블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

 

얼굴 인식 모델을 만들어보자

#3 - 학습된 모델로 예측하기


조대협 (http://bcho.tistory.com)


앞글에 걸쳐서 얼굴 인식을 위한 데이타를 수집 및 정재하고, 이를 기반으로 얼굴 인식 모델을 학습 시켰다.

 

 

이번글에서는 학습이 된 데이타를 가지고, 사진을 넣어서 실제로 인식하는 코드를 만들어보자

전체 소스 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb 와 같다.

모델 로딩 하기

 

모델 학습에 사용한 CNN 모델을 똑같이 정의한다. conv1(),conv2(),conv3(),conv4(),fc1(),fc2(), build_model() 등 학습에 사용된 CNN 네트워크를 똑같이 정의하면 된다.

 

다음으로 이 모델에 학습된 값들을 채워 넣어야 한다.

# build graph

images = tf.placeholder(tf.float32,[None,FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

keep_prob = tf.placeholder(tf.float32) # dropout ratio

 

예측에 사용할 image 를 넘길 인자를  images라는 플레이스홀더로 정의하고, dropout 비율을 정하는 keep_prob도 플레이스 홀더로 정의한다.

 

prediction = tf.nn.softmax(build_model(images,keep_prob))

 

그래프를 만드는데, build_model에 의해서 나온 예측 결과에 softmax 함수를 적용한다. 학습시에는 softmax 함수의 비용이 크기 때문에 적용하지 않았지만, 예측에서는 결과를 쉽게 알아보기 위해서  softmax 함수를 적용한다. Softmax 함수는 카테고리 별로 확률을 보여줄때 전체 값을 1.0으로 해서 보여주는것인데, 만약에 Jolie,Sulyun,Victora 3개의 카테코리가 있을때 각각의 확률이 70%,20%,10%이면 Softmax를 적용한 결과는 [0.7,0.2,0.1] 식으로 출력해준다.

 

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

 

다음 텐서플로우 세션을 초기화 하고,

 

saver = tf.train.Saver()

saver.restore(sess, 'face_recog')

 

마지막으로 Saver의 restore 함수를 이용하여 ‘face_recog’라는 이름으로 저장된 학습 결과를 리스토어 한다. (앞의 예제에서, 학습이 완료된 모델을 ‘face_recog’라는 이름으로 저장하였다.)

 

예측하기

로딩 된 모델을 가지고 예측을 하는 방법은 다음과 같다. 이미지 파일을 읽은 후에, 구글 클라우드 VISION API를 이용하여, 얼굴의 위치를 추출한후, 얼굴 이미지만 크롭핑을 한후에, 크롭된 이미지를 텐서플로우 데이타형으로 바꾼후에, 앞서 로딩한 모델에 입력하여 예측된 결과를 받게 된다.

 

얼굴 영역 추출하기

먼저 vision API로 얼굴 영역을 추출하는 부분이다. 앞의 이미지 전처리에 사용된 부분과 다르지 않다.

 

import google.auth

import io

import os

from oauth2client.client import GoogleCredentials

from google.cloud import vision

from PIL import Image

from PIL import ImageDraw

 

FLAGS.image_size = 96

 

# set service account file into OS environment value

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/Users/terrycho/keys/terrycho-ml.json"

 

위와 같이 구글 클라우드 Vision API를 사용하기 위해서 억세스 토큰을 Service Account 파일로 다운 받아서 위와 같이 GOOGLE_APPLICATION_CREDENTIALS 환경 변수에 세팅 하였다.

 

visionClient = vision.Client()

print ('[INFO] processing %s'%(imagefile))

 

#detect face

image = visionClient.image(filename=imagefile)

faces = image.detect_faces()

face = faces[0]

 

다음 vision API 클라이언트를 생성한 후에, detect_faces() 를 이용하여 얼굴 정보를 추출해낸다.

 

print 'number of faces ',len(faces)

 

#get face location in the photo

left = face.fd_bounds.vertices[0].x_coordinate

top = face.fd_bounds.vertices[0].y_coordinate

right = face.fd_bounds.vertices[2].x_coordinate

bottom = face.fd_bounds.vertices[2].y_coordinate

rect = [left,top,right,bottom]

 

추출된 얼굴 정보에서 첫번째 얼굴의 위치 (상하좌우) 좌표를 리턴 받는다.

얼굴 영역을 크롭하기

앞에서 입력 받은 상하좌우 좌표를 이용하여, 이미지 파일을 열고,  크롭한다.

 

fd = io.open(imagefile,'rb')

image = Image.open(fd)

 

import matplotlib.pyplot as plt

# display original image

print "Original image"

plt.imshow(image)

plt.show()

 

 

# draw green box for face in the original image

print "Detect face boundary box "

draw = ImageDraw.Draw(image)

draw.rectangle(rect,fill=None,outline="green")

 

plt.imshow(image)

plt.show()

 

crop = image.crop(rect)

im = crop.resize((FLAGS.image_size,FLAGS.image_size),Image.ANTIALIAS)

plt.show()

im.save('cropped'+imagefile)

 

크롭된 이미지를 텐서플로우에서 읽는다.

 

print "Cropped image"

tfimage = tf.image.decode_jpeg(tf.read_file('cropped'+imagefile),channels=3)

tfimage_value = tfimage.eval()

 

크롭된 파일을 decode_jpeg() 메서드로 읽은 후에, 값을 tfimage.eval()로 읽어드린다.

 

tfimages = []

tfimages.append(tfimage_value)

 

앞에서 정의된 모델이 한개의 이미지를 인식하는게 아니라 여러개의 이미지 파일을 동시에 읽도록 되어 있기 때문에, tfimages라는 리스트를 만든 후, 인식할 이미지를 붙여서 전달한다.

 

plt.imshow(tfimage_value)

plt.show()

fd.close()

 

p_val = sess.run(prediction,feed_dict={images:tfimages,keep_prob:1.0})

name_labels = ['Jessica Alba','Angelina Jolie','Nicole Kidman','Sulhyun','Victoria Beckam']

i = 0

for p in p_val[0]:

   print('%s %f'% (name_labels[i],float(p)) )

   i = i + 1

 

tfimages 에 이미지를 넣어서 모델에 넣고 prediction 값을 리턴 받는다. dropout은 사용하지 않기 때문에, keep_prob을 1.0으로 한다.

나온 결과를 가지고 Jessica, Jolie,Nicole Kidman, Sulhyun, Victoria Beckam 일 확률을 각각 출력한다.


전체 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb


다음은 설현 사진을 가지고 예측을 한 결과 이다.


 

이 코드는 학습된 모델을 기반으로 얼굴을 인식이 가능하기는 하지만 실제 운영 환경에 적용하기에는 부족하다. 파이썬 모델 코드를 그대로 옮겼기 때문에, 성능도 상대적으로 떨어지고, 실제 운영에서는 모델을 업그레이드 배포 할 수 있고, 여러 서버를 이용하여 스케일링도 지원해야 한다.

그래서 텐서플로우에서는 Tensorflow Serving 이라는 예측 서비스 엔진을 제공하고 구글 클라우에서는 Tensorflow Serving의 매니지드 서비스인, CloudML 서비스를 제공한다.

 

앞의 두 글이 로컬 환경에서 학습과 예측을 진행했는데, 다음 글에서는 상용 서비스에 올릴 수 있는 수준으로 학습과 예측을 할 수 있는 방법에 대해서 알아보도록 하겠다.

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

딥러닝을 이용한 숫자 이미지 인식 #2/2


앞서 MNIST 데이타를 이용한 필기체 숫자를 인식하는 모델을 컨볼루셔널 네트워크 (CNN)을 이용하여 만들었다. 이번에는 이 모델을 이용해서 필기체 숫자 이미지를 인식하는 코드를 만들어 보자


조금 더 테스트를 쉽게 하기 위해서, 파이썬 주피터 노트북내에서 HTML 을 이용하여 마우스로 숫자를 그릴 수 있도록 하고, 그려진 이미지를 어떤 숫자인지 인식하도록 만들어 보겠다.



모델 로딩

먼저 앞의 예제에서 학습을한 모델을 로딩해보도록 하자.

이 코드는 주피터 노트북에서 작성할때, 모델을 학습 시키는 코드 (http://bcho.tistory.com/1156) 와 별도의 새노트북에서 구현을 하도록 한다.


코드

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data


#이미 그래프가 있을 경우 중복이 될 수 있기 때문에, 기존 그래프를 모두 리셋한다.

tf.reset_default_graph()


num_filters1 = 32


x = tf.placeholder(tf.float32, [None, 784])

x_image = tf.reshape(x, [-1,28,28,1])


#  layer 1

W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,num_filters1],

                                         stddev=0.1))

h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')


b_conv1 = tf.Variable(tf.constant(0.1, shape=[num_filters1]))

h_conv1_cutoff = tf.nn.relu(h_conv1 + b_conv1)


h_pool1 =tf.nn.max_pool(h_conv1_cutoff, ksize=[1,2,2,1],

                       strides=[1,2,2,1], padding='SAME')


num_filters2 = 64


# layer 2

W_conv2 = tf.Variable(

           tf.truncated_normal([5,5,num_filters1,num_filters2],

                               stddev=0.1))

h_conv2 = tf.nn.conv2d(h_pool1, W_conv2,

                      strides=[1,1,1,1], padding='SAME')


b_conv2 = tf.Variable(tf.constant(0.1, shape=[num_filters2]))

h_conv2_cutoff = tf.nn.relu(h_conv2 + b_conv2)


h_pool2 =tf.nn.max_pool(h_conv2_cutoff, ksize=[1,2,2,1],

                       strides=[1,2,2,1], padding='SAME')


# fully connected layer

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*num_filters2])


num_units1 = 7*7*num_filters2

num_units2 = 1024


w2 = tf.Variable(tf.truncated_normal([num_units1, num_units2]))

b2 = tf.Variable(tf.constant(0.1, shape=[num_units2]))

hidden2 = tf.nn.relu(tf.matmul(h_pool2_flat, w2) + b2)


keep_prob = tf.placeholder(tf.float32)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)


w0 = tf.Variable(tf.zeros([num_units2, 10]))

b0 = tf.Variable(tf.zeros([10]))

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, '/Users/terrycho/anaconda/work/cnn_session')


print 'reload has been done'


그래프 구현

코드를 살펴보면, #prepare session 부분 전까지는 이전 코드에서의 그래프를 정의하는 부분과 동일하다. 이 코드는 우리가 만든 컨볼루셔널 네트워크를 복원하는 부분이다.


변수 데이타 로딩

그래프의 복원이 끝나면, 저장한 세션의 값을 다시 로딩해서 학습된 W와 b값들을 다시 로딩한다.


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, '/Users/terrycho/anaconda/work/cnn_session')


이때 saver.restore 부분에서 앞의 예제에서 저장한 세션의 이름을 지정해준다.

HTML을 이용한 숫자 입력

그래프와 모델 복원이 끝났으면 이 모델을 이용하여, 숫자를 인식해본다.

테스트하기 편리하게 HTML로 마우스로 숫자를 그릴 수 있는 화면을 만들어보겠다.

주피터 노트북에서 새로운 Cell에 아래와 같은 내용을 입력한다.


코드

input_form = """

<table>

<td style="border-style: none;">

<div style="border: solid 2px #666; width: 143px; height: 144px;">

<canvas width="140" height="140"></canvas>

</div></td>

<td style="border-style: none;">

<button onclick="clear_value()">Clear</button>

</td>

</table>

"""


javascript = """

<script type="text/Javascript">

   var pixels = [];

   for (var i = 0; i < 28*28; i++) pixels[i] = 0

   var click = 0;


   var canvas = document.querySelector("canvas");

   canvas.addEventListener("mousemove", function(e){

       if (e.buttons == 1) {

           click = 1;

           canvas.getContext("2d").fillStyle = "rgb(0,0,0)";

           canvas.getContext("2d").fillRect(e.offsetX, e.offsetY, 8, 8);

           x = Math.floor(e.offsetY * 0.2)

           y = Math.floor(e.offsetX * 0.2) + 1

           for (var dy = 0; dy < 2; dy++){

               for (var dx = 0; dx < 2; dx++){

                   if ((x + dx < 28) && (y + dy < 28)){

                       pixels[(y+dy)+(x+dx)*28] = 1

                   }

               }

           }

       } else {

           if (click == 1) set_value()

           click = 0;

       }

   });

   

   function set_value(){

       var result = ""

       for (var i = 0; i < 28*28; i++) result += pixels[i] + ","

       var kernel = IPython.notebook.kernel;

       kernel.execute("image = [" + result + "]");

   }

   

   function clear_value(){

       canvas.getContext("2d").fillStyle = "rgb(255,255,255)";

       canvas.getContext("2d").fillRect(0, 0, 140, 140);

       for (var i = 0; i < 28*28; i++) pixels[i] = 0

   }

</script>

"""


다음 새로운 셀에서, 다음 코드를 입력하여, 앞서 코딩한 HTML 파일을 실행할 수 있도록 한다.


from IPython.display import HTML

HTML(input_form + javascript)


이제 앞에서 만든 두 셀을 실행시켜 보면 다음과 같이 HTML 기반으로 마우스를 이용하여 숫자를 입력할 수 있는 박스가 나오는것을 확인할 수 있다.



입력값 판정

앞의 HTML에서 그린 이미지는 앞의 코드의 set_value라는 함수에 의해서, image 라는 변수로 784 크기의 벡터에 저장된다. 이 값을 이용하여, 이 그림이 어떤 숫자인지를 앞서 만든 모델을 이용해서 예측을 해본다.


코드


p_val = sess.run(p, feed_dict={x:[image], keep_prob:1.0})


fig = plt.figure(figsize=(4,2))

pred = p_val[0]

subplot = fig.add_subplot(1,1,1)

subplot.set_xticks(range(10))

subplot.set_xlim(-0.5,9.5)

subplot.set_ylim(0,1)

subplot.bar(range(10), pred, align='center')

plt.show()

예측

예측을 하는 방법은 쉽다. 이미지 데이타가 image 라는 변수에 들어가 있기 때문에, 어떤 숫자인지에 대한 확률을 나타내는 p 의 값을 구하면 된다.


p_val = sess.run(p, feed_dict={x:[image], keep_prob:1.0})


를 이용하여 x에 image를 넣고, 그리고 dropout 비율을 0%로 하기 위해서 keep_prob를 1.0 (100%)로 한다. (예측이기 때문에 당연히 dropout은 필요하지 않다.)

이렇게 하면 이 이미지가 어떤 숫자인지에 대한 확률이 p에 저장된다.

그래프로 표현

그러면 이 p의 값을 찍어 보자


fig = plt.figure(figsize=(4,2))

pred = p_val[0]

subplot = fig.add_subplot(1,1,1)

subplot.set_xticks(range(10))

subplot.set_xlim(-0.5,9.5)

subplot.set_ylim(0,1)

subplot.bar(range(10), pred, align='center')

plt.show()


그래프를 이용하여 0~9 까지의 숫자 (가로축)일 확률을 0.0~1.0 까지 (세로축)으로 출력하게 된다.

다음은 위에서 입력한 숫자 “4”를 인식한 결과이다.



(보너스) 첫번째 컨볼루셔널 계층 결과 출력

컨볼루셔널 네트워크를 학습시키다 보면 종종 컨볼루셔널 계층을 통과하여 추출된 특징 이미지들이 어떤 모양을 가지고 있는지를 확인하고 싶을때가 있다. 그래서 각 필터를 통과한 값을 이미지로 출력하여 확인하고는 하는데, 여기서는 이렇게 각 필터를 통과하여 인식된 특징이 어떤 모양인지를 출력하는 방법을 소개한다.


아래는 우리가 만든 네트워크 중에서 첫번째 컨볼루셔널 필터를 통과한 결과 h_conv1과, 그리고 이 결과에 bias 값을 더하고 활성화 함수인 Relu를 적용한 결과를 출력하는 예제이다.


코드


conv1_vals, cutoff1_vals = sess.run(

   [h_conv1, h_conv1_cutoff], feed_dict={x:[image], keep_prob:1.0})


fig = plt.figure(figsize=(16,4))


for f in range(num_filters1):

   subplot = fig.add_subplot(4, 16, f+1)

   subplot.set_xticks([])

   subplot.set_yticks([])

   subplot.imshow(conv1_vals[0,:,:,f],

                  cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()


x에 image를 입력하고, dropout을 없이 모든 네트워크를 통과하도록 keep_prob:1.0으로 주고, 첫번째 컨볼루셔널 필터를 통과한 값 h_conv1 과, 이 값에 bias와 Relu를 적용한 값 h_conv1_cutoff를 계산하였다.

conv1_vals, cutoff1_vals = sess.run(

   [h_conv1, h_conv1_cutoff], feed_dict={x:[image], keep_prob:1.0})


첫번째 필터는 총 32개로 구성되어 있기 때문에, 32개의 결과값을 imshow 함수를 이용하여 흑백으로 출력하였다.




다음은 bias와 Relu를 통과한 값인 h_conv_cutoff를 출력하는 예제이다. 위의 코드와 동일하며 subplot.imgshow에서 전달해주는 인자만 conv1_vals → cutoff1_vals로 변경되었다.


코드


fig = plt.figure(figsize=(16,4))


for f in range(num_filters1):

   subplot = fig.add_subplot(4, 16, f+1)

   subplot.set_xticks([])

   subplot.set_yticks([])

   subplot.imshow(cutoff1_vals[0,:,:,f],

                  cmap=plt.cm.gray_r, interpolation='nearest')

   

plt.show()


출력 결과는 다음과 같다



이제까지 컨볼루셔널 네트워크를 이용한 이미지 인식을 텐서플로우로 구현하는 방법을 MNIST(필기체 숫자 데이타)를 이용하여 구현하였다.


실제로 이미지를 인식하려면 전체적인 흐름은 같지만, 이미지를 전/후처리 해내야 하고 또한 한대의 머신이 아닌 여러대의 머신과 GPU와 같은 하드웨어 장비를 사용한다. 다음 글에서는 MNIST가 아니라 실제 칼라 이미지를 인식하는 방법에 대해서 데이타 전처리에서 부터 서비스까지 전체 과정에 대해서 설명하도록 하겠다.


예제 코드 : https://github.com/bwcho75/tensorflowML/blob/master/MNIST_CNN_Prediction.ipynb


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
 

티스토리 툴바