블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

Apache Beam (Dataflow)를 이용하여, 이미지 파일을 tfrecord로 컨버팅 하기


조대협 (http://bcho.tistory.com)



개요

텐서플로우 학습에 있어서 데이타 포맷은 학습의 성능을 결정 짓는 중요한 요인중의 하나이다. 특히 이미지 파일의 경우 이미지 목록과 이미지 파일이 분리되어 있어서 텐서플로우에서 학습시 이미지 목록을 읽으면서, 거기에 있는 이미지 파일을 매번 읽어야 하기 때문에, 코딩이 다소 지저분해지고,IO 성능이 떨어질 수 있다

텐서플로우에서는 이러한 학습 데이타를 쉽게 읽을 수 있도록 tfrecord (http://bcho.tistory.com/1190)라는 파일 포맷을 지원한다.


이 글에서는 이미지 데이타를 읽어서 tfrecord 로 컨버팅하는 방법을 설명하며, 분산 데이타 처리 프레임웍인 오픈소스 Apache Beam을 기준으로 설명하나, tfrecord 변환 부분은 Apache Beam과 의존성이 없이 사용이 가능하기 때문에, 필요한 부분만 참고해도 된다. 이 Apache Beam을 구글의 Apache Beam 런타임 (매니지드 서비스)인 구글 클라우드의 Dataflow를 이용하여, 클러스터를 이용하여 빠르게 데이타를 처리하는 방법에 대해서 알아보도록 한다.


전체 코드는 https://github.com/bwcho75/cifar-10/blob/master/pre-processing/4.%20Convert%20Pickle%20file%20to%20TFRecord%20by%20using%20Apache%20Beam.ipynb 에 있다.


이 코드는 CIFAR-10 이미지 데이타를 Apache Beam 오픈 소스를 이용하여, 텐서플로우 학습용 데이타 포맷인  tfrecord 형태로 변환 해주는 코드이다.


Apache Beam은 데이타 처리를 위한 프레임웍으로, 구글 클라우드 상에서 실행하거나 또는 개인 PC나 Spark 클러스터상 여러 환경에서 실행이 가능하며, 구글 클라우드 상에서 실행할 경우 오토스케일링이나 그래프 최적화 기능등으로 최적화된 성능을 낼 수 있다.


CIFAR-10 데이타 셋은 32x32 PNG 이미지 60,000개로 구성된 데이타 셋으로 해당 코드 실행시 최적화가 되지 않은 상태에서 약 16분 정도의 처리 시간이 소요된다. 이 중 6분 정도는 Apache Beam 코드를 구글 클라우드로 업로드 하는데 소요되는 시간이고 실제 처리시간은 10분정도가 소요된다. 전처리 과정에 Apache Beam을 사용하기 전에 고려해야 할 요소는 다음과 같다.

  • 데이타가 아주 많아서 전처리 시간이 수시간 이상 소요될 경우 Apache Beam + Google Cloud를 고려하여 여러 머신에서 동시에 처리하여 빠른 시간내에 수행되도록 할 수 있다.

  • 데이타가 그다지 많지 않고 싱글 머신에서 멀티 쓰레드로 처리를 원할 경우에는 Apache Beam으로 멀티 쓰레드 기반의 병렬 처리를 하는 방안을 고려할 수 있다. 이 경우 클라우드에 대한 의존성을 줄일 수 있다.

  • 다른 대안으로는 Spark/Hadoop 등의 오픈소스를 사용하여, On Prem에서 여러 머신을 이용하여 전처리 하는 방안을 고려할 수 있다.

여기서는 아주 많은 대량의 이미지 데이타에 대한 처리를 하는 것을 시나리오로 가정하였다.

전처리 파이프라인

Apache Beam을 이용한 데이타 전처리 파이프라인의 구조는 다음과 같다.

이미지 파일 준비

CIFAR-10 데이타셋 원본은 이미지 파일 형태가 아니라 PICKLE이라는 파일 포맷으로 되어 있기 때문에,  실제 개발 환경에서는 원본데이타가 이미지인것으로 가정하기 위해서 https://github.com/bwcho75/cifar-10/tree/master/pre-processing 의 1~2번 코드를 통해서 Pickle 파일을 이미지 파일로 변경하고, *.csv 파일에 {파일명},{레이블} 형태로 인덱스 데이타를 생성하였다.

생성된 이미지 파일과 *.csv 파일은 gsutil 명령어를 이용하여 Google Cloud Storage (aka GCS)에 업로드 하였다. 업로드 명령은 https://github.com/bwcho75/cifar-10/blob/master/pre-processing/2.%20Convert%20CIFAR-10%20Pickle%20files%20to%20image%20file.ipynb 에 설명되어 있다.


전처리 파이프라인의 구조

Apache Beam으로 구현된 파이프라인의 구조는 다음과 같다.


1. TextIO의 ReadFromText로 CSV 파일에서 한 라인 단위로 문자열을 읽는다.

2. parseLine에서 라인을 ,로 구분하여 filename과 label을 추출한다.

3. readImage 에서 filename을 가지고, 이미지 파일을 읽어서, binary array 형태로 변환한다.

4. TFExampleFromImageDoFn에서 이미지 바이너리와 label을 가지고 TFRecord 데이타형인 TFExample 형태로 변환한다.

5. 마지막으로 TFRecordIOWriter를 통해서 TFExample을 *.tfrecord 파일에 쓴다.

코드 주요 부분 설명

환경 설정 부분

이 코드는 구글 클라우드와 로컬 환경 양쪽에서 모두 실행이 가능하도록 구현되었다.

SRC_DIR_DEV는 로컬환경에서 이미지와 CSV 파일이 위치한 위치이고, DES_DIR_DEV는 로컬환경에서 tfrecord 파일이 써지는 위치이다.

구글 클라우드에서 실행할 경우 파일 저장소를  GCS (Google Cloud Storage)를 사용한다. DES_BUCKET은 GCS 버킷 이름이다. 코드 실행전에 반드시 구글 클라우드 콘솔에서 GCS 버킷을 생성하기 바란다.  SRC_DIR_PRD와 DES_DIR_PRD는 GCS 버킷내의 각각 image,csv 파일의 경로와 tfrecord 파일이 써질 경로 이다. 이 경로에 맞춰서 구글 클라우드 콘솔에서 디렉토리를 먼저 생성해 놓기를 바란다.




PROJECT는 구글 클라우드 프로젝트 명이고, 마지막으로 DEV_MODE가 True이면 로컬에서 수행이되고 False이면 구글 클라우드에서 실행하도록 하는 환경 변수이다.

의존성 설정 부분

로컬에서 실행할 경우필요한  파이썬 라이브러리가 이미 설치되어야 있어야 한다.

만약에 구글 클라우드에서 실행할 경우 이 Apache Beam 코드가 사용하는 파이썬 모듈을 명시적으로 정의해놔야 한다. 클라우드에서 실행시에는 Apache Beam 코드만 업로드가 되기 때문에(의존성 라이브러리를 같이 업로드 하는 방법도 있는데, 이는 추후에 설명한다.), 의존성 라이브는 구글 클라우드에서 Dataflow 실행시 자동으로 설치할 수 있도록 할 수 있는데, 이를 위해서는 requirements.txt 파일에 사용하는 파이썬 모듈들을 정의해줘야 한다. 다음은 requirements.txt에 의존성이 있는 파이썬 모듈등을 정의하고 저장하는 부분이다.


Apache Beam 코드

Apache Beam의 코드 부분은 크게 복잡하지 않기 때문에 주요 부분만 설명하도록 한다.

Service account 설정

Apache Beam 코드를 구글 클라우드에서 실행하기 위해서는 코드 실행에 대한 권한을 줘야 한다. 구글 클라우드에서는 사용자가 아니라 애플리케이션에 권한을 부여하는 방법이 있는데, Service account라는 것을 사용한다. Service account는 json 파일로 실행 가능한 권한을 정의하고 있다.

Service account 파일을 생성하는 방법은 http://bcho.tistory.com/1166 를 참고하기 바란다.

Service account 파일이 생성되었으면, 이 파일을 적용해야 하는데 GOOGLE_APPLICATION_CREDENTIALS 환경 변수에 Service account  파일의 경로를 정의해주면 된다. 파이썬 환경에서 환경 변수를 설정하는 방법은 os.envorin[‘환경변수명']에 환경 변수 값을 지정해주면 된다.

Jobname 설정

구글 클라우드에서 Apache Beam 코드를 실행하면, 하나의 실행이 하나의 Job으로 생성되는데, 이 Job을 구별하기 위해서 Job 마다 ID 를 설정할 수 있다. 아래는 Job ID를 ‘cifar-10’+시간 형태로 지정하는 부분이다


환경 설정

Apache Beam 코드를 구글 클라우드에서 실행하기 위해서는 몇가지 환경을 지정해줘야 한다.


  • staging_location은 클라우드 상에서 실행시 Apache Beam 코드등이 저장되는 위치이다. GCS 버킷 아래 /staging이라는 디렉토리로 지정했는데, 실행 전에 반드시 버킷아래 디렉토리를 생성하기 바란다.

  • temp_location은 기타 실행중 필요한 파일이 저장되는 위치이다. 실행 전에 반드시 버킷아래 디렉토리를 생성하기 바란다.

  • zone은 dataflow worker가 실행되는 존으로 여기서는 asia-northeast1-c  (일본 리전의 c 존)으로 지정하였다.


DEV_MODE 에 따른 환경 설정

로컬 환경이나 클라우드 환경에서 실행이냐에 따라서 환경 변수 설정이 다소 달라져야 한다.


디렉토리 경로를 바꿔서 지정해야 하고, 중요한것은 RUNNER인데, 로컬에서 실행하기 위해서는 DirectRunner를 구글 클라우드 DataFlow 서비스를 사용하기 위해서는 DataflowRunner를 사용하면 된다.


readImage 부분

Read Image는 이미지 파일을 읽어서 byte[] 로 리턴하는 부분인데, 로컬 환경이냐, 클라우드 환경이냐에 따라서 동작 방식이 다소 다르다.

클라우드 환경에서는 이미지 파일이 GCS에 저장되어 있기 때문에 파이썬의 일반 파일 open 명령등을 사용할 수 없다.

그래서 클라우드 환경에서 동작할 경우에는 GCS에서 파일을 읽어서 Worker의 로컬 디스크에 복사를 해놓고 이미지를 읽어서 byte[]로 변환한 후에, 해당 파일을 지우는 방식을 사용한다.


아래 코드에서 보면 DEV_MODE가 False 인경우 GCS에서 파일을 읽어서 로컬에 저장하는 코드가 있다.


storageClient는 GCS 클라이언트이고 bucket 을 얻어온후, bucket에서 파일을 get_blob 명령어를 이용하여 경로를 저장하여 blob.download_to_file을 이용하여 로컬 파일에 저장하였다.

실행

코드 작성이 끝났으면 실행을 한다. 실행 상태는 구글 클라우드 콘솔의 Dataflow  메뉴에서 확인이 가능하다.

아래와 같이 실행중인 그리고 실행이 끝난 Job 리스트들이 출력된다.




코드 실행중에, 파이프라인 실행 상황 디테일을 Job 을 선택하면 볼 수 있다.


여기서 주목할만한 점은 우측 그래프인데, 우측 그래프는 Worker의 수를 나타낸다. 초기에 1대로 시작했다가 오토 스케일링에 의해서 9대 까지 증가한것을 볼 수 있다.

처음 실행이었기 때문에 적정한 인스턴스수를 몰랐기 때문에 디폴트로 1로 시작하고 오토스케일링을 하도록 했지만, 어느정도 테스트를 한후에 적정 인스턴수를 알면 오토 스케일링을 기다릴 필요없이 디폴트 인스턴스 수를 알면 처음부터 그 수만큼 인스턴스 수로 시작하도록 하면 실행 시간을 줄일 수 있다.

만약에 파이프라인 실행시 에러가 나면 우측 상단에 LOGS 버튼을 누르면 상세 로그를 볼 수 있다.


아래 그림은 파이프라인 실행이 실패한 예에서 STACK TRACES를 통해서 에러 내용을 확인하는 화면이다.



해당 로그를 클릭하면 Stack Driver (구글의 모니터링 툴)의 Error Reporting 시스템 화면으로 이동하게 된다.

여기서 디테일한 로그를 볼 수 있다.

아래 화면을 보면 ReadImage 단계에서 file_path라는 변수명을 찾을 수 없어서 나는 에러를 확인할 수 있다.


TFRecord 파일 검증

파이프라인 실행이 끝나면, GCS 버킷에 tfrecord 파일이 생성된것을 확인할 수 있다.


해당 파일을 클릭하면 다운로드 받을 수 있다.

노트북 아래 코드 부분이 TFRecord를 읽어서 확인하는 부분이다. 노트북에서 tfrecord 파일의 경로를 다운로드 받은 경로로 변경하고 실행을 하면 파일이 제대로 읽히는 지 확인할 수 있다.


파일 경로 부분은 코드상에서 다음과 같다.



정상적으로 실행이 된 경우, 다음과 같이 tfrecord에서 읽은 이미지와 라벨값이 출력됨을 확인할 수 있다.


라벨 값은 Label 줄에 values 부분에 출력된다. 위의 그림에서는 순서대로 라벨 값이 4와 2가 된다.



데이타 스트리밍 분석 플랫폼 Dataflow 개념 잡기 #1/2


조대협 (http://bcho.tistory.com)


실시간 데이타 처리에서는 들어오는 데이타를 바로 읽어서 처리 하는 스트리밍 프레임웍이 대세인데, 대표적인 프레임웍으로는 Aapche Spark등을 들 수 있다. 구글의 DataFlow는 구글 내부의 스트리밍 프레임웍을 Apache Beam이라는 형태의 오픈소스로 공개하고 이를 실행하기 위한 런타임을 구글 클라우드의 DataFlow라는 이름으로 제공하고 있는 서비스이다.


스트리밍 프레임웍 중에서 Apache Spark 보다 한 단계 앞선 개념을 가지고 있는 다음 세대의 스트리밍 프레임웍으로 생각할 수 있다. Apache Flink 역시 유사한 개념을 가지면서 Apache Spark의 다음 세대로 소개 되는데, 이번글에서는 이 DataFlow에 대한 전체적인 개념과 프로그래밍 모델등에 대해서 설명하고자 한다. 스트리밍 데이타 처리에 대한 개념은 http://bcho.tistory.com/1119 글을 참고하기 바란다.

개념 소개

dataflow에 대해서 이해하기 위해서 프로그래밍 모델을 먼저 이해해야 하는데, dataflow의 프로그래밍 모델은 얼마전에 Apache에 Beam이라는 오픈 소스 프로젝트로 기증 되었다. Apache Spark이나, Apache Flink와 유사한 스트리밍 처리 프레임웍이라고 생각하면 된다. dataflow는 이 Apache beam의 프로그래밍 모델을 실행할 수 있는 런타임 엔진이라고 생각하면 된다. 예를 들어 Apache beam으로 짠 코드를 Servlet이나 Spring 코드라고 생각하면, dataflow는 이를 실행하기 위한 Tomcat,Jetty,JBoss와 같은 런타임의 개념이다.


먼저 dataflow의 개념을 이해해보도록 하자. 아래 그림은 dataflow에 대한 컨셉이다.


데이타가 들어오면, Pipeline IO에서 데이타를 읽어드린다. 읽어드린 데이타는 PCollection이라는 데이타 형으로 생성이 되고, 이 PCollection 데이타는 여러개의 중첩된 PTransform을 통해서 변환 및 가공이 된다. 가공이 끝난 결과는 마지막으로 Pipeline IO의 Output을 통해서 데이타 저장소 (빅쿼리나 파일등)에 저장이 된다.  이 Pipeline IO에서 부터 PTransform을 걸친 일련의 프로세싱 과정을 Pipeline이라고 한다.


예를 들어 설명해보자, 문자열을 입력 받은 후에, 문자열에서 단어를 추출하여, 각 단어의 개수를 세어 주는 파이프라인이 있다고 하자.


첫번째 실행에서 “Hello my daddy”라는 문자열이 입력되었다. 첫번째 Transform인 Extract words Transform을 거치면서, “Hello my daddy” 라는 문자열은 “Hello”, “my”, “daddy” 라는 각각의 단어로 쪼게진다. 다음으로 Count Element 라는 Transform에 의해서, 각 단어의 수를 세어서 저장한다. “Hello”는 1번, “my”는 1번, “daddy”는 1번 의 값이 저장된다.


두번째 실행에서 “Hello my bro” 라는 문자열이 들어오면, Extract words 에 의해서 “Hello”, “my”, “bro”라는 각각의 단어로 쪼게지고, Count Element Transform에서 이전에 세어놓은 단어의 수와 합산하여 계산이 된 결과가 저장이 된다. “Hello”는 이전에 한번 카운트가 되었고 이번에도 들어왔기 때문에, 2가 되고, 같은 원리로 “my”라는 단어의 카운트도 2가된다. “bro” 라는 단어는 이번에 처음 들어왔기 때문에 새 값으로 1로 저장된다.




세번째 “Hello my mom” 이라는 문자열이 들어오면 앞의 두개의 문자열과 마찬가지로 간 단어로 쪼게진 다음 Count Element에 의해서 각 단어의 수가 카운트되어 기존의 값과 누적 합산된다. 모든 데이타를 다 읽어서 처리가 끝나면, 저장된 결과를 Pipeline IO를 통해서 파일에 그 결과를 쓰게 된다.

배치와 스트리밍 처리

dataflow는 위에서 설명한 파이프라인의 개념을 배치와 스트리밍 처리 두가지 개념 모두로 지원해서 처리가 가능하다. 데이타가 파일과 같이 이미 쓰여지고 더 이상 증가나 수정이 되지 않은 데이타에 대해서는 일괄로 데이타를 읽어서 결과를 내는 배치 처리가 가능하고, 계속해서 들어오고 있는 데이타 (트위터 피드, 로그 데이타)는 스트리밍으로 처리가 가능하다.

윈도우의 개념

배치 처리야, 데이타 처리가 모두 끝난 후에 결과를 내보낸다고 하지만, 그렇다면 스트리밍 데이타는 계속해서 데이타가 들어오고 있는데, 언제 결과를 내보내야 할까?

개별 데이타를 변환해서 저장하는 경우에야, 개별 데이타 처리가 끝난후에 각각 하나씩 저장한다고 하지만, 위와 같이 들어오는 데이타에서 특정데이타 들에 대한 합이나 평균과 같은 처리를 하는 경우 어느 기간 단위로 해야 할까? 스트리밍 처리에서는 이러한 개념을 다루기 위해서 윈도우라는 개념을 사용한다.


예를 들어, “1시~1시10분까지 들어온 문자열에 대해서 문자열에 들어 있는 각 단어의 수를 카운트해서 출력해주는 기능" 이나, 또는 “매 5분 단위로 현재 시간에서 10분전까지 들어온 문자열에 대해서 각 단어의 수를 카운트 해서 출력 해주는 기능" 과 같이 작은 시간 기간의 단위를 가지고 그 기간 단위로 계산 하는 방법이며, 이 시간 단위를 윈도우(Window)라고 한다.


Fixed Window (고정 크기 윈도우)

앞의 예에서 1시~1시10분, 1시10분~1시20분 과 같이 고정된 크기를 가지는 윈도우의 개념을 Fixed Window라고 한다.


Sliding Window (슬라이딩 윈도우)

앞의 예에서와 같이 윈도우가 상대적인 시간 (이전 10분까지)의 개념을 가지면서, 다른 윈도우와 중첩되는 윈도우를 슬라이딩 윈도우라고 한다.


그림과 같이 1시10분의 윈도우는 1시 10분의 10분전인 1시에서 부터, 현재 시간 까지인 1시10분까지 값을 읽어서 처리하고 윈도우가 끝나는 시점인 1:10분에 그 값을 저장한다. 윈도우의 간격은 5분 단위로, 1시 15분에는 1시 15분의 10분전인 1시05분 부터 현재 시간인 1시15분까지 들어온 데이타에 대해서 처리를 하고 그 결과 값을 1시15분에 저장한다.

Session window (세션 윈도우)

다음은 세션 윈도우라는 개념을 가지고 있는데, 이를 이해하기 위해서는 먼저 세션의 개념을 먼저 이해해야 한다.

세션이랑 사용자가 한번 시스템을 사용한 후, 사용이 끝날때 까지의 기간을 정의한다. 스트리밍 시스템에서는 사용자 로그인이나 로그 아웃을 별도의 이벤트로 잡는 것이 아니기 때문에, 데이타가 들어온 후에, 일정 시간 이후에 그 사용자에 대한 데이타가 들어오지 않으면, 세션이 종료 된것으로 판단한다.

일반 적인 웹 프로그램에서 HttpSession과 같은 원리인데, 웹 사이트에 접속한 후, Session time out 시간이 지날때 까지 사용자가 별도의 request를 보내지 않으면 세션을 끊는 것과 같은 원리이다.

아래 그림은 세션 윈도우의 개념을 설명하기 위한 윈도우인데, User A와 User B의 데이타가 들어오고 있다고 하자.


그리고 세션 타임 아웃이 10분으로 정의했다. 즉 같은 사용자에 대해서 데이타가 들어온 후, 10분 내에 추가 데이타가 들어오지 않으면 세션이 종료 된것으로 판단한다.


User A는 1:00 에 첫 데이타가 들어와서1:00~1:10 사이에 두번째 데이타가 들어왔고, 1:10~1:20 사이에 세번째 데이타가 들어온 후, 네번째 데이타는 10분이 지난 후에 들어왔다. 그래서 1:00~1:20 까지가 하나의 세션이 되고, 이것이 User A에 대한 1:00~1:20의 세션 윈도우가 된다. 네번째 데이타 부터는 새로운 윈도우로 처리가 되는데, 1:40~1:50 사이에 다섯번째 데이타가 도착한후, 그 이후로 도착하지 않았기 때문에 이게 두번째 윈도우가 되고, 1:30~1:50의 시간 간격을 가지는 User A의 두번째 윈도우가 된다.

각 윈도우의 값은 User A의 1:00~1:20 윈도우의 값은 (1+1+1)로 3이 되고, 두번째 윈도우인 1:30~1:50 윈도우는 (2.5+1)로 3.5가 된다.


User B는 1:10에 데이타가 들어오고, 10분 후인 1:20까지 데이타가 들어오지 않고 그 이후 1:30 분에 두번째 데이타가 들어왔기 때문에, 1:10~1:10 길이의 첫번째 세션 윈도우가 생성된다. 다음 으로 1:30분에 데이타가 들어왔기 때문에 두번째 세션 윈도우를 생성하고, 2:00까지 계속 데이타가 들어오다가 멈추고 2:10까지 새로운 데이타가 들어오지 않았기 때문에 1:30~2:00 까지 두번째 윈도우로 취급한다.


이 Session Window는 앞서 언급한 Fixed Window나, Sliding Window와는 다르게, User A, User B와 사용자 단위와 같이 어떤 키에 따라서 개별적으로 윈도우를 처리 한다.  즉 Session Window는 User A나 USer B처럼 특정 키에 종속된 윈도우만을 갖는다.


반대로 Fixed Window나 Sliding Window는 키단위의 윈도우가 아니라 그 시간 범위내에 들어 있는 모든 키에 대한 값을 처리한다..

Fixed Window의 경우에는 30분 사이즈를 갖는 윈도우라고 하면 아래 그림과 같이


1:00~1:30 윈도우는 User A의 값 = (1+1+1) 과 User B의 값 1을 합쳐서 총 4가 되고

1:30~2:00 윈도우는 User A값 = (2.5+1)과 User B의 값 = (2+2+2) 를 합쳐서 9.5가 된다.


Sliding Window의 경우에는 길이가 30분이고, 주기가 20분인 Sliding 윈도우라고 할때,


1:00~1:30, 1:20~1:50, 1:40~2:00 3개의 Sliding 윈도우가 생성된다.

1:00~1:30 윈도우는 User A의 값=(1+1+1)과 User B의 값 1을 합산하여 4가 되고

1:20~1:50 윈도우는 User A의 값 = (2.5+1)과 User B의 값 =(2+2)를 합산하여 7.5가 된다.

1:40~2:00 윈도우는 User A의 값 = (2.5+1)과 User B의 값 (2+2)를 합산하여 7.5가 된다.




데이타 스트리밍 처리에 대한 이해


조대협 (http://bcho.tistory.com)


근래에 Apache Beam 프로젝트를 공부하게 되서, 그간 묵혀놨던 데이타 스트리밍 처리에 대해서 다시 정리중인데, 예전에 Apache Storm을 봤을때 보다 트리거나, 윈도우등 많은 개념들이 들어가 있어서 데이타 스트리밍에 대한 개념 부터 다시 정리를 시작을 하고자한다.


Apache Storm에서 부터, Apache Spark 기반의 데이타 스트림 처리뿐 아니라 근래에는 Apache Flink와 같은 새로운 스트리밍 프레임웍크과 구글이 이미 클라우드를 통해서 서비스 하고 있는  google cloud dataflow (Apache Beam이라는 프로젝트로 오픈소스화 되었고, 현재 인큐베이션 단계에 있다.) 까지 빅데이타에 대한 실시간 처리성이 강조되면서 근래에 데이타 스트리밍 처리가 다시 주목 받는 것 같다. 이 문서는 구글이 개발한 dataflow에 대한 개념을 이해하기 위함이다.


본 문서의 내용과 그림은 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101 를 참고하였다.


사전 개념 이해

스트리밍 데이타 처리를 이해하기 위해서는 몇몇 용어와 개념을 사전에 이해해야 하는 부분이 있다.

Bounded data 와 Unbounded data

먼저 스트리밍 데이타 처리를 이해하려면 데이타의 종류에 대해서 먼저 이해해야 한다.

  • Unbounded data 는 데이타의 수가 정해져있지 않고 계속해서 추가되는, 즉 끊임 없이 흘러 들어오는 데이타라고 볼 수 있다. 예를 들어서 모바일 디바이스에서 계속 올라오는 로그, 페이스북이나 트위터의 타임 피드, 증권 거래 주문 같이 계속 해서 들어와서 쌓이는 데이타를 Unbounded data 라고 한다.

  • Bounded data는 데이타가 딱 저장되고 더 이상 증거나 변경이 없는 형태로 계속 유지되는 데이타를 뜻한다. 1월의 정산 데이타.

Event time과 Processing time

데이타의 발생 시간과 시스템에서 처리되는 시간이 차이가 있는데, 이를 각각 Event time과 Processing time 이라고 정의한다.

예를 들어, 게임에서 사용자가 공격을 한 이벤트를 서버에 전달해서 처리하여 저장하는 시나리오가 있다고 가정할때, 공격 이벤트가 1:00:00에 발생했으면, 이 데이타가 네트워크를 타고 서버로 도달하여 프로그램 로직을 수행하고 저장하는데 소요된 시간을 2초라고 가정하면, Event time 은 1:00가 되고, Processing time은 1:00:02가 된다.

이상적으로는 Event time과 Processing time이 동일하면 좋겠지만, 네트워크 시간이나 처리 시간에 따라 Processing time이 Event time 보다 늦고, 또한 Processing time에서 소요되는 실제 처리 시간은 일정하지 않고 아래 그림의 파란색 그래프(실제 처리 그래프) 처럼 들쭉 날쭉하다. 네트워크 상황이나, 서버의 CPU, IO 상황이 그때마다 차이가 나기 때문이다.


아래 그림을 통해서 개념을 다시 정리해보면,

X축은 Event time, Y축은 Processing Time이다. 0초에 발생한 데이타가 서버에 도착해서 처리하는 시간이 소요 되기 때문에, 아래 그림과 같이 Processing Time은 2초 부터 시작한다. Skew는 Event time과 Processing time간의 간격이다. 아래 그림에서 보면, Processing time에서 3초때에는 Event time 1초에서 발생한 데이타를 처리하고 있는데, 실제 Event time에서는 3초 시간의 데이타가 발생하고 있기 때문에, Processing time과 Event time은 약 2초의 지연이 발생하고 있고, 이를 Skew 라고 한다.



Bounded data의 처리

Bounded data는 이미 저장되어 있는 데이타를 처리하는 것이기 때문에 별다른 처리 패턴이 필요없다



데이타를 읽어서 한번에 처리해서 저장 하면 된다.

UnBounded data 처리

복잡한 것은 스트리밍 데이타 즉, Unbounded data 를 처리하는 방법인데, Unbounded data 는 크게 Batch와 Streaming 두 가지 방식으로 처리할 수 있다.

Batch로 처리

배치로 Unbounded data를 처리 하는 방식은 아래와 같이 두 가지 방식이 있다.

Fixed Windows

Fixed Windows 방식은 스트리밍으로 들어오는 데이타를 일정 시간 단위로 모은 후, 배치로 처리 하는 방식이다. 예를 들어서 아래 그림과 같이 10~11시 까지 데이타를 수집한후, 11시 이후에, 10~11시까지 들어온 데이타를 처리해서 정리 하는 방식이다.



이 방식은 구현이 간단하다는 장점이 있지만, 데이타가 수집 된 후 처리를 시작하기 때문에, 실시간성이 떨어진다. (근 실시간)

Streaming 처리

Unbounded 데이타를 제대로 처리하려면 스트리밍 처리를 하는 것이 좋은데, 스트리밍 처리 방법에는 아래와 같이 크게 Time agnostic, Filtering, Inner Join, Windowing 방식등이 있다.


스트리밍 처리는 배치 처리에 비해서 복잡한 것이, Unbounded 데이타는 기본적으로 특성이 Skew가 환경에 따라 변화가 심하고 그래서 데이타가 시스템에 도착하는 순서 역시 순차적으로 도착하지 않고 들쭉 날쭉 하다.

Time agnostic

Time agnostic 이란, 데이타가 시간 속성을 가지고 있지 않는 데이타 이다. 들어오는 데로 처리를 하면 되기 때문에, 별다른 노하우가 필요 없지만, 하나의 데이타 형이기 때문에 간단하게 언급만 한다.

Filtering

다음으로 많이 사용 되는 것이 필터링인데, 들어오는 데이타 중 특정 데이타만 필터링 해서 저장 하는 구조이다.


예를 들면, 웹 로깅 데이타를 수집해서, 특정 IP나 국가 대역에서 들어오는 데이타만 필터링해서 저장하는 시나리오등이 될 수 있다.

Inner joins (교집합)

Inner join은 두개의 Unbounded 데이타에서 들어오는 값을 서로 비교하여 매칭 시켜서 값을 구하는 방식이다.



모바일 뉴스 앱이 있다고 가정할때, 뉴스 앱에서는 사용자가 어떤 컨텐츠를 보는지에 대한 데이타를 수집 전송하고, 지도 앱에서는 현재 사용자의 위치를 수집해서 전송한다고 하자.

이 경우 사용자별 뉴스 뷰에 대한 Unbounded data 와, 사용자별 위치에 대한 Unbounded data 가 있게 되는데, 이 두개의 데이타 스트림을 사용자로 Inner Join을 하면 사용자가 어떤 위치에서 어떤 뉴스를 보는지에 대해서 분석을 할 수 있다.

Inner join을 구현하기 위해서는 양쪽 스트림에서 데이타가 항상 같은 시간에 도착하는 것이 아니기 때문에, 반대쪽 데이타가 도착할때 까지 먼저 도착한 데이타를 임시로 저장할 버퍼 영역이 필요하고, 이 영역에 임시로 일정 기간 데이타를 저장하고 있다가 반대쪽 스트림에서 데이타가 도착 하면 이를 조인해서 결과를 저장하고, 버퍼 영역에서 두개의 데이타를 삭제한다.

만약에 반대쪽의 데이타가 도착하지 않으면, 이 버퍼 영역에 데이타가 계속 쌓이기 때문에, 일정 기간이 지나면 반대쪽 스트림에서 데이타가 도착하지 않은 데이타를 주기적으로 삭제 해주는 (garbage collection) 정책이 필요하다.


cf. Inner join (교집합), Outer join (합집합)

Approximation algorithms (근사치 추정)

근사치 추정 방식은 실시간 데이타 분석에서 많이 사용되는데, 실시간 분석에서는 전체 데이타를 모두 분석할 수 있는 시간이 없는 경우가 많고, 시급한 분석이 필요한 경우가 있기 때문에, 전체 데이타를 분석하지 않고 일부만 분석하거나 또는 대략적인 데이타의 근사값만을 구하는 방법으로 해서, 빠르게 데이타를 분석하는 경우가 있다. 이를 근사치 추정 방식이라고 하는데, 예를 들어 VOD 서비스에서 지금 10분간 인기있는 비디오 목록, 12시간 동안 가장 인기 있는 판매 제품등 과 같은 시나리오인데, 이런 시나리오에서 데이타는 아주 정확하지 않아도 근사 값만 있으면 되고, 데이타를 그 시간에 보는 시급성이 중요하다.  이러한 시나리오에서는 전체 데이타를 다 보고 분석이 어렵기 때문에, 샘플링을 하거나 대략적인 근사 값만을 구해서 결과를 낸다.


이런 근사치를 추정하는 알고르즘은 K-means나 Approximate Top-N등이 이미 정의되어 있는 알고리즘이 많다.


참고 자료 :

Storm을 이용한 근사치 구하기 : https://pkghosh.wordpress.com/2014/09/10/realtime-trending-analysis-with-approximate-algorithms/

Apache Spark에서 K means로 근사치 구하기 :

https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html


Windowing

실시간 스트리밍 데이타 처리에서 중요한 개념중의 하나는 Windowing 인데, Windowing 이란 스트리밍 데이타를 처리할때 일정 시간 간격으로 처리하는 것을 정의한다.

예를 들어, 10분 단위의 Windowing의 경우 1시~2시까지 들어온 데이타를 1:10, 1:20,1:30, …  단위로 모아서 처리한다.

윈도우에는 자르는 방법에 따라서 다음과 같이 몇가지 방법이 있다.

Fixed Windows

정확하게 일정 시간 단위로 시간 윈도우를 쪼게는 개념이다. 앞에서 언급한 예와 같이 윈도우 사이즈가 10분 일때, 1시 10분은 1시00분~1시10분까지의 데이타를, 1시 20분은 1시10분~1시20분까지의 데이타를 처리한다.

Sliding Windows

Sliding Window 방식은 윈도우가 움직이는 개념이다.

슬라이딩 윈도우의 개념은 현재 시간으로 부터 +-N 시간 전후의 데이타를 매 M 시간 마다 추출 하는 것을 슬라이딩 윈도우라고 하고, 이 윈도우들은 서로 겹치게 된다.

예를 들면 현재시간으로부터 10분 전에서 부터  측정시간까지의 접속자를 1분 단위로 측정하는 시나리오가 될 수 있다. 매 1분 간격으로, 데이타를 추출하고, 매번 그 시간으로부터 10분전의 데이타를 추출하기 때문에 데이타가 중첩이 된다.  

이렇게 추출하는 간격을 Period (앞에서 1분), 그리고 추출하는 기간을 Length 또는 Size (앞에서 10분)라고 한다.



출처 : https://cloud.google.com/dataflow/model/windowing#sliding-time-windows

Session

다음으로는 Session Window의 개념이다.

Session Window에는 사용자가 일정 기간동안 반응이 없는 경우(데이타가 올라오지 않는 경우)에 세션 시작에서 부터, 반응이 없어지는 시간 까지를 한 세션으로 묶어서 처리한다

예를 들어서 세션 타임 아웃이 20분이라고 하고 데이타가 1:00 부터 올라오고 있는데,  1:01, 1:15에 데이타가 올라오고, 1:40분에 데이타가 올라오면 1:15 이후에 20분동안 (1:35까지) 데이타가 올라오지 않았기 때문에, 1:00,1:01,1:15은 하나의 세션으로 되고, 1:40은 새로운 세션 시작이 된다.



출처 : https://cloud.google.com/dataflow/model/windowing#session-windows


시간대별 Window 처리 방식

스트리밍 데이타에서 윈도우를 사용할때, 어느 시간을 기준 시간으로 할것인가를 정해야 하는데, 데이타가 시스템에 도착하는 Processing time을 기준으로 할 수 있고 또는  데이타가 실제 발생한 시간인 Event time을 기준으로도 할 수 있다.

Processing time based windowing

Processing time을 기준으로 데이타를 처리하는 것은 크게 어렵지 않다. 데이타가 도착한 순서대로 처리해서 저장하면 된다.


Event time based windowing

문제는 Event time을 기준으로 데이타를 처리 하는 경우인데, 데이타가 들어오는 것이 순서대로 들어오지 않는 경우가 많고, 또한 데이타의 도착 시간또한 일정하지 않다.




이 그림은 Event time을 기준으로 데이타를 처리하는 개념인데, 좌측 하얀색 화살표 처럼 12:00~13:00에 도착한 데이타가 11:00~12:00에 발생한 데이타 일 경우, 11:00~12:00 윈도우에 데이타를 반영해줘야 한다.

이러한 Event time 기반의 스트리밍 처리는 아래와 같이 기술적으로 두가지 주요 고려 사항이 필요하다.

  • Buffering
    늦게 도착한 데이타를 처리해야 하기 때문에. 윈도우를 일정시간동안 유지해야 한다. 이를 위해서 메모리나 별도의 디스크 공간을 사용한다.

  • Completeness
    Buffering을 적용했으면 다른 문제가 얼마 동안 버퍼를 유지해야 하는가?
    즉 해당 시간에 발생한 모든 데이타는 언제 모두 도착이 완료(Completeness) 되는가? 를 결정하는 것이다. 정확한 완료 시점을 갖는 것은 사실 현실적으로 힘들다. 버퍼를 아주 크게 잡으면 거의 모든 데이타를 잡아낼 수 있겠지만, 버퍼를 아주 크게 잡는 것이 어렵기 때문에, 데이타가 언제 도착할 것이라는 것을 어림 잡아 짐작할 수 있는 방법들이 많다. (예를 들어 워터마크 기법 같은 것이 있는데, 이는 다음글에서 설명하도록 한다.)


지금까지 실시간 데이타 분석에 사용되는 대략적인 개념을 알아보았다. 다음 글에서는 Apache Beam을 이용하여 이러한 실시간 데이타 분석을 어떻게 구현하는지 알아보도록 하겠다.



참고 자료

http://data-artisans.com/how-apache-flink-enables-new-streaming-applications-part-1/

https://cloud.google.com/dataflow/blog/dataflow-beam-and-spark-comparison#game-stats-advanced-stream-processing