이를 noise point라고 한다.


이를 모두 정리해보면 다음과 같은 그림이 나온다.


정리해서 이야기 하면, 점을 중심으로 epsilon 반경내에 minPts 이상수의 점이 있으면 그 점을 중심으로 군집이 되고 그 점을 core point라고 한다. Core point 가 서로 다른 core point의 군집의 일부가 되면 그 군집을 서로 연결되어 있다고 하고 하나의 군집으로 연결을 한다.

군집에는 속하지만, 스스로 core point가 안되는 점을 border point라고 하고, 주로 클러스터의 외곽을 이루는 점이 된다.

그리고 어느 클러스터에도 속하지 않는 점은 Noise point가 된다.

장점

DBSCAN 알고리즘의 장점은

  • K Means와 같이 클러스터의 수를 정하지 않아도 되며,

  • 클러스터의 밀도에 따라서 클러스터를 서로 연결하기 때문에 기하학적인 모양을 갖는 군집도 잘 찾을 수 있으며


    기하학적인 구조를 군집화한 예 (출처 : https://en.wikipedia.org/wiki/DBSCAN )

  • Noise point를 통하여, outlier 검출이 가능하다.

예제 코드

코드의 내용은 앞과 거의 유사하다.


model = DBSCAN(eps=0.3,min_samples=6)


모델 부분만 DBSCAN으로 바꿔 주고, epsilon 값은 eps에 minPts값은 min_samples 인자로 넘겨주면 된다. 이 예제에서는 각각 0.3 과 6을 주었다.


전체 코드를 보면 다음과 같다.


import pandas as pd
iris = datasets.load_iris()

labels = pd.DataFrame(iris.target)
labels.columns=['labels']
data = pd.DataFrame(iris.data)
data.columns=['Sepal length','Sepal width','Petal length','Petal width']
data = pd.concat([data,labels],axis=1)

data.head()



IRIS 데이타를 DataFrame으로 로딩 한 다음, 학습에 사용할 피쳐를 다음과 같이 feature 변수에 저장한다.


feature = data[ ['Sepal length','Sepal width','Petal length','Petal width']]
feature.head()


다음은 모델을 선언하고, 데이타를 넣어서 학습을 시킨다.


from sklearn.cluster import DBSCAN
import matplotlib.pyplot  as plt
import seaborn as sns

# create model and prediction
model = DBSCAN(min_samples=6)
predict = pd.DataFrame(model.fit_predict(feature))
predict.columns=['predict']

# concatenate labels to df as a new column
r = pd.concat([feature,predict],axis=1)


다음은 모델을 선언하고, 데이타를 넣어서 학습을 시킨다.

학습이 끝난 결과를 다음과 같이 3차원 그래프로 시각화 해보자. 아래 시각화는 3차원인데, 학습은 4차원으로 하였다. 그래서 다소 오류가 있어 보일 수 있다. 다차원 데이타를 시각화 하기위해서는 PCA나 t-SNE와 같은 차원 감소 (dimensional reduction) 기법을 사용해야 하는데,  이는 다음 글에서 다루도록한다.


from mpl_toolkits.mplot3d import Axes3D
# scatter plot
fig = plt.figure( figsize=(6,6))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
ax.scatter(r['Sepal length'],r['Sepal width'],r['Petal length'],c=r['predict'],alpha=0.5)
ax.set_xlabel('Sepal lenth')
ax.set_ylabel('Sepal width')
ax.set_zlabel('Petal length')
plt.show()







마지막으로 Cross tabulazation 을 이용하여 모델을 검증해보면 다음과 같은 결과를 얻을 수 있다.

ct = pd.crosstab(data['labels'],r['predict'])
print (ct)



이 코드에 대한 전체 내용은 https://github.com/bwcho75/dataanalyticsandML/blob/master/Clustering/5.%20DBSCANClustering-IRIS%204%20feature-Copy1.ipynb 에서 확인할 수 있다.

Hierarchical clustering을 이용한 데이타 군집화


조대협 (http://bcho.tistory.com)


Hierarchical clustering (한글 : 계층적 군집 분석) 은 비슷한 군집끼리 묶어 가면서 최종 적으로는 하나의 케이스가 될때까지 군집을 묶는 클러스터링 알고리즘이다.

군집간의 거리를 기반으로 클러스터링을 하는 알고리즘이며, K Means와는 다르게 군집의 수를 미리 정해주지 않아도 된다. 참고로 이 글에서 사용된 예제 코드는 https://github.com/bwcho75/dataanalyticsandML/blob/master/Clustering/3.%20Hierarchical%20clustering-IRIS%204%20feature.ipynb 에 저장되어 있다.


예를 들어서 설명해보자

“진돗개,세퍼드,요크셔테리어,푸들, 물소, 젖소" 를 계층적 군집 분석을 하게 되면

첫번째는 중형견, 소형견, 소와 같은 군집으로 3개의 군집으로 묶일 수 있다.


이를 한번 더 군집화 하게 되면 [진돗개,셰퍼드] 와 [요크셔테리어,푸들] 군집은 하나의 군집(개)로 묶일 수 있다.


마지막으로 한번 더 군집화를 하게 되면 전체가 한군집(동물)으로 묶이게 된다.


이렇게 단계별로 계층을 따라가면서 군집을 하는 것을 계층적 군집 분석이라고 한다.

계층적 군집 분석은 Dendrogram이라는 그래프를 이용하면 손쉽게 시각화 할 수 있다.





계층형 군집화에 대한 좀 더 상세한 개념은 https://www.slideshare.net/pierluca.lanzi/dmtm-lecture-12-hierarchical-clustering?qid=94d8b25a-8cfa-421c-9ed5-03c0b33c29fb&v=&b=&from_search=1 를 보면 잘 나와 있다.


skLearn을 이용한 계층 분석 모델 구현

개념을 잡았으면 실제로 계층 분석 모델을 구현해보자.

데이타는 K Means에서 사용했던 IRIS 데이타를 똑같이 사용한다.

이번에는 4개의 피쳐를 이용해서 사용한다.


from sklearn import datasets
import pandas as pd
iris = datasets.load_iris()

labels = pd.DataFrame(iris.target)
labels.columns=['labels']
data = pd.DataFrame(iris.data)
data.columns=['Sepal length','Sepal width','Petal length','Petal width']
data = pd.concat([data,labels],axis=1)


다음은 IRIS 데이타를 이용하여 dendrogram을 그려보자

# Perform the necessary imports
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# Calculate the linkage: mergings
mergings = linkage(data,method='complete')

# Plot the dendrogram, using varieties as labels
plt.figure(figsize=(40,20))
dendrogram(mergings,
          labels = labels.as_matrix(columns=['labels']),
          leaf_rotation=90,
          leaf_font_size=20,
)
plt.show()


먼저 linkage 함수를 import 한 다음 linkage 함수에 data를 넘겨주면 Hierarchical clustering을 수행한다. 이때 method=’complete’로 정했는데, 이 부분은 뒤에서 설명한다.

Hierarchical clustering 한 결과를 dendrogram 함수를 이용하여 dendrogram 그래프를 표현해 보면 다음과 같이 출력된다.




계층 분석 방식

앞의 코드에서, linkage 함수에서 method 를 사용했다. 이에 대해서 알아보자.

Hierachical clustering의 기본 원리는 두 클러스터 사이의 거리를 측정해서 거리가 가까운 클러스터끼리 묶는 방식이다.  그러면 두 클러스터의 거리를 측정할때 어디를 기준점으로 할것인가를 결정해야 하는데 다음 그림을 보자.



출처 : https://www.multid.se/genex/onlinehelp/hs515.htm


앞의 코드에서 사용한 complete linkage 방식은 두 클러스터상에서 가장 먼 거리를 이용해서 측정하는 방식이고 반대로  single linkage 방식은 두 클러스터에서 가장 가까운 거리를 사용하는 방식이다.

average linkage 방식은 각 클러스터내의 각 점에서 다른 클러스터내의 모든 점사이의 거리에 대한 평균을 사용하는 방식이다.


이 linkage 방식에 따라서 군집이 되는 모양이 다르기 때문에, 데이타의 분포에 따라서 적절한 linkage  방식을 변화 시켜가면서 적용해가는 것이 좋다.


계층 분석을 통한 군집의 결정

계층 분석은 최종적으로 1개의 군집으로 모든 데이타를 클러스터링 하는데, 그렇다면 n개의 군집으로 나누려면 어떻게 해야 하는가?

아래 dendrogram을 보자 y축이 각 클러스터간의 거리를 나타내는데, 위로 올라갈 수 록 클러스터가 병합되는 것을 볼 수 있다.




즉 적정 y 값에서 클러스터링을 멈추면 n개의 군집 까지만 클러스터링이 되는데, 위의 그림은 y 값을 3에서 클러스터링을 멈춰서 총 3개의 클러스터로 구분을 한 결과이다.


이렇게 계층형 분석에서 sklearn을 사용할 경우 fcluster 함수를 이용하면, 특정 y값에서 클러스터링을 멈출 수 있다. 다음 코드를 보자.


from scipy.cluster.hierarchy import fcluster

predict = pd.DataFrame(fcluster(mergings,3,criterion='distance'))
predict.columns=['predict']
ct = pd.crosstab(predict['predict'],labels['labels'])
print(ct)


앞의 코드에서 계층형 클러스터링을 한 mergings 변수를 fcluster 함수에 전달하고 두번째 인자에 y의 임계값을 3으로 지정하였다. Predict 컬럼에는 원본 입력데이타에 대한 예측 결과 (어느 클러스터에 속해있는지를 0,1,2로 입력 데이타의 수만큼 리턴한다.)를 리턴한다.


이를 원본 데이타의 라벨인 labels[‘label’]값과 Cross tabulation 분석을 해보았다.




세로축이 예측 결과, 가로측이 원래 값이다.

원래 label이 0인 데이타와 1인 데이타는 각각 잘 분류가 되었고, 2인 데이타는 34개만 정확하게 분류가 되었고 16개는 원본 레이블이 1인 데이타로 분류가 되었다.


지금까지 Hierachical clustering model에 대해서 알아보았다. K Means와 같은 군집화 모델이라도 내부 알고리즘에 따라서 군집화 결과가 다르기 때문에, 샘플 데이타의 분포를 보고 적절한 클러스터링 모델을 고르는 것이 필요하다. 다행이 sklearn의 경우 복잡한 수식 이해 없이도 간단한 라이브러리 형태로 다양한 클러스터링 모델 사용할 수 있도록 해놨기 때문에, 여러 모델을 적용해가면서 적정한 데이타 분류 방식을 찾아보는 것이 어떨까 한다.




클러스터링 #1 - KMeans

빅데이타/머신러닝 | 2017.10.09 22:41 | Posted by 조대협

클러스터링과 KMeans를 이용한 데이타의 군집화

조대협 (http://bcho.tistory.com)

클러스터링 문제

클러스터링은 특성이 비슷한 데이타 끼리 묶어주는 머신러닝 기법이다. 비슷한 뉴스나 사용 패턴이 유사한 사용자를 묶어 주는것과 같은 패턴 인지나, 데이타 압축등에 널리 사용되는 학습 방법이다.

클러스터링은 라벨링 되어 있지 않은 데이타를 묶는 경우가 일반적이기 때문에 비지도학습 (Unsupervised learning) 학습 방법이 사용된다.


클러스터링 알고리즘은 KMeans, DBSCAN, Hierarchical clustering, Spectral Clustering 등 여러가지 기법이 있으며, 알고르즘의 특성에 따라 속도나 클러스터링 성능에 차이가 있기 때문에, 데이타의 모양에 따라서 적절한 클러스터링 알고리즘을 선택하는 것이 중요하다. 다음은 sklearn에 나와 있는 각 클러스터링 알고리즘의 성능에 대한 비교표이다.



출처 : http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py


이 글에서는 클러스터링 알고리즘 중에서 간단하게 사용할 수 있는 KMeans와 Hierachical Clustering 알고리즘을 파이썬 sklearn 라이브러리를 이용하여 설명한다.


KMeans

KMeans 클러스터링 알고리즘은 n개의 중심점을 찍은 후에, 이 중심점에서 각 점간의 거리의 합이 가장 최소화가 되는 중심점 n의 위치를 찾고, 이 중심점에서 가까운 점들을 중심점을 기준으로 묶는 클러스터링 알고리즘이다.

아래 그림을 보면 3개의 군집이 존재하는 것을 볼 수 있다. 각 군집별로 중심점이 찍혀 있는데, 이 중심점의 위치를 움직여 가면서 각 군집의 데이타와 중심점의 거리가 가장 작은 중심점을 찾는 것이다.



이 중심점은 결국 각 군집의 데이타의 평균값을 위치로 가지게 되는데, 이런 이유로 Means(평균) 값 알고리즘이라고 한다.


IRIS 데이타를 이용한 KMeans Clustering

그러면 파이썬 sklearn 라이브러리를 이용하여 IRIS 데이타를 KMeans 알고리즘을 이용하여 클러스터링 해보자

Iris 데이타는 붓꽃의 데이타를 머신러닝 학습용으로 잘 정리해놓은 테스트 데이타 셋으로 꽃잎(Petal)의 크기와 꽃받침(Petal)의 크기에 따라 Iris 꽃의 종류를 분리해놓았다.

이 Iris 데이타는 sklearn 라이브러리 안에 샘플 데이타로 제공되고 있다. 이 데이타셋에는 세가지 붓꽃의 종류별로 50장, 총 150장의 데이타를 샘플로 제공한다.



출처 : https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwi0u5aAxePWAhXCNpQKHbTlAWwQjRwIBw&url=https%3A%2F%2Fwww.datacamp.com%2Fcommunity%2Ftutorials%2Fkeras-r-deep-learning&psig=AOvVaw2LZqoz0__VGKTODVDAbJnu&ust=1507638255303298


전체 소스 코드는 https://github.com/bwcho75/dataanalyticsandML/blob/master/Clustering/1.%20KMeans%20clustering-IRIS%202%20feature.ipynb 에 있다.


먼저 Iris 데이타를 로딩해보자


데이타를 로딩한 후에, 이 예제에서는 두개의 속성만 사용해서 분류하기로 해보자.  “Sepal length”와 “Sepal width” 컬럼 두개만 추출하여 학습용 feature라는 데이타 프레임으로 학습용 데이타를 만든다. Iris 데이타는 skearn.datasets에 들어있고 이를 로딩하려면 iris = datasets.load_iris()를 하면 로딩이 된다.

데이타는 로딩된 iris 데이타의 iris.data 필드에 들어가 있고, label은 iris.labels 컬럼에 들어가 있다.


from sklearn import datasets

import pandas as pd

iris = datasets.load_iris()


labels = pd.DataFrame(iris.target)

labels.columns=['labels']

data = pd.DataFrame(iris.data)

data.columns=['Sepal length','Sepal width','Petal length','Petal width']

data = pd.concat([data,labels],axis=1)

feature = data[ ['Sepal length','Sepal width']]

feature.head()




다음 K Means 라이브러리를 이용하여 학습을 시켜보자.


from sklearn.cluster import KMeans

import matplotlib.pyplot  as plt

import seaborn as sns


# create model and prediction

model = KMeans(n_clusters=3,algorithm='auto')

model.fit(feature)

predict = pd.DataFrame(model.predict(feature))

predict.columns=['predict']


sklearn.cluster에서 KMeans 라이브러리를 import 한후에, KMeans 객체를 생성하여 model에 저장한다. 이때 3개의 클러스터로 데이타를 군집화할것이기 때문에, 인자로 n_clusters=3으로 클러스터의 수를 정해준다.

model.fit(학습데이타)를 실행하면 학습 데이타를 이용하여 클러스터링을 위한 학습을 시작하고 학습 데이타에 맞는 중심점 3개를 추출해낸다. 이 학습이 된 모델을 가지고 model.predict(데이타) 를 수행하면 데이타를 학습된 모델에 맞춰서 군집화를 해서 어느 클러스터로 군집화가 되었는지 라벨을 리턴해준다.


클러스터링시, 클러스터의 라벨은 자동으로 0,1,2로 지정되는데, 이 순서는 학습을 할때 마다 임의로 변경이 될 수 있다.  클러스터링 된 라벨과 Sepal length, Sepal width를 하나의 데이타 프레임 r에  저장해서 출력해보자


# concatenate labels to df as a new column

r = pd.concat([feature,predict],axis=1)

시각화

K Means를 이용해서 클러스터링된 데이타를 Scatter plot을 이용해서 시각화 해보자


plt.scatter(r['Sepal length'],r['Sepal width'],c=r['predict'],alpha=0.5)


Scatter plot을 이용하여 클러스터링된 데이타를 그리고, 각 클러스터링 된 데이타를 라벨 (0,1,2)에 따라 색을 다르게 표시한다.

그리고 각 클러스터의 중심점을 붉은 색으로 점을 찍어서 나타내자.

클러스터별 중심점은 model.clsuter_centers 값에 저장이 된다. 중심점을 읽어서 center_x, center_y에 에 각 클러스터의 중심점 좌표를 저장하고 출력하자


centers = pd.DataFrame(model.cluster_centers_,columns=['Sepal length','Sepal width'])

center_x = centers['Sepal length']

center_y = centers['Sepal width']

plt.scatter(center_x,center_y,s=50,marker='D',c='r')

plt.show()


그래프로  출력된 결과는 다음과 같다.




데이타 스케일링를 통한 학습 데이타 정재

학습 데이타의 각 속성의 값이 범위가 크게 차이가 나면 머신러닝 학습이 잘 안되는 경우가 있는데, 예를 들어 속성 A의 범위가 1~1000이고, 속성 B의 범위가 1~10이면, 학습이 제대로 되지 않을 수 있다. 그래서 각 속성의 값의 범위를 동일하게 맞추는 것을 스케일링 (Feature scaling)이라고 한다


그림 좌측은 스케일링전의 원본 데이타, 우측은 데이타는 모든 속성을 0~1 사이로 조정한 결과이다. .

( 데이타 스케일링 대한 내용은 http://bcho.tistory.com/tag/data%20frame 참고 )



여러가지 알고리즘이 있는데 여기서 사용하는 스케일링 방법은 속성의 모든 값을 0~1 사이로 만들어주는 StandardScaling 방법을 사용한다.


즉 학습이 되기전에 데이타를 StandardScaler를 이용하여 스케일링을 조정한 후에, 스케일된 데이타를 KMeans 모델에 넣어서 학습 시키는 방법으로 두 단계를 거치는데, 이렇게 여러 단계를 거쳐서 데이타가 정재되고 학습되는 것을 파이프라인이라고 하고, sklearn.pipeline을 이용하여 손쉽게 구현이 가능하다.

아래 코드를 보자


from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans


scaler = StandardScaler()

model = KMeans(n_clusters=3)

pipeline = make_pipeline(scaler,model)


먼저 StandardScaler 객체 scaler를 만든 후, KMeans 모델 객체를 model로 선언한다. 다음에 make_pipeline 메서드를 이용하여 scaler 아 kmeans 모델을 순차로 실행하도록 파이프라인을 만든다.


pipeline.fit(feature)

predict = pd.DataFrame(pipeline.predict(feature))


다음 pipeline.fit과 .predict 메서드를 이용하여 모델을 학습 시키고 예측을 수행한다.

위의 iris 예제의 경우 스케일링을 적용하더라도 크게 모델의 정확도가 향상된것을 확인할 수 없는데, 이유는 Sepal length의 범위가 4~8, Sepal width의 범위가 2~5로 각 범위의 편차가 크지 않기 때문에 스케일링이 효과가 없다.

Inertia value를 이용한 적정 군집수 판단

K Means를 수행하기전에는 클러스터의 개수를 명시적으로 지정해줘야 한다. 데이타를 2개로 군집화할것인지, 3개로 할것인지등을 정해야 하는데, 몇개의 클러스터의 수가 가장 적절할지는 어떻게 결정할 수 있을까? Inertia value 라는 값을 보면 적정 클러스터 수를 선택할 수 있는 힌트를 얻을 수 있는데, Inertia value는 군집화가된 후에, 각 중심점에서 군집의 데이타간의 거리를 합산한것이으로 군집의 응집도를 나타내는 값이다, 이 값이 작을 수록 응집도가 높게 군집화가 잘되었다고 평가할 수 있다.


이 inertia value는 KMeans 모델이 학습된 후에, model.inertia_ 값으로 뽑아 볼 수 있다.

다음은 iris 데이타를 가지고 1~6개의 클러스터로 클러스터링을 했을때, 각 클러스터 개수별로 inertia value를 출력해보는 코드이다.


ks = range(1,10)

inertias = []


for k in ks:

   model = KMeans(n_clusters=k)

   model.fit(feature)

   inertias.append(model.inertia_)

   

# Plot ks vs inertias

plt.plot(ks, inertias, '-o')

plt.xlabel('number of clusters, k')

plt.ylabel('inertia')

plt.xticks(ks)

plt.show()


다음은 출력된 그래프이나. Inertia 값이 급격하게 하강해서 3~5사이에서는 변화의 폭이 크지 않은 것을 볼 수 있다.


이 값을 보면, iris 데이타는 3~5개의 클러스터로 분류하는 것이 적절하다고 판단할 수 있다.

크로스 테이블 체크를 이용한 모델 판단

클러스터링 모델을 검증하는 방법이 inertia 값을 사용하는 방법도 있지만 학습용 데이타가 라벨링이 되어 있는 경우에는 Cross tabulation (교차 분석)를 통해서 모델을 검증할 수 있다.

Cross tabulation 은 Pandas 라이브러리의 .crosstab 함수를 이용하면 쉽게 수행이 가능하다.


ct = pd.crosstab(data['labels'],r['predict'])

print (ct)


다음은 iris 모델에 대한 교차 분석 결과 인데



새로 축이 원본 데이타의 라벨링 된 값을 나타내고 가로가 KMeans로 인해서 클러스터링 된 결과이다.

원래 라벨 값이 0 인 값이  KMeans 에서 클러스터링 된 결과 predict값을 보면, 2 로 결과가 나온것이 50개이다. 즉 49개는 제대로 분류했다는 이야기지만, label이 1로 된 데이타는 38 제대로 분리되고 12개는 잘못 분리된것을 볼 수 있다. 그리고 마지막으로 label이 2인 데이타는 35개가 제대로 분리되고 15개는 제대로 분리되지 않았음을 볼 수 있다.

KMeans 알고리즘의 문제점

K Means 알고리즘은 사용이 편하고 속도가 비교적 빠른 알고리즘인데 비해서 몇가지 문제점을 가지고 있다. 먼저 클러스터의 수를 정해줘야 하고, 결정적으로 K Means에서는 중심점을 측정할때 처음에 랜덤으로 중심점의 위치를 찾기 때문에,  잘못하면, 중심점과 점간의 거리가 Global optimum 인 최소 값을 찾는 게 아니라 중심점이 Local optimum 에 에 수렴하여 잘못된 분류를 할 수 있다는 취약점을 가지고 있다.



출처 : http://www.cenaero.be/Page.asp?docid=27087&langue=EN


다음 글에서는 비지도 학습 기반의 클러스터링 알고리즘중의 하나인 Hierachical Clustering 알고리즘에 대해서 소개해보도록 하겠다. Hierarchical Clustering은 이름에서도 알 수 있듯이 각 클러스터가 유사한 특징을 가지고 있는 여러 계층으로 되어 있을 때 효과적으로 사용할 수 있으며, 클러스터의 수 n을 정의하지 않고도 사용이 가능하다.