블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

쿠버네티스 #6

Replication Controller를 이용하여 서비스 배포하기

조대협 (http://bcho.tistory.com)


1. 도커 파일 만들기

node.js로 간단한 웹서버를 만들어서 도커로 패키징 해보자.

실습을 진행하기 위해서 로컬 환경에 도커와, node.js 가 설치되어 있어야 한다. 이 두 부분은 생략하도록 한다.

여기서 사용한 실습 환경은 node.js carbon 버전 (8.11.3), 도커 맥용 18.05.0-ce, build f150324 을 사용하였다.

node.js 애플리케이션 준비하기

node.js로 간단한 웹 애플리케이션을 제작해보자 server.js라는 이름으로 아래 코드를 작성한다.

var os = require('os');

 

var http = require('http');

var handleRequest = function(request, response) {

 response.writeHead(200);

 response.end("Hello World! I'm "+os.hostname());

 

 //log

 console.log("["+

               Date(Date.now()).toLocaleString()+

               "] "+os.hostname());

}

var www = http.createServer(handleRequest);

www.listen(8080);


이 코드는 8080 포트로 웹서버를 띄워서 접속하면 “Hello World!” 문자열과 함께, 서버의 호스트명을 출력해준다. 그리고 stdout에 로그로, 시간과 서버의 호스트명을 출력해준다.

코드 작성이 끝났으면, 서버를 실행해보자

%node server.js


다음 브라우저로 접속하면 다음과 같은 결과를 얻을 수 있다.


그리고 콘솔화면에는 아래와 같이 시간과 호스트명이 로그로 함께 출력된다.

도커로 패키징하기

그러면 이 node.js 애플리케이션을 도커 컨테이너로 패키징 해보자

Dockerfile 이라는 파일을 만들고 아래 코드를 작성한다.

FROM node:carbon

EXPOSE 8080

COPY server.js .

CMD node server.js > log.out


이 코드는 node.js carborn (8.11.3) 컨테이너 이미지를 베이스로 한후에,  앞서 작성한 server.js 코드를 복사한후에, node server.js > log.out 명령어를 실행하도록 하는 컨테이너를 만드는 설정파일이다.

설정 파일이 준비되었으면,  도커 컨테이너 파일을 만들어보자


% docker build -t gcr.io/terrycho-sandbox/hello-node:v1 .


docker build  명령은 컨테이너를 만드는 명령이고, -t는 빌드될 이미지에 대한 태그를 정하는 명령이다.

빌드된 컨테이너 이미지는 gcr.io/terrycho-sandbox/hello-node로  태깅되는데, 이는 향후에 구글 클라우드 컨테이너 레지스트리에 올리기 위해서 태그 명을 구글 클라우드 컨테이너 레지스트리의 포맷을 따른 것이다. (참고 https://cloud.google.com/container-registry/docs/pushing-and-pulling)

포맷은 [HOST_NAME]/[GOOGLE PROJECT-ID]/[IMAGE NAME]


gcr.io/terrycho-sandbox는 도커 이미지가 저장될 리파지토리의 경로를 위의 규칙에 따라 정의한 것인데,

  • gcr.io는 구글 클라우드 컨테이너 리파지토리 US 리전을 지칭하며,

  • terrycho-sandbox는 본인의 구글 프로젝트 ID를 나타낸다.

  • 이미지명을 hello-node 로 지정하였다.

  • 마지막으로 콜론(:) 으로 구별되어 정의한 부분은 태그 부분으로, 여기서는 “v1”으로 태깅을 하였다.


이미지는 위의 이름으로 지정하여 생성되어 로컬에 저장된다.




빌드를 실행하면 위와 같이 node:carbon 이미지를 읽어와서 필요한 server.js 파일을 복사하고 컨테이너 이미지를 생성한다.

컨테이너 이미지가 생성되었으면 로컬 환경에서 이미지를 기동 시켜보자


%docker run -d -p 8080:8080 gcr.io/terrycho-sandbox/hello-node:v1


명령어로 컨테이너를 실행할 수 있다.

  • -d 옵션은 컨테이너를 실행하되, 백그라운드 모드로 실행하도록 하였다.

  • -p는 포트 맵핑으로 뒤의 포트가 도커 컨테이너에서 돌고 있는 포트이고, 앞의 포트가 이를 밖으로 노출 시키는 포트이다 예를 들어 -p 9090:8080 이면 컨테이너의 8080포트를 9090으로 노출 시켜서 서비스 한다는 뜻이다. 여기서는 컨테이너 포트와 서비스로 노출 되는 포트를 동일하게 8080으로 사용하였다.


컨테이너를 실행한 후에, docker ps 명령어를 이용하여 확인해보면 아래와 같이 hello-node:v1 이미지로 컨테이너가 기동중인것을 확인할 수 있다.



다음 브라우져를 통해서 접속을 확인하기 위해서 localhost:8080으로 접속해보면 아래와 같이 Hello World 와 호스트명이 출력되는 것을 확인할 수 있다.


로그가 제대로 출력되는지 확인하기 위해서 컨테이너 이미지에 쉘로 접속해보자

접속하는 방법은


% docker exec -i -t [컨테이너 ID] /bin/bash

를 실행하면 된다. 컨테이너 ID 는 앞의 docker ps 명령을 이용하여 기동중인 컨테이너 명을 보면 처음 부분이 컨테이너 ID이다.

hostname 명령을 실행하여 호스트명을 확인해보면 위에 웹 브라우져에서 출력된 41a293ba79a7과 동일한것을 확인할 수 있다. 디렉토리에는 server.js 파일이 복사되어 있고, log.out 파일이 생성된것을 볼 수 있다.  

cat log.out을 이용해서 보면, 시간과 호스트명이 로그로 출력된것을 확인할 수 있다.



2. 쿠버네티스 클러스터 준비

구글 클라우드 계정 준비하기

구글 클라우드 계정 생성은 http://bcho.tistory.com/1107 문서를 참고하기 바란다.

쿠버네티스 클러스터 생성하기

쿠버네티스 클러스터를 생성해보자, 클러스터 생성은 구글 클라우드 콘솔의 Kubernetes Engine > Clusters 메뉴에서 Create 를 선택하면 클러스터 생성이 가능하다.



클러스터 이름을 넣어야 하는데, 여기서는 terry-gke-10 을 선택하였다. 구글 클라우드에서 쿠버네티스 클러스터는 싱글 존에만 사용가능한 Zonal 클러스터와 여러존에 노드를 분산 배포하는 Regional 클러스터 두 가지가 있는데, 여기서는 하나의 존만 사용하는 Zonal 클러스터를 설정한다. (Regional은 차후에 다루도록 하겠다.)

다음 클러스터를 배포한 존을 선택하는데, asia-northeast1-c (일본)을 선택하였다.

Cluster Version은 쿠버네티스 버전인데, 1.10.2 버전을 선택한다.

그리고 Machine type은 쿠버네티스 클러스터의 노드 머신 타입인데, 간단한 테스트 환경이기 때문에,  2 CPU에 7.5 메모리를 지정하였다.

다음으로 Node Image는 노드에 사용할 OS 이미지를 선택하는데, Container Optimized OS를 선택한다. 이 이미지는 컨테이너(도커)를 운영하기 위해 최적화된 이미지이다.

다음으로는 노드의 수를 Size에서 선택한다. 여기서는 3개의 노드를 운용하도록 설정하였다.


아래 부분에 보면  Automatic node upgrades 라는 기능이 있다.


구글 클라우드의 재미있는 기능중 하나인데, 쿠버네티스 버전이 올라가면 자동으로 버전을 업그레이드 해주는 기능으로, 이 업그레이드는 무정지로 진행 된다.


gcloud 와 kubectl 설치하기

클러스터 설정이 끝났으면 gloud (Google Cloud SDK 이하 gcloud)를 인스톨한다.

gcloud 명령어의 인스톨 방법은 OS마다 다른데, https://cloud.google.com/sdk/docs/quickstarts 문서를 참고하면 된다.

별다른 어려운 작업은 없고, 설치 파일을 다운 받아서 압축을 푼후에, 인스톨 스크립트를 실행하면 된다.


kubectl은 쿠버네티스의 CLI (Command Line Interface)로, gcloud를 인스톨한후에,

%gcloud components install kubectl

명령을 이용하면 인스톨할 수 있다.

쿠버네티스 클러스터 인증 정보 얻기

gcloud와 kubectl 명령을 설치하였으면, 이 명령어들을 사용할때 마다 쿠버네티스에 대한 인증이 필요한데, 인증에 필요한 인증 정보는 아래 명령어를 이용하면, 자동으로 사용이 된다.

gcloud container clusters get-credentials CLUSTER_NAME

여기서는 클러스터명이 terry-gke10이기 때문에,

%gcloud container clusters get-credentials terry-gke-10

을 실행한다.


명령어 설정이 끝났으면, gcloud 명령이 제대로 작동하는지를 확인하기 위해서, 현재 구글 클라우드내에 생성된 클러스터 목록을 읽어오는 gcloud container clusters list 명령어를 실행해보자



위와 같이 terry-gke-10 이름으로 asia-northeast1-c 존에 쿠버네티스 1.10.2-gke.3 버전으로 클러스터가 생성이 된것을 볼 수 있고, 노드는 총 3개의 실행중인것을 확인할 수 있다.

3. 쿠버네티스에 배포하기

이제 구글 클라우드에 쿠버네티스 클러스터를 생성하였고, 사용을 하기 위한 준비가 되었다.

앞에서 만든 도커 이미지를 패키징 하여, 이 쿠버네티스 클러스터에 배포해보도록 하자.

여기서는 도커 이미지를 구글 클라우드내의 도커 컨테이너 레지스트리에 등록한 후, 이 이미지를 이용하여 ReplicationController를 통해 총 3개의 Pod를 구성하고 서비스를 만들어서 이 Pod들을 외부 IP를 이용하여 서비스를 제공할 것이다.

도커 컨테이너 이미지 등록하기

먼저 앞에서 만든 도커 이미지를 구글 클라우드 컨테이너 레지스트리(Google Container Registry 이하 GCR) 에 등록해보자.

GCR은 구글 클라우드에서 제공하는 컨테이너 이미지 저장 서비스로, 저장 뿐만 아니라, CI/CD 도구와 연동하여, 자동으로 컨테이너 이미지를 빌드하는 기능, 그리고 등록되는 컨테이너 이미지에 대해서 보안적인 문제가 있는지 보안 결함을 스캔해주는 기능과 같은 다양한 기능을 제공한다.


컨테이너 이미지를 로컬환경에서 도커 컨테이너 저장소에 저장하려면 docker push라는 명령을 사용하는데, 여기서는 GCR을 컨테이너 이미지 저장소로 사용할 것이기 때문에, GCR에 대한 인증이 필요하다.

인증은 한번만 해놓으면 되는데

%gcloud auth configure-docker

명령을 이용하면, 인증 정보가 로컬 환경에 자동으로 저장된다.



인증이 완료되었으면, docker push 명령을 이용하여 이미지를 GCR에 저장한다.

%docker push gcr.io/terrycho-sandbox/hello-node:v1


명령어를 실행하면, GCR에 hello-node 이미지가 v1 태그로 저장된다.


이미지가 GCR에 잘 저장되었는지를 확인하기 위해서 구글 클라우드 콘솔에 Container Registry (GCR)메뉴에서 Images라는 메뉴를 들어가보자




아래와 같이 hello-node 폴더에 v1이라는 태그로 이미지가 등록된것을 확인할 수 있다.

ReplicationController 등록

컨테이너 이미지가 등록되었으면 이 이미지를 이용해서 Pod를 생성해보자,  Pod 생성은 Replication Controller (이하 rc)를 생성하여, rc가 Pod 생성 및 컨트롤을 하도록 한다.


다음은 rc 생성을 위한 hello-node-rc.yaml 파일이다.


apiVersion: v1

kind: ReplicationController

metadata:

 name: hello-node-rc

spec:

 replicas: 3

 selector:

   app: hello-node

 template:

   metadata:

     name: hello-node-pod

     labels:

       app: hello-node

   spec:

     containers:

     - name: hello-node

       image: gcr.io/terrycho-sandbox/hello-node:v1

       imagePullPolicy: Always

       ports:

       - containerPort: 8080


hello-node-rc 라는 이름으로 rc를 생성하는데, replica 를 3으로 하여, 총 3개의 pod를 생성하도록 한다.

템플릿 부분에 컨테이너 스팩에 컨테이너 이름은 hello-node로 하고 이미지는 앞서 업로드한 gcr.io/terrycho-sandbox/hello-node:v1 를 이용해서 컨테이너를 만들도록 한다. 컨테이너의 포트는 8080을 오픈한다. 템플릿 부분에서 app 이라는 이름의 라벨을 생성하고 그 값을 hello-node로 지정하였다. 이 라벨은 나중에 서비스 (service)에 의해 외부로 서비스될 pod들을 선택하는데 사용 된다.


여기서 imagePullPolicy:Always  라고 설정한 부분이 있는데, 이는 Pod를 만들때 마다 매번 컨테이너 이미지를 확인해서 새 이미지를 사용하도록 하는 설정이다.  컨테이너 이미지는 한번 다운로드가 되면 노드(Node) 에 저장이 되어 있게 되고, 사용이 되지 않는 이미지 중에 오래된 이미지는 Kublet이 가비지 컬렉션 (Garbage collection) 정책에 따라 이미지를 삭제하게 되는데, 문제는 노드에 이미 다운되어 있는 이미지가 있을 경우 컨테이너 생성시 노드에 이미 다운로드 되어 있는 이미지를 사용한다. 컨테이너 리파지토리에 같은 이름으로 이미지를 업데이트 하거나 심지어 그 이미지를 삭제하더라도 노드에 이미지가 이미 다운로드 되어 있으면 다운로드된 이미지를 사용하기 때문에, 업데이트 부분이 반영이 안된다.

이를 방지하기 위해서 imagePullPolicy:Always로 해주면 컨테이너 생성시마다 이미지 리파지토리를 검사해서 새 이미지를 가지고 오기 때문에, 업데이트된 내용을 제대로 반영할 수 있다.


%kubectl create -f hello-node-rc.yaml


명령어를 실행해서 rc와 pod를 생성한다.




위의 그림과 같이 3개의 Pod가 생성된것을 확인할 수 있는데, Pod가 제대로 생성되었는지 확인하기 위해서 hello-node-rc-rsdzl pod에서 hello-node-rc-2phgg pod의 node.js 웹서버에 접속을 해볼 것이다.

아직 서비스를 붙이지 않았기 때문에, 이 pod들은 외부 ip를 이용해서 서비스가 불가능하기 때문에, 쿠버네티스 클러스터 내부의 pod를 이용하여 내부 ip (private ip)간에 통신을 해보기 위해서 pod에서 pod를 호출 하는 것이다. kubectl describe pod  [pod 명] 명령을 이용하면, 해당 pod의 정보를 볼 수 있다. hello-node-rc-2hpgg pod의 cluster ip (내부 ip)를 확인해보면 10.20.1.27 인것을 확인할 수 있다.


kubectl exec 명령을 이용하면 쉘 명령어를 실행할 수 있는데, 다음과 같이 hello-node-rc-rsdzl pod에서 첫번째 pod인 hello-node-rc-2phgg의 ip인 10.20.1.27의 8080 포트로 curl 을 이용해 HTTP 요청을 보내보면 다음과 같이 정상적으로 응답이 오는 것을 볼 수 있다.


Service 등록

rc와 pod 생성이 끝났으면 이제 서비스를 생성해서 pod들을 외부 ip로 서비스 해보자

다음은 서비스를 정의한 hello-node-svc.yaml 파일이다.


hello-node-svc.yaml

apiVersion: v1

kind: Service

metadata:

 name: hello-node-svc

spec:

 selector:

   app: hello-node

 ports:

   - port: 80

     protocol: TCP

     targetPort: 8080

 type: LoadBalancer


Selector 부분에 app:hello-node 로 지정하여, pod들 중에 라벨의 키가 app이고 값이 hello-node인 pod 들만 서비스에 연결하도록 지정하였다. 다음 서비스의 포트는 80으로 지정하였고, pod의 port는 8080으로 지정하였다.


서비스가 배포되면 위와 같은 구조가 된다.

%kubectl create -f hello-node-svc.yaml

명령을 이용하면 서비스가 생성이 된다.


다음 생성된 서비스의 외부 ip를 얻기 위해서 kubectl get svc 명령을 실행해보자

아래 그림과 같이 35.200.40.161 IP가 할당된것을 확인할 수 있다.


이 IP로 접속을 해보면 아래와 같이 정상적으로 응답이 오는 것을 확인할 수 있다.


RC 테스트

rc는 pod의 상태를 체크하다가 문제가 있으면 다시, pod를 기동해주는 기능을 한다.

이를 테스트하기 위해서 강제적으로 모든 pod를 제거해보자. kubectl delete pod --all을 이용하면 모든 pod를 제거할 수 있는데, 아래 그림을 보면, 모든 pod를 제거했더니 3개의 pod가 제거되고 새롭게 3개의 pod가 기동되는 것을 확인할 수 있다.



운영중에 탄력적으로 pod의 개수를 조정할 수 있는데, kubectl scale 명령을 이용하면 된다.

kubectl scale --replicas=[pod의 수] rc/[rc 명] 식으로 사용하면 된다. 아래는 pod의 수를 4개로 재 조정한 내용이다.



자원 정리

테스트가 끝났으면 서비스, rc,pod를 삭제해보자.

  • 서비스 삭제는 kubectl delete svc --all 명령어를 이용한다.

  • rc 삭제는 kubectl delete rc --all

  • pod 삭제는 kubectl delete pod --all

을 사용한다.

삭제시 주의할점은 pod를 삭제하기 전에 먼저 rc를 삭제해야 한다. 아니면, pod가 삭제된 후 rc에 의해서 다시 새로운 pod가 생성될 수 있다.


쿠버네티스 #4

아키텍쳐


조대협 (http://bcho.tistory.com)


쿠버네티스에 대한 개념 이해가 끝났으면, 이제 쿠버네티스가 실제로 어떤 구조로 구현이 되어 있는지 아키텍쳐를 살펴보도록 하자. 아키텍쳐를 이용하면 동작 원리를 이해할 수 있기 때문에, 쿠버네티스의 사용법을 이해하는데 도움이 된다.




<그림. 쿠버네티스 아키텍쳐>

출처 https://kubernetes.io/docs/concepts/architecture/

마스터와 노드

쿠버네티스는 크게 마스터(Master)와 노드(Node) 두 개의 컴포넌트로 분리된다.

마스터는 쿠버네티스의 설정 환경을 저장하고 전체 클러스터를 관리하는 역할을 맏고있고, 노드는 파드나 컨테이너 처럼 쿠버네티스 위에서 동작하는 워크로드를 호스팅하는 역할을 한다.

마스터

쿠버네티스 클러스터 전체를 컨트럴 하는 시스템으로, 크게 다음과 API 서버, 스케쥴러, 컨트롤러 매니져, etcd 로 구성되어 있다.


API 서버

쿠버네티스는 모든 명령과 통신을 API를 통해서 하는데, 그 중심이 되는 서버가 API서버이다.

쿠버네티스의 모든 기능들을 REST API로 제공하고 그에 대한 명령을 처리한다.

Etcd

API 서버가 명령을 주고 받는 서버라면, 쿠버네티스 클러스터의 데이타 베이스 역할이 되는 서버로 설정값이나 클러스터의 상태를 저장하는 서버이다.  etcd라는 분산형 키/밸류 스토어 오픈소스 ()https://github.com/coreos/etcd) 로 쿠버네티스 클러스터의 상태나 설정 정보를 저장한다.

스케쥴러

스케쥴러는 Pod,서비스등 각 리소스들을 적절한 노드에 할당하는 역할을 한다.

컨트롤러 매니져

컨트롤러 매니저는 컨트롤러(Replica controller, Service controller, Volume Controller, Node controller 등)를 생성하고 이를 각 노드에 배포하며 이를 관리하는 역할을 한다.


DNS

그림에는 빠져있는데, 쿠버네티스는 리소스의 엔드포인트(Endpoint)를 DNS로 맵핑하고 관리한다. Pod나 서비스등은 IP를 배정받는데, 동적으로 생성되는 리소스이기 때문에 그 IP 주소가 그때마다 변경이 되기 때문에, 그 리소스에 대한 위치 정보가 필요한데, 이러한 패턴을 Service discovery 패턴이라고 하는데, 쿠버네티스에서는 이를 내부 DNS서버를 두는 방식으로 해결하였다.

새로운 리소스가 생기면, 그 리소스에 대한 IP와 DNS 이름을 등록하여, DNS 이름을 기반으로 리소스에 접근할 수 있도록 한다.

노드

노드는 마스터에 의해 명령을 받고 실제 워크로드를 생성하여 서비스 하는 컴포넌트이다.

노드에는 Kubelet, Kube-proxy,cAdvisor 그리고 컨테이너 런타임이 배포된다.

Kubelet

노드에 배포되는 에이전트로, 마스터의 API서버와 통신을 하면서, 노드가 수행해야 할 명령을 받아서 수행하고, 반대로 노드의 상태등을 마스터로 전달하는 역할을 한다.

Kube-proxy

노드로 들어오거는 네트워크 트래픽을 적절한 컨테이너로 라우팅하고, 로드밸런싱등 노드로 들어오고 나가는 네트워크 트래픽을 프록시하고, 노드와 마스터간의 네트워크 통신을 관리한다.

Container runtime (컨테이너 런타임)

Pod를 통해서 배포된 컨테이너를 실행하는 컨테이너 런타임이다. 컨테이너 런타임은 보통 도커 컨테이너를 생각하기 쉬운데, 도커 이외에도 rkt (보안이 강화된 컨테이너), Hyper container 등 다양한 런타임이 있다.

cAdvisor

cAdvisor는 각 노드에서 기동되는 모니터링 에이전트로, 노드내에서 가동되는 컨테이너들의 상태와 성능등의 정보를 수집하여, 마스터 서버의 API 서버로 전달한다.

이 데이타들은 주로 모니터링을 위해서 사용된다.


전체적인 구조 자체는 복잡하지 않다. 모듈화가 되어 있고, 기능 확장을 위해서 플러그인을 설치할 수 있는 구조로 되어 있다. 예를 들어 나중에 설명하겠지만 모니터링 정보를 저장하는 데이타베이스로는 많이 사용되는 Influx 데이타 베이스 또는 Prometheus 와 같은 데이타 베이스를 선택해서 설치할 수 있고 또는 커스텀 인터페이스 개발을 통해서, 알맞은 저장소를 개발하여 연결이 가능하다.






쿠버네티스 #2

개념 이해 (1/2)


조대협 (http://bcho.tistory.com)


쿠버네티스를 공부하면서 가장 헷갈리는 부분이 용어와 컨셉이다. 이 컨셉만 잘 이해하면 쿠버네티스를 쉽게 이해하고 사용할 수 있지만, 적어도 내 기준에서는 문서들의 용어나 개념 설명이 다소 어려웠다.

쿠버네티스의 개념은 크게 오브젝트 두개의 개념에서 출발한다. 각각을 살펴보도록 하자

마스터와 노드

쿠버네티스를 이해하기 위해서는 먼저 클러스터의 구조를 이해할 필요가 있는데, 구조는 매우 간단하다. 클러스터 전체를 관리하는 컨트롤러로써 마스터가 존재하고, 컨테이너가 배포되는 머신 (가상머신이나 물리적인 서버머신)인 노드가 존재한다.


오브젝트

쿠버네티스를 이해하기 위해서 가장 중요한 부분이 오브젝트이다. 가장 기본적인 구성단위가 되는 기본 오브젝트(Basic object)와, 이 기본 오브젝트(Basic object) 를 생성하고 관리하는 추가적인 기능을 가진 컨트롤러(Controller) 로 이루어진다. 그리고 이러한 오브젝트의 스펙(설정)이외에 추가정보인 메타 정보들로 구성이 된다고 보면 된다.

오브젝트 스펙 (Object Spec)

오브젝트들은 모두 오브젝트의 특성 (설정정보)을 기술한 오브젝트 스펙 (Object Spec)으로 정의가 되고, 커맨드 라인을 통해서 오브젝트 생성시 인자로 전달하여 정의를 하거나 또는 yaml이나 json 파일로 스펙을 정의할 수 있다.

기본 오브젝트 (Basic Object)

쿠버네티스에 의해서 배포 및 관리되는 가장 기본적인 오브젝트는 컨테이너화되어 배포되는 애플리케이션의 워크로드를 기술하는 오브젝트로 Pod,Service,Volume,Namespace 4가지가 있다.


간단하게 설명 하자면 Pod는 컨테이너화된 애플리케이션, Volume은 디스크, Service는 로드밸런서 그리고 Namespace는 패키지명 정도로 생각하면 된다. 그러면 각각을 자세하게 살펴보도록 하자.

Pod

Pod 는 쿠버네티스에서 가장 기본적인 배포 단위로, 컨테이너를 포함하는 단위이다.

쿠버네티스의 특징중의 하나는 컨테이너를 개별적으로 하나씩 배포하는 것이 아니라 Pod 라는 단위로 배포하는데, Pod는 하나 이상의 컨테이너를 포함한다.


아래는 간단한 Pod를 정의한 오브젝트 스펙이다. 하나하나 살펴보면


apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

   image: nginx:1.7.9

   ports:

   - containerPort: 8090


  • apiVersion은 이 스크립트를 실행하기 위한 쿠버네티스 API 버전이다 보통 v1을 사용한다.

  • kind 에는 리소스의 종류를 정의하는데, Pod를 정의하려고 하기 때문에, Pod라고 넣는다.

  • metadata에는 이 리소스의 각종 메타 데이타를 넣는데, 라벨(뒤에서 설명할)이나 리소스의 이름등 각종 메타데이타를 넣는다

  • spec 부분에 리소스에 대한 상세한 스펙을 정의한다.

    • Pod는 컨테이너를 가지고 있기 때문에, container 를 정의한다. 이름은 nginx로 하고 도커 이미지 nginx:1.7.9 를 사용하고, 컨테이너 포트 8090을 오픈한다.


Pod 안에 한개 이상의 컨테이너를 가지고 있을 수 있다고 했는데 왜 개별적으로 하나씩 컨테이너를 배포하지 않고 여러개의 컨테이너를 Pod 단위로 묶어서 배포하는 것인가?


Pod는 다음과 같이 매우 재미있는 특징을 갖는다.


  • Pod 내의 컨테이너는 IP와 Port를 공유한다.
    두 개의 컨테이너가 하나의 Pod를 통해서 배포되었을때, localhost를 통해서 통신이 가능하다.
    예를 들어 컨테이너 A가 8080, 컨테이너 B가 7001로 배포가 되었을 때, B에서 A를 호출할때는 localhost:8080 으로 호출하면 되고, 반대로 A에서 B를 호출할때에넌 localhost:7001로 호출하면 된다.

  • Pod 내에 배포된 컨테이너간에는 디스크 볼륨을 공유할 수 있다.
    근래 애플리케이션들은 실행할때 애플리케이션만 올라가는것이 아니라 Reverse proxy, 로그 수집기등 다양한 주변 솔루션이 같이 배포 되는 경우가 많고, 특히 로그 수집기의 경우에는 애플리케이션 로그 파일을 읽어서 수집한다. 애플리케이션 (Tomcat, node.js)와 로그 수집기를 다른 컨테이너로 배포할 경우, 일반적인 경우에는 컨테이너에 의해서 파일 시스템이 분리되기 때문에, 로그 수집기가 애플리케이션이 배포된 컨테이너의 로그파일을 읽는 것이 불가능 하지만, 쿠버네티스의 경우 하나의 Pod 내에서는 컨테이너들끼리 볼륨을 공유할 수 있기 때문에 다른 컨테이너의 파일을 읽어올 수 있다.


위와 같이 애플리케이션과 애플리케이션에서 사용하는 주변 프로그램을 같이 배포하는 패턴을 마이크로 서비스 아키텍쳐에서 사이드카 패턴(Side car pattern)이라고 하는데, 이 외에도 Ambassador, Adapter Container 등 다양한 패턴이 있는데, 이는 나중에 다른 글에서 상세하게 설명하도록 한다.

Volume

Pod가 기동할때 디폴트로, 컨테이너마다 로컬 디스크를 생성해서 기동되는데, 이 로컬 디스크의 경우에는 영구적이지 못하다. 즉 컨테이너가 리스타트 되거나 새로 배포될때 마다 로컬 디스크는 Pod 설정에 따라서 새롭게 정의되서 배포되기 때문에, 디스크에 기록된 내용이 유실된다.

데이타 베이스와 같이 영구적으로 파일을 저장해야 하는 경우에는 컨테이너 리스타트에 상관 없이 파일을 영속적으로 저장애햐 하는데, 이러한 형태의 스토리지를 볼륨이라고 한다.

볼륨은 컨테이너의 외장 디스크로 생각하면 된다. Pod가 기동할때 컨테이너에 마운트해서 사용한다.


앞에서 언급한것과 같이 쿠버네티스의 볼륨은 Pod내의 컨테이너간의 공유가 가능하다.


웹 서버를 배포하는 Pod가 있을때, 웹서비스를 서비스하는 Web server 컨테이너, 그리고 컨텐츠의 내용 (/htdocs)를 업데이트하고 관리하는 Content mgmt 컨테이너, 그리고 로그 메세지를 관리하는 Logger라는 컨테이너이가 있다고 하자

  • WebServer 컨테이너는 htdocs 디렉토리의 컨테이너를 서비스하고, /logs 디렉토리에 웹 억세스 기록을 기록한다.

  • Content 컨테이너는 htdocs 디렉토리의 컨텐트를 업데이트하고 관리한다.

  • Logger 컨테이너는 logs 디렉토리의 로그를 수집한다.

이 경우 htdocs 컨텐츠 디렉토리는 WebServer와 Content 컨테이너가 공유해야 하고 logs 디렉토리는 Webserver 와 Logger 컨테이너가 공유해야 한다. 이러한 시나리오에서 볼륨을 사용할 수 있다.


아래와 같이 htdocs와 logs 볼륨을 각각 생성한 후에, htdocs는 WebServer와, Contents management 컨테이너에 마운트 해서 공유하고, logs볼륨은 Logger와 WebServer 컨테이너에서 공유하도록 하면된다.  



쿠버네티스는 다양한 외장 디스크를 추상화된 형태로 제공한다. iSCSI나 NFS와 같은 온프렘 기반의 일반적인 외장 스토리지 이외에도, 클라우드의 외장 스토리지인 AWS EBS, Google PD,에서 부터  github, glusterfs와 같은 다양한 오픈소스 기반의 외장 스토리지나 스토리지 서비스를 지원하여, 스토리지 아키텍처 설계에 다양한 옵션을 제공한다.

Service

Pod와 볼륨을 이용하여, 컨테이너들을 정의한 후에, Pod 를 서비스로 제공할때, 일반적인 분산환경에서는 하나의 Pod로 서비스 하는 경우는 드물고, 여러개의 Pod를 서비스하면서, 이를 로드밸런서를 이용해서 하나의 IP와 포트로 묶어서 서비스를 제공한다.


Pod의 경우에는 동적으로 생성이 되고, 장애가 생기면 자동으로 리스타트 되면서 그 IP가 바뀌기 때문에, 로드밸런서에서 Pod의 목록을 지정할 때는 IP주소를 이용하는 것은 어렵다. 또한 오토 스케일링으로 인하여 Pod 가 동적으로 추가 또는 삭제되기 때문에, 이렇게 추가/삭제된 Pod 목록을 로드밸런서가 유연하게 선택해 줘야 한다.

그래서 사용하는 것이 라벨(label)과 라벨 셀렉터(label selector) 라는 개념이다.


서비스를 정의할때, 어떤 Pod를 서비스로 묶을 것인지를 정의하는데, 이를 라벨 셀렉터라고 한다. 각 Pod를 생성할때 메타데이타 정보 부분에 라벨을 정의할 수 있다. 서비스는 라벨 셀렉터에서 특정 라벨을 가지고 있는 Pod만 선택하여 서비스에 묶게 된다.

아래 그림은 서비스가 라벨이 “myapp”인 서비스만 골라내서 서비스에 넣고, 그 Pod간에만 로드밸런싱을 통하여 외부로 서비스를 제공하는 형태이다.



이를 스펙으로 정의해보면 대략 다음과 같다.


kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
   app: myapp
 ports:
 - protocol: TCP
   port: 80
   targetPort: 9376


  • 리소스 종류가 Service 이기 때문에, kind는 Service로 지정하고,

  • 스크립트를 실행할 api 버전은 v1으로 apiVersion에 정의했다.

  • 메타데이타에 서비스의 이름을 my-service로 지정하고

  • spec 부분에 서비스에 대한 스펙을 정의한다.

    • selector에서 라벨이 app:myapp인 Pod 만을 선택해서 서비스에서 서비스를 제공하게 하고

    • 포트는 TCP를 이용하되, 서비스는 80 포트로 서비스를 하되, 서비스의 80 포트의 요청을 컨테이너의 9376 포트로 연결해서 서비스를 제공한다.


Name space

네임스페이스는 한 쿠버네티스 클러스터내의 논리적인 분리단위라고 보면 된다.

Pod,Service 등은 네임 스페이스 별로 생성이나 관리가 될 수 있고, 사용자의 권한 역시 이 네임 스페이스 별로 나눠서 부여할 수 있다.

즉 하나의 클러스터 내에, 개발/운영/테스트 환경이 있을때, 클러스터를 개발/운영/테스트 3개의 네임 스페이스로 나눠서 운영할 수 있다. 네임스페이스로 할 수 있는 것은

  • 사용자별로 네임스페이스별 접근 권한을 다르게 운영할 수 있다.

  • 네임스페이스별로 리소스의 쿼타 (할당량)을 지정할 수 있다. 개발계에는 CPU 100, 운영계에는 CPU 400과 GPU 100개 식으로, 사용 가능한 리소스의 수를 지정할 수 있다.

  • 네임 스페이스별로 리소스를 나눠서 관리할 수 있다. (Pod, Service 등)


주의할점은 네임 스페이스는 논리적인 분리 단위이지 물리적이나 기타 장치를 통해서 환경을 분리(Isolation)한것이 아니다. 다른 네임 스페이스간의 pod 라도 통신은 가능하다.

물론 네트워크 정책을 이용하여, 네임 스페이스간의 통신을 막을 수 있지만 높은 수준의 분리 정책을 원하는 경우에는 쿠버네티스 클러스터 자체를 분리하는 것을 권장한다.


참고 자료 네임 스페이스에 대한 베스트 프랙틱스 : https://cloudplatform.googleblog.com/2018/04/Kubernetes-best-practices-Organizing-with-Namespaces.html

https://kubernetes.io/blog/2016/08/kubernetes-namespaces-use-cases-insights/

라벨

앞에서 잠깐 언급했던 것 중의 하나가 label 인데, 라벨은 쿠버네티스의 리소스를 선택하는데 사용이 된다. 각 리소스는 라벨을 가질 수 있고, 라벨 검색 조건에 따라서 특정 라벨을 가지고 있는 리소스만을 선택할 수 있다.

이렇게 라벨을 선택하여 특정 리소스만 배포하거나 업데이트할 수 있고 또는 라벨로 선택된 리소스만 Service에 연결하거나 특정 라벨로 선택된 리소스에만 네트워크 접근 권한을 부여하는 등의 행위를 할 수 있다.

라벨은 metadata 섹션에 키/값 쌍으로 정의가 가능하며, 하나의 리소스에는 하나의 라벨이 아니라 여러 라벨을 동시에 적용할 수 있다.


"metadata": {
 "labels": {
   "key1" : "value1",
   "key2" : "value2"
 }
}


셀렉터를 사용하는 방법은 오브젝트 스펙에서 selector 라고 정의하고 라벨 조건을 적어 놓으면 된다.

쿠버네티스에서는 두 가지 셀렉터를 제공하는데, 기본적으로 Equaility based selector와, Set based selector 가 있다.

Equality based selector는 같냐, 다르냐와 같은 조건을 이용하여, 리소스를 선택하는 방법으로

  • environment = dev

  • tier != frontend

식으로, 등가 조건에 따라서 리소스를 선택한다.

이보다 향상된 셀렉터는 set based selector로, 집합의 개념을 사용한다.

  • environment in (production,qa) 는 environment가 production 또는 qa 인 경우이고,

  • tier notin (frontend,backend)는 environment가 frontend도 아니고 backend도 아닌 리소스를 선택하는 방법이다.

다음 예제는 my-service 라는 이름의 서비스를 정의한것으로 셀렉터에서 app: myapp 정의해서 Pod의 라벨 app이 myapp 것만 골라서 이 서비스에 바인딩해서 9376 포트로 서비스 하는 예제이다.


kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
   app: myapp
 ports:
 - protocol: TCP
   port: 80
   targetPort: 9376



컨트롤러

앞에서 소개한 4개의 기본 오브젝트로, 애플리케이션을 설정하고 배포하는 것이 가능한데 이를 조금 더 편리하게 관리하기 위해서 쿠버네티스는 컨트롤러라는 개념을 사용한다.

컨트롤러는 기본 오브젝트들을 생성하고 이를 관리하는 역할을 해준다. 컨트롤러는 Replication Controller (aka RC), Replication Set, DaemonSet, Job, StatefulSet, Deployment 들이 있다. 각자의 개념에 대해서 살펴보도록 하자.

Replication Controller

Replication Controller는  Pod를 관리해주는 역할을 하는데, 지정된 숫자로 Pod를 기동 시키고, 관리하는 역할을 한다.

Replication Controller (이하 RC)는 크게 3가지 파트로 구성되는데, Replica의 수, Pod Selector, Pod Template 3가지로 구성된다.

  • Selector : 먼저 Pod selector는 라벨을 기반으로 하여,  RC가 관리한 Pod를 가지고 오는데 사용한다.

  • Replica 수 :  RC에 의해서 관리되는 Pod의 수인데, 그 숫자만큼 Pod 의 수를 유지하도록 한다.예를 들어 replica 수가 3이면, 3개의 Pod만 띄우도록 하고, 이보다 Pod가 모자르면 새로운 Pod를 띄우고, 이보다 숫자가 많으면 남는 Pod를 삭제한다.

  • Pod를 추가로 기동할 때 그러면 어떻게 Pod를 만들지 Pod에 대한 정보 (도커 이미지, 포트,라벨등)에 대한 정보가 필요한데, 이는 Pod template이라는 부분에 정의 한다.




주의할점은 이미 돌고 있는 Pod가 있는 상태에서 RC 리소스를 생성하면 그 Pod의 라벨이 RC의 라벨과 일치하면 새롭게 생성된 RC의 컨트롤을 받는다. 만약 해당 Pod들이 RC에서 정의한 replica 수 보다 많으면, replica 수에 맞게 추가분의 pod를 삭제하고, 모자르면 template에 정의된 Pod 정보에 따라서 새로운 Pod를 생성하는데, 기존에 생성되어 있는 Pod가 template에 정의된 스펙과 다를지라도 그 Pod를 삭제하지 않는다. 예를 들어 기존에 아파치 웹서버로 기동중인 Pod가 있고, RC의 template은 nginx로 Pod를 실행하게 되어 있다하더라도 기존에 돌고 있는 아파치 웹서버 기반의 Pod를 삭제하지 않는다.


아래 예를 보자.


이 예제는 ngnix라는 이름의 RC를 정의한 것으로, label이 “app:ngnix”인 Pod들을 관리하고 3개의 Pod가 항상 운영되도록 설정한다.

Pod는 app:ngix 라는 라벨을 가지면서 이름이 ngnix이고 nginx 이미지를 사용해서 생성하고 컨테이너의 포트는 80 번 포트를 이용해서 서비스를 제공한다.

ReplicaSet

ReplicaSet은 Replication Controller 의 새버전으로 생각하면 된다.

큰 차이는 없고 Replication Controller 는 Equality 기반 Selector를 이용하는데 반해, Replica Set은 Set 기반의 Selector를 이용한다.

Deployment

Deployment (이하 디플로이먼트) Replication controller와 Replica Set의 좀더 상위 추상화 개념이다. 실제 운영에서는 ReplicaSet 이나 Replication Controller를 바로 사용하는 것보다, 좀 더 추상화된 Deployment를 사용하게 된다.

쿠버네티스 배포에 대한 이해

쿠버네티스의 Deployment 리소스를 이해하기 위해서는 쿠버네티스에서 Deployment 없이 어떻게 배포를 하는지에 대해서 이해를 하면 Deployment 를 이해할 수 있다.


다음과 같은 Pod와 RC가 있다고 하자


애플리케이션이 업데이트되서 새로운 버전으로 컨테이너를 굽고 이 컨테이너를 배포하는 시나리오에 대해서 알아보자. 여러가지 배포 전략이 있겠지만, 많이 사용하는 블루/그린 배포와 롤링 업데이트 방식 두가지 방법에 대해서 설명한다.

블루/그린 배포

블루/그린 배포 방식은 블루(예전)버전으로 서비스 하고 있던 시스템을 그린(새로운)버전을 배포한 후, 트래픽을 블루에서 그린으로 한번에 돌리는 방식이다.

여러가지 방법이 있지만 가장 손쉬운 방법으로는 새로운 RC을 만들어서 새로운 템플릿으로 Pod를 생성한 후에, Pod 생성이 끝나면, 서비스를 새로운 Pod로 옮기는 방식이다.


후에, 배포가 완료되고 문제가 없으면 예전 버전의 RC 와 Pod를 지워준다.

롤링 업그레이드

롤링 업그레이드 방식은 Pod를 하나씩 업그레이드 해가는 방식이다.

이렇게 배포를 하려면 먼저 새로운 RC를 만든후에, 기존 RC에서 replica 수를 하나 줄이고, 새로운 RC에는 replica 수를 하나만 준다.


라벨을 같은 이름으로 해주면 서비스는 자연히 새로운 RC에 의해 생성된 Pod를 서비스에 포함 시킨다.

다음으로 기존 RC의 replica를 하나 더 줄이고, 새로운 RC의  replica를 하나 더 늘린다.


그러면 기존 버전의 Pod가 하나더 서비스에서 빠지게 되고 새로운 버전의 Pod가 서비스에 추가된다.

마찬가지 작업을 반복하게 되면, 아래 그림과 같이 예전 버전의 Pod가 모두 빠지고 새 버전의 Pod만 서비스 되게 된다.


만약에 배포가 잘못되었을 경우에는 기존 RC의 replica 수를 원래대로 올리고, 새버전의 replicat 수를 0으로 만들어서 예전 버전의 Pod로 롤백이 가능하다.

이 과정은 kubectl rolling-update라는 명령으로 RC 단위로 컨트롤이 가능하지만, 그래도 여전히 작업이 필요하고, 배포 과정을 모니터링 해야 한다. 그리고 가장 문제는 kubectl rolling-update 명령은 클라이언트에서 실행 하는 명령으로, 명령어 실행중에 클라이언트의 연결이 끊어 지면 배포작업이 비정상적으로 끊어질 수 있는 문제가 있다.

그리고 마지막으로, 롤백과정 역시 수동 컨트롤이 필요할 수 있다.

그래서 이러한 과정을 자동화하고 추상화한 개념을 Deployment라고 보면 된다.

Deployment는 Pod 배포를 위해서 RC를 생성하고 관리하는 역할을 하며, 특히 롤백을 위한 기존 버전의 RC 관리등 여러가지 기능을 포괄적으로 포함하고 있다.



Deployment 에 대해서는 뒤에 다른 글에서 조금 더 자세하게 설명하도록 한다.


이글에서는 쿠버네티스를 이루는 기본적인 오브젝트와 이를 생성 제어하기 위한 기본적인 컨트롤러에 대해서 알아보았다.

다음 글에서는 조금 더 발전된 형태의 컨트롤러에 대해서 알아보기로 한다.







Kubernetes #1 - 소개

조대협 (http://bcho.tistory.com)

배경

도커와 쿠버네티스를 알게 된건 수년전인데, 근래에 들어서 다시 쿠버네티스를 보기 시작하였다.

컨테이너 기반의 환경은 배포에 장점이 있고 마이크로 서비스 아키텍쳐 구조에 잘 맞아들어가는 듯 싶지만, 컨테이너가 약간 빠르다는 장점은 있지만, 가상 머신으로도 충분히 패키징이 가능하고, 로컬의 개발환경을 동기화 시키는 장점은 vagrant 로도 충분하다는 생각을 가지고 있었다.


그리고 결정적으로 도커 컨테이너를 운용하기 위한 컨테이너 관리 환경이 그다지 성숙하지 못했었다. Mesosphere, Swarm, Kubernetes 등 다양한 환경이 나오기는 하였지만 기능적으로 부족한 부분도 많았고, 딱히 어떤 플랫폼이 대세라고 정해진것도 없었다.


마이크로 서비스 아키텍쳐 발전

그러나 근래에 들어서 재미있어지는 현상이 마이크로 서비스 아키텍쳐가 단순 개념에서 부터 점점 더 발전하기 시작하였고, 디자인 패턴과 이를 구현하기 위한 다양한 인프라 플랫폼들이 소개되기 시작하였다.

또한 서비스가 점점 작아지면서, 1~2 코어로도 운영할 수 있는 작은 서비스들이 다수 등장하게 되었고 이런 작은 서비스는 VM 환경으로 운영하기에는 낭비가 너무 심하다. (VM 이미지 크기도 너무 크고, 다양한 이미지를 VM으로 관리 배포하기에는 배포 속도등 다양한 문제가 발생한다.)


솔루션의 발전

배포 방식도 예전에 서버에 계속해서 애플리케이션 코드만 업데이트 하는 방식이 아니라, VM이나 컨테이너 단위로 배포하는 피닉스 서버 패턴과 이를 구현하기 위한 Spinnaker  와 같은 솔루션이 나오고 있고, 지능형 라우팅과 분산 트렌젝션 로그 추적을 하는 기능들이 Envoy 라는 솔루션으로 나오고 이를 중앙 통제하기 위한 Istio.io 와 같은 서비스 메쉬 솔루션 까지 나오기에 이르렀다.


데브옵스 모델의 성숙화

데브옵스 모델도 나온지는 오래되었지만, 운영을 데브옵스라는 이름으로 바꾼 것일뿐 실제적인 변화가 없는 팀들이 많았고, 또는 데브옵스라는 이름아래에서 개발팀이 개발과/운영 역할을 병행해서 하는 사례가 오히려 많았다.

이런 데브옵스의 개념도 근래에 들어서 정리가 되어가고 있는데, 개발팀이 개발과 시스템에 대한 배포/운영을 담당한다면, 데브옵스팀은 개발팀이 이를 쉽게할 수 있는 아랫단의 플랫폼과 자동화를 하는데 목표를 두는 역할로 역할이 명확해지고 있다.


이러한 배경에서 슬슬 컨테이너 기반의 환경이 실질적으로 적용될만하다는 것으로 판단하였고, 다시 컨테이너 환경에 대해서 살펴보기 시작하였다.

왜 하필이면 쿠버네티스인가?

그렇다면 Swarm,Mesosphere 가 아니라 왜 하필이면 쿠버네티스인가? 컨테이너 운용 환경은 여러 오픈소스에 의해서 표준이 없이 혼돈이었다가 작년말을 기점으로 해서 쿠버네티스가 de-facto 표준으로 되어가는 형국이다. 아래 트랜드 그래프에서 보면 알 수 있듯이 쿠버네티스의 트랜드가 지속적으로 올라가서 가장 높은 것을 확인할 수 있다.



또한 주요 클라우드 벤더인 아마존,구글,애저 모두 컨테이너 관리 환경을 쿠버네티스를 지원하는 정책으로 변화된것은 물론이고 IBM이나 시스코와 같은 온프렘(on-premise) 솔루션 업체들도 경쟁적으로 쿠버네티스를 지원하고 있다.

컨테이너 운영환경이 무엇인데?

컨테이너 (도커)에 필요성과 마이크로 서비스의 관계등에 대해서는 워낙 소개된 글들이 많아서 생략한다. 그렇다면 쿠버네티스가 제공하는 컨테이너 운영환경이란 무엇인가? 이를 이해하기 위해서는 먼저 컨테이너에 대해서 이해할 필요가 있는데, 컨테이너의 가장 대표적인 예로는 도커가 있다. 도커에 대한 자세한 설명은 링크를 참고하기 바란다.


그러면 단순하게 도커 컨테이너를 하드웨어나 VM에 배포하면 사용하면 되지 왜 컨테이너 운영환경이 필요한가?


작은 수의 컨테이너라면 수동으로 VM이나 하드웨어에 직접 배포하면 되지만, VM이나 하드웨어의 수가 많아지고 컨테이너의 수가 많아지면, 이 컨테이너를 어디에 배포해야 하는지에 대한 결정이 필요하다.

16 CPU, 32 GB 메모리 머신들에 컨테이너를 배포할때 컨테이너 사이즈가 2 CPU, 3 CPU, 8 CPU등 다양할 수 있기 때문에, 자원을 최대한 최적으로 사용하기 위해서 적절한 위치에 배포해야 하고, 애플리케이션 특성들에 따라서, 같은 물리 서버에 배포가 되어야 하거나 또는 가용성을 위해서 일부러 다른 물리서버에 배포되어야 하는 일이 있다. 이렇게 컨테이너를 적절한 서버에 배포해주는 역할을 스케쥴링이라고 한다.


이러한 스케쥴링 뿐만이 아니라 컨테이너가 정상적으로 작동하고 있는지 체크하고 문제가 있으면 재 기동등을 해주고, 모니터링, 삭제관리등 컨테이너에 대한 종합적인 관리를 해주는 환경이 필요한데, 이를 컨테이너 운영환경이라고 한다.

쿠버네티스란?

이런 컨테이너 운영환경중 가장 널리 사용되는 솔루션이 쿠버네티스 (Kubernetes, 약어로 k8s)라고 한다.

구글은 내부 서비스를 클라우드 환경에서 운영하고 있으며, 일찌감치 컨테이너 환경을 사용해왔다. 구글의 내부 컨테이너 서비스를 Borg라고 하는데, 이 구조를 오픈소스화한것이 쿠버네티스이다.

GO 언어로 구현이되었으며, 특히 재미있는 것은 벤더나 플랫폼에 종속되지 않기 때문에, 대부분의 퍼블릭 클라우드 (구글,아마존,애저)등에 사용이 가능하고 오픈 스택과 같은 프라이빗 클라우드 구축 환경이나 또는 베어메탈 (가상화 환경을 사용하지 않는 일반 서버 하드웨어)에도 배포가 가능하다.

이런 이유 때문에 여러 퍼블릭 클라우드를 섞어서 사용하는 환경이나 온프렘/퍼블릭 클라우드를 혼용해서 쓰는 환경에도 동일하게 적용이 가능하기 때문에 하이브리드 클라우드 솔루션으로 많이 각광 받고 있다.


흔히들 컨테이너를 이야기 하면 도커를 떠올리기 쉬운데, 도커가 물론 컨테이너 엔진의 대표격이기는 하지만 이 이외도 rkt나 Hyper container(https://hypercontainer.io/) 등 다양한 컨테이너 엔진들이 있으며, 쿠버네티스는 이런 다양한 컨테이너 엔진을 지원한다.

컨테이너 환경을 왜 VM에 올리는가?

온프렘 환경(데이타센터)에서 쿠버네티스를 올릴때 궁금했던점 중의 하나가, 바로 베어메탈 머신위에 쿠버네티스를 깔면 되는데, 보통 배포 구조는 VM(가상화 환경)을 올린 후에, 그 위에 쿠버네티스를 배포하는 구조를 갖는다. 왜 이렇게 할까 한동안 고민을 한적이 있었는데, 나름데로 내린 결론은 하드웨어 자원 활용의 효율성이다. 컨테이너 환경은 말그대로 하드웨어 자원을 컨테이너화하여 isolation 하는 기능이 주다. 그에 반해 가상화 환경은 isolation 기능도 가지고 있지만, 가상화를 통해서 자원 , 특히 CPU의 수를 늘릴 수 있다.


예를 들어 설명하면, 8 CPU 머신을 쿠버네티스로 관리 운영하면, 8 CPU로밖에 사용할 수 없지만, 가상화 환경을 중간에 끼면, 8 CPU를 가상화 해서 2배일 경우 16 CPU로, 8배일 경우 64 CPU로 가상화 하여 좀 더 자원을 잘게 나눠서 사용이 가능하기 때문이 아닌가 하는 결론을 내렸다.

이 이외에도 스토리지 자원의 활용 용이성이나 노드 확장등을 유연하게 할 수 있는 장점이 있다고 한다.


다음 글에서는 쿠버네티스를 구성하는 컴포넌트들의 구성과 개념에 대해서 설명하도록 한다.




도커는 컨테이너로 기동하기 때문에 네트워크를 통해서 도커의 IP를 접근하거나 또는 도커에서 호스트의 IP를 접근하기위해서는 별도의 설정이 필요하다.


시간을 많이 소요한 부분이 MAC 환경이 다름을 인지 못했기 때문인데, 도커에는 네트워크 모드중에 host 모드(docker run --net="host" )로 설정하고 기동하면 된다.라는 것이 있다. 이 경우 도커의 네트워킹이 host 머신의 네트워크를 그대로 사용하기 때문에, host의 ip와 port가 그대로 도커와 연결이 되지만, 이 host 모드는 MAC에서는 작동을 하지 않는다. 


MAC의 경우에는 이 Host 모드가 동작하지 않는다.

다음과 같은 시나리오가 있다고 보자


 -->0.0.0.0:8087 (docker) --> 0.0.0.0:8081 (host)


호스트 머신에서 도커가 돌고 있을때, 이 도커가 8087로 Listen을 하고, 도커에서 호스트 머신의 8081 포트를 억세스 하고자 할때, 도커로 들어오는 8087 트래픽을 받기 위해서는 docker run -p 8087:8087 식으로 정의해서, 도커의 8087 포트와 호스트 머신의 8087 포트를 맵핑해줘야 한다.


도커에서 호스트를 호출할때는 MAC의 경우에는 host.docker.internal 주소로 호출하면 된다. https://docs.docker.com/docker-for-mac/networking/#use-cases-and-workarounds



Docker Kubernetes의 UI

클라우드 컴퓨팅 & NoSQL/google cloud | 2016.11.26 23:38 | Posted by 조대협

Docker Kubernetes UI


조대협 (http://bcho.tistory.com)


오늘 도커 밋업에서 Kubernetes 발표가 있어서, 발표전에 데모를 준비하다 보니, 구글 클라우드의 Kubernetes 서비스인 GKE (Google Container Engine)에서 Kubernetes UI를 지원하는 것을 확인했다.


Google Container Service (GKE)


GKE는 구글 클라우드의 도커 클라우드 서비스이다. 도커 컨테이너를 관리해주는 서비스로는 Apache mesos, Docker Swarm 그리고 구글의 Kuberenetes 가 있는데, GKE는 이 Kuberentes 기반의 클라우드 컨테이너 서비스이다.


대부분의 이런 컨테이너 관리 서비스는 아직 개발중으로 운영에 적용하기에는 많은 부가적인 기능이 필요한데, 사용자 계정 인증이나, 로깅등이 필요하기 때문에, 운영환경에 적용하기는 아직 쉽지 않은데, GKE 서비스는 운영 환경에서 도커 서비스를 할 수 있도록 충분한 완성도를 제공한다. 이미 Pocketmon go 서비스도 이미 GKE를 사용하고 있다.


Kubernetes UI


예전에 Kubernetes를 테스트할 때 단점은 아직 모든 관리와 모니터링을 대부분 CLI로 해야 하기 때문에 사용성이 떨어지는데, 이번 GKE에서는 웹 UI 콘솔을 제공한다.


구글 GKE 콘솔에서 Kuberentes 클러스터를 선택하며 우측에 Connect 버튼이 나오는데, 


이 버튼을 누르면, Kubernetes 웹 UI를 띄울 수 있는 명령어가 출력된다.

아래와 같이 나온 명령어를 커맨드 창에서 실행시키고 htt://localhost:8001/ui 에 접속하면 Kubernetes 웹 콘솔을 볼 수 있다. 


Kubernetes 의 웹콘솔은 다음과 같은 모양이다.



Kubernetes의 주요 컴포넌트인 Pods, Service, Replication Controller , Nodes 등의 상태 모니터링은 물론이고, 배포 역시 이 웹 콘솔에서 가능하다.


예를 들어  gcr.io/terrycho-sandbox/hello-node:v1 컨테이너 이미지를 가지고, Pod 를 생성하고, Service를 정의해서 배포를 하려면 다음과 같은 명령을 이용해야 한다.


1. hello-node 라는 pod를 생성한다. 

% kubectl run hello-node --image=gcr.io/terrycho-sandbox/hello-node:v1 --port=8080


2. 생성된 pod를 service를 정의해서 expose 한다.

kubectl expose deployment hello-node --type="LoadBalancer"


이런 설정들을 CLI로 하면 익숙해지면 쉽지만 익숙해지기전까지는 번거로운데,

아래 그림과 같이, 간단하게 웹 UI에서 Pod와 서비스들을 한번에 정의할 수 있다.





배포가 완료된 후에는 각 Pod의 상황이나, Pod를 호스팅하고 있는 Nodes 들의 상황등 다양한 정보를 매우 쉽게 모니터링이 가능하다. (cf. CLI를 이용할 경우 CLI 명령어를 잘 알아야 가능하다.)


GKE에 대한 튜토리얼은 https://cloud.google.com/container-engine/docs/tutorials  에 있는데,

추천하는 튜토리얼은

가장 간단한 튜토리얼 node.js 웹앱을 배포하는  http://kubernetes.io/docs/hellonode/

와 WordPress와 MySQL을 배포하는 https://cloud.google.com/container-engine/docs/tutorials/persistent-disk/

을 추천한다.


도커가 아직까지 운영 환경에 사례가 국내에 많지 않고, GKE도 GUI 가 없어서 그다지 지켜보지 않았는데, 다시 파볼만한 정도의 완성도가 된듯.


참고로 테스트를 해보니 VM을 3개 만들어놓고 컨테이너를 7개인가 배포했는데, VM은 3개로 유지된다. 즉 하나의 VM에 여러개의 컨테이너가 배포되는 형태인데, 작은 서비스들이 많은 경우에는 자원 사용 효율이 좋을듯. 이런 관점에서 봤는때는 VM 기반의 서비스보다 컨테이너 서비스를 쓰는 장점이 확실히 보이는듯 하다




Vagrant를 이용한 개발환경 관리(간단한 VM관리)

ALM | 2013.10.24 00:48 | Posted by 조대협

Vagrant

시작하기

Vagrant는 한마디로 이야기 하면, “간소화된, VM 관리 서비스이다”. 이미 Virtual Machine 환경은 보편화 되서 사용되고 있고, VMWare Oracle Virtual Box등을 이용하면 PC에서도 손쉽게 VM 환경을 구축할 수 있다. 그러나 문제점은, Virtual Box와 같은 Hypervisor가 있다고 해도, VM을 생성하는 것 자체가 번거로운 작업이라는 것이다.

 Hypervisor에서 논리적인 가상 하드웨어 머신을 생성하고 가상머신에 OS를 설치하고, 일일이 설정을 해줘야 한다. 이런 반복적인 작업을 조금더 손쉽게 자동화 할 수 없을까? 하는 아이디어에서 시작한 것이 Vagrant이다.

먼저 이해를 돕기 위해서 예제를 실행해보자.

Vagrant VM 관리도구 이기 때문에, 먼저 Hypervisor 부터 인스톨을 해야 한다.

https://www.virtualbox.org/ 에서 Virtual Box를 다운로드 받아서 설치하자.

다음으로 http://www.vagrantup.com/ 에서 vagrant를 받아서 인스톨한다. 이제 준비가 끝났다.

아래와 같이 vagrant init precise32 http://files.vagrantup.com/precise32.box 를 실행하면, Ubuntu Linux VM의 실행하기 위한 설정들을 자동으로 가지고 온다. 그리고 vagrant up 명령어를 실행하면 해당 설정에 따른 VM 을 자동으로 다운받아서 설치하고 Virtual Box를 통해서 해당 VM을 기동 시킨다. Putty를 이용하여 SSH localhost:2222 번으로 접속 (id:vagrant, passwd:vagrant)를 입력하면, 생성된 VM에 로그인할 수 있다. 또는 간단하게 “vagrant ssh”라고 실행하면, 현재 생성된 VM에 자동으로 SSH로 연결된다.



Vagrant 없이 Virtual Box에서 직접 Ubuntu VM을 설치하려면 VM을 만들고, Ubuntu OS를 설치해야 한다. 그러나 Vagrant가 있으면 이렇게 간단하게 두줄의 명령어로 VM을 만들고 실행시킬 수 있다.

Box 개념 이해하기

앞에서 vagrant init 명령을 실행할때, preceise32.box라는 파일을 지정하였다. box 파일은 VM을 만들기 위한 기본 OS 이미지를 포함한 VM 설정(CPU,메모리 사이즈등)에 대한 기본 템플릿이다. (사이즈가 보통 수백 메가가 나간다.)

http://www.vagrantbox.es/ 에 보면 공개된 box 파일들이 있다. Ubuntu, Debian 등 다양한 Linux OS 버전의 VM 들에 대한 box 파일들이 있다.

Vagrant file

Vagrant init을 하면, 해당 디렉토리에 “Vagrantfile” 이라는 이름으로 생성되는 파일인데, Box VM 생성을 위한 기본 템플릿이라면, Vagrant file은 생성될 VM에 대한 세부 설정을 정의한다. VM을 생성할때, 어떤 box 파일을 사용할 것인지, VM에 대한 하드웨어 설정 예를 들어 CPU,메모리 사이즈,네트워크, 네트워크 포트포워딩 설정등을 여기서 재정의 할 수 있다.

아래는 Oracle Virtual Box실행시 preceise32 box 이미지를

http://files.vagrantup.com/precise32.box 에서 읽어와서, CPU 2, 512M를 가진 “Terry_vargrant0”이라는 VM을 생성하는 Vagrantfile이다. 아래와 같이 파일을 생성한후에, vagrant up 명령을 수행시키면 설정한 정보 대로 VM이 생성된다.

VAGRANTFILE_API_VERSION = "2"

 

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

  config.vm.box = "precise32"

  config.vm.box_url = "http://files.vagrantup.com/precise32.box"

  # config.vm.network :forwarded_port, guest: 80, host: 8080

  # config.vm.network :private_network, ip: "192.168.33.10"

  # config.vm.network :public_network

  # config.ssh.forward_agent = true

  config.vm.provider "virtualbox" do |vm|

        vm.customize [

               "modifyvm",:id,

               "--memory","512",

               "--name","Terry_vagrant0",

               "--cpus","2",

                       ]

  end

end

 

Vagrant + Provisioning

Vagrant를 이용하면, VM을 쉽게 만들 수 있다. 그런데 개발환경을 구축하자면, OS가 인스톨된 VM 뿐만 아니라, 그위에 웹서버,DB등 미들웨어들을 설치해야 하고, 그리고 거기에 맞는 Configuration을 해야 한다. 물론 미리 VM 이미지에 웹서버등을 설치해놓고, 필요에 따라서 vagrant를 이용해서 해당 VM들을 설치해서 사용해야 하지만 그 경우에는 설정마다 매번 다른 VM이미지를 만들어놔야 하기 때문에 번거롭다. 만약에 OS 만 설치된 VM에다가, 설정에 따라서 소프트웨어와 설정을 하는 부분을 분리한다면?

이런 접근을 지원하는 기능이 Vagrant provisioning이라는 기능이 있다. VM을 기동한 후에, vagrantfile에 정의된 provisioning script를 수행해준다. 다음 예제를 보자. 다음 예제는 VM이 기동된 후에, apt-get 명령을 이용해서 apache2 (웹서버)를 자동으로 설치하는 설정이다.

VAGRANTFILE_API_VERSION = "2"

 

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

  config.vm.box = "precise32"

  config.vm.box_url = "http://files.vagrantup.com/precise32.box"

config.vm.provision :shell, :inline => "sudo apt-get install -y apache2"

 

end

위의 예제는 VM이 기동될때 마다 shell 명령어를 수행하도록 한것인데, 명령어말고도 shell스크립트를 수행하게 할 수 도 있고, puppet이나 chef와 같은 configuration management 도구를 이용해서, 제품을 설치하게 할 수 도 있다.

한 가지 주의할점은 Vagrantfile provision 부분에 정의된 명령어는 vagrant up, reload, provision 3개의 명령어가 실행될때 마다 매번 실행된다. up에서도 매번 실행되기 때문에, 스크립트내에, 해당 소프트웨어가 미리 설치되었는지 확인한 후에, 설치가 안되어 있을 경우에만 설치하도록 스크립트를 짜는 것이 좋다.

Provisioning에 대한 자세한 방법은 http://docs.vagrantup.com/v2/provisioning/index.html 를 참고하면 된다.

Vagrant를 이용한 개발 환경 구축

그러면 Vagrant를 이용해서 개발환경을 어떻게 구축할 수 있는지 살펴보도록 하자



크게 그림과 같이 2개의 repository가 필요하다. Box image repository에는 기본 이미지가 인스톨된 box image들을 저장해놓는다.

그리고 svn이나 git와 같은 VCS 툴에 vagrantfile을 저장해놓는다. (아니면 간단하게 웹서버에 저장해놔도 된다.) Vagrantfile에는 box 파일들을 저장해놓은 repository pointing 하도록 하고, 필요에 따라서

1.  Ubuntu + Apache

2.  Ubuntu + MySQL

3.  Ubuntu + Tomcat

와 같이 다양한 설정을 만들어 놓고, 필요에 따라서 Vagrantfile이 받은 후에, 간단하게 “vagrant up” 명령어만 수행하면 간단하게 개발환경에 필요한 VM을 만들어낼 수 있다.

지금까지 간략하게 Vagrant에 개념과 사용법에 대해서 알아보았다.Vagrant는 그외에도, Vagrant는 단일 VM 뿐만 아니라 multi vm을 단일 vagrantfile에서 설정이 가능하고, Oracle Virtual Box뿐만 아니라,VMWare Amazon EC2 클라우드 까지 지원한다. 간단하게는 개발환경에서 부터,응용하면, QA,스테이징,운영환경 배포용으로도 활용할 수 있다.

자세한 내용들은 http://docs.vagrantup.com/ 를 참고하기 바란다

Docker란 무엇인가?

개념 잡기

Docker Linux 기반의 Container RunTime 오픈소스이다. 처음 개념을 잡기가 조금 어려운데, Virtual Machine과 상당히 유사한 기능을 가지면서, Virtual Machine보다 훨씬 가벼운 형태로 배포가 가능하다. 정확한 이해를 돕기 위해서, VM Docker Container의 차이를 살펴보자.

아래는 VM 에 대한 컨셉이다. Host OS가 깔리고, 그 위에 Hypervisor (VMWare,KVM,Xen etc)가 깔린 후에, 그위에, Virtual Machine이 만들어진다. Virtual Machine은 일종의 x86 하드웨어를 가상화 한 것이라고 보면된다. 그래서 VM위에 다양한 종류의 Linux, Windows등의 OS를 설치할 수 있다.



DockerContainer 컨셉은 비슷하지만 약간 다르다. Docker VM 처럼 Docker Engine Host위에서 수행된다. 그리고, Container Linux 기반의 OS만 수행이 가능하다.

Docker VM처럼 Hardware를 가상화 해주는 것이 아니라, Guest OS (Container) Isolation해준다.무슨 말인가 하면, Container OS는 기본적으로 Linux OS만 지원하는데, Container 자체에는 Kernel등의 OS 이미지가 들어가 있지 않다. Kernel Host OS를 그대로 사용하되, Host OS Container OS의 다른 부분만 Container 내에 같이 Packing된다. 예를 들어 Host OS Ubuntu version X이고, Container OS CentOS version Y라고 했을때, Container에는 CentOS version Y full image가 들어가 있는 것이 아니라, Ubuntu version X CentOS version Y의 차이가 되는 부분만 패키징이 된다. Container 내에서 명령어를 수행하면 실제로는 Host OS에서 그 명령어가 수행된다. Host OS Process 공간을 공유한다.



실제로 Container에서 App을 수행하고 ps –ef 를 이용하여 process를 보면, “lxc”라는 이름으로 해당 App이 수행됨을 확인할 수 있다. 아래는 docker를 이용해서 container에서 bash 를 수행했을때는 ps 정보이다. lxc 프로세스로 bash 명령어가 수행되었음을 확인할 수 있다.

root      4641   954  0 15:07 pts/1    00:00:00 lxc-start -n 161c56b9284ffbad0477bd04875c4277be976e2032f3ffa35395950ea05f9bd6 -f /var/lib/docker/containers/161c56b9284ffbad0477bd04875c4277be976e2032f3ffa35395950ea05f9bd6/config.lxc -- /.dockerinit -g 172.17.42.1 -e TERM=xterm -e HOME=/ -e PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin -e container=lxc -e HOSTNAME=161c56b9284f -- /bin/bash

LXC (LinuX Container), 자세한 정보는 http://linuxcontainers.org/ 에서 얻을 수 있다.

lxc container를 실행시켜주는 runtime으로, 앞에서 설명한것과 같이 VM과 비슷한 기능을 제공하지만, 실제 수행에 있어서, guest os (container)를 마치 VM처럼 isolate해서 수행해주는 기능을 제공한다.

이와 같이 Docker LXC라는 Linux에 특화된 feature를 사용하기 때문에, 제약 사항을 가지고 있는데, 현재까지 Docker Ubuntu 12.04 이상(Host OS)에서만 사용이 가능하다.

Performance에 대해서는 당연히 Host OS에서 직접 application 을 돌리는 것보다 performance 감소가 있는데, 아래 표와 같이 performance 감소가 매우 적은 것을 볼 수 있다.



출처: http://www.slideshare.net/modestjude/dockerat-deview-2013

Repository 연계

다음으로 Docker의 특징중의 하나는 repository 연계이다.Container Image를 중앙의 Repository에 저장했다가, 다른 환경에서 가져다가 사용할 수 있다. 마치 git와 같은 VCS (Version Control System)과 같은 개념인데, 이를 통해서 Application들을 Container로 패키징해서 다른 환경으로 쉽게 옮길 수 있다는 이야기다.



예를 들어 local pc에서 mysql, apache, tomcat등을 각 컨테이너에 넣어서 개발을 한 후에, 테스트 환경등으로 옮길때, Container repository에 저장했다가 테스트환경에서 pulling(당겨서) 똑같은 테스트환경을 꾸밀 수 있다는 것이다. Container에는 모든 application과 설치 파일, 환경 설정 정보 등이 들어 있기 때문에, 손쉽게 패키징 및 설치가 가능하다는 장점을 가지고 있다.

여기서 고려해야할점은 Docker는 아쉽게도 아직까지 개발중이고, 정식 릴리즈 버전이 아니다. 그래서, 아직까지는 production(운영환경)에 배포를 권장하고 있지 않다. 단 개발환경에서는 모든 개발자가 동일한 개발환경을 사용할 수 있게 할 수 있고, 또한 VM 보다 가볍기 때문에, 개발환경을 세팅하는데 적절하다고 볼 수 있다.

Base Image vs Dockerfile

Docker Container Image packing하기 위해서, Docker Base Image Docker file이라는 두가지 컨셉을 이용한다. 쉽게 설명하면, Base Image는 기본적인 인스톨 이미지, Docker file은 기본적인 인스톨 이미지와 그 위에 추가로 설치되는 스크립트를 정의한다.

예를 들어 Base Image Ubuntu OS 이미지라면, Docker FileUbuntu OS + Apache, MySQL을 인스톨하는 스크립트라고 보면 된다. 일반적으로 Docker Base Image는 기본 OS 인스톨 이미지라고 보면 된다. 만약에 직접 Base Image를 만들고 싶으면  http://docs.docker.io/en/latest/use/baseimages/ 를 참고하면 된다. docker에서는 미리 prebuilt in image들을 제공하는데, https://index.docker.io/ 를 보면 public repository를 통해서 제공되는 이미지들을 확인할 수 있다. 아직까지는 Ubuntu 많이 공식적으로 제공되고, 일반 contributor들이 배포한 centos 등의 이미지들을 검색할 수 있다. (2013.10.22 현재 redhat 등의 이미지는 없다.)

아래는 docker file 샘플이다. (출처 : http://docs.docker.io/en/latest/use/builder/)

# Nginx

#

# VERSION               0.0.1

 

FROM      ubuntu

MAINTAINER Guillaume J. Charmes <guillaume@dotcloud.com>

 

# make sure the package repository is up to date

RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list

RUN apt-get update

 

RUN apt-get install -y inotify-tools nginx apache2 openssh-server

위의 이미지는 Ubuntu OS 베이스 이미지에 apt-get을 이용해서, inotify-tools nginx apache2 openssh-serverf 를 인스톨하는 스크립트이다.

Docker 실행해보기

그럼 간단하게 docker를 테스트해보자, 윈도우즈 환경을 가정한다. 앞서 말한바와 같이 Docker Unbuntu 위에서만 작동한다. (참고 : http://docs.docker.io/en/latest/installation/windows/)

그래서, 윈도우즈 위에서 Ubuntu VM을 설치한후, Ubuntu VM에서 Docker를 실행할 것이다. 이를 위해서 VM을 수행하기 위한 환경을 설치한다.

l  Hypervisor Virtual Box를 설치한다. https://www.virtualbox.org 

l  VM을 실행하기 위한 vagrant를 설치한다. http://www.vagrantup.com 

l  Docker 코드를 다운받기 위해서 git 클라이언트를 설치한다. http://git-scm.com/downloads 

여기까지 설치했으면, docker를 실행하기 위한 준비가 되었다.

다음 명령어를 수행해서, docker 코드를 git hub에서 다운로드 받은 후에, vagrant를 이용해서 Ubuntu host os를 구동한다.

git clone https://github.com/dotcloud/docker.git

cd docker

vagrant up

Virtual Box를 확인해보면, Docker Host OS가 될 Ubuntu OS가 기동되었음을 확인할 수 있다.



그러면, 기동된 Ubuntu OS SSH를 이용해서 log in을 해보자. Putty를 이용해서 127.0.0.1:2222 포트로, SSH를 통해서 로그인한다. (기본 id,passwd vagrant/vagrant 이다.)

이제 Docker를 이용해서, public repository에서 “busybox”라는 Ubuntu OS Container로 설치하고, Container에서 “echo hello world” 명령어를 수행해보자

sudo su

docker run busybox echo hello world

Docker public repository에서 busybox image를 다운로드 받아서 설치하고, 아래와 같이 명령어를 수행했음을 확인할 수 있다.



※ 참고 : 현재 docker에 설치된 이미지 리스트 docker images, 설치된 이미지를 삭제할려면 docker rmi {image id}. {image id} docker images에서 hexa로 나온 id를 사용하면 된다.