블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 


MSA에서 Service discovery 패턴의 이해


조대협 (http://bcho.tistory.com)


MSA와 같은 분산 환경은 서비스 간의 원격 호출로 구성이 된다. 원격 서비스 호출은 IP 주소와 포트를 이용하는 방식이 되는다.

클라우드 환경이 되면서 서비스가 오토 스케일링등에 의해서 동적으로 생성되거나 컨테이너 기반의 배포로 인해서, 서비스의 IP가 동적으로 변경되는 일이 잦아졌다.


그래서 서비스 클라이언트가 서비스를 호출할때 서비스의 위치 (즉 IP주소와 포트)를 알아낼 수 있는 기능이 필요한데, 이것을 바로 서비스 디스커버리 (Service discovery)라고 한다.


다음 그림을 보자 Service A의 인스턴스들이 생성이 될때, Service A에 대한 주소를 Service registry (서비스 등록 서버) 에 등록해놓는다. Service A를 호출하고자 하는 클라이언트는 Service registry에 Service A의 주소를 물어보고 등록된 주소를 받아서 그 주소로 서비스를 호출한다.


Client side discovery vs server side discovery

이러한 Service discovery 기능을 구현하는 방법으로는 크게 client discovery 방식과 server side discovery 방식이 있다.

앞에서 설명한 service client가 service registry에서 서비스의 위치를 찾아서 호출 하는 방식을 client side discovery 라고 한다.


다른 접근 방법으로는 호출이 되는 서비스 앞에 일종의 proxy 서버 (로드밸런서)를 넣는 방식인데, 서비스 클라이언트는 이 로드밸런서를 호출하면 로드밸런서가 Service registry로 부터 등록된 서비스의 위치를 리턴하고, 이를 기반으로 라우팅을 하는 방식이다.



가장 흔한 예제로는 클라우드에서 사용하는 로드밸런서를 생각하면 된다. AWS의 ELB나 구글 클라우드의 로드 밸런서가 대표적인 Server side discovery 방식에 해당 한다.

Service registry

그러면 서비스를 등록하는 Service registry는 어떻게 구현을 해야 할까?

가장 쉬운 방법으로는 DNS 레코드에 하나의 호스트명에 여러개의 IP를 등록하는 방식으로 구현이 가능하다. 그러나 DNS는 레코드 삭제시 업데이트 되는 시간등이 소요되기 때문에, 그다지 적절한 방법은 아니기 때문에, 솔루션을 사용하는 방법이 있는데, ZooKeeper나 etcd 와 같은 서비스를 이용할 수 있고 또는 Service discovery에 전문화된 솔루션으로는 Netflix의 Eureka나 Hashcorp의 Consul과 같은 서비스가 있다.


향상된 기능

Service discovery 기능은 기본적으로 서비스를 등록하고 등록된 서비스의 목록을 리턴하는 기능이지만, 지능화된 기능을 이용하여 조금 더 향상된 기능을 제공할 수 있다.

예를 들어 Service registry에 등록된 서비스들의 Health check를 통해서 현재 서비스가 가능한 서비스를 판별한후, 서비스가 가능한 서비스 목록만 리턴을 한다던가. 서비스간의 부하 분산 비율을 조정하는 등의 고급 기능을 추가할 수 있고, 서버 목록에서 Master/Slave 서버의 정보를 리턴한다던가. 또는 서버에 접속하기 위한 인증키 정보등을 리턴하는 기능등 다양한 기능으로 확장이 가능하다.


참고 자료


Circuit breaker 패턴을 이용한 장애에 강한 MSA 서비스 구현하기 #1

Circuit breaker와 넷플릭스 Hystrix

조대협 (http://bcho.tistory.com)

MSA에서 서비스간 장애 전파

마이크로 서비스 아키텍쳐 패턴은 시스템을 여러개의 서비스 컴포넌트로 나눠서 서비스 컴포넌트간에 호출하는 개념을 가지고 있다. 이 아키텍쳐는 장점도 많지만 반대로 몇가지 단점을 가지고 있는데 그중에 하나는 하나의 컴포넌트가 느려지거나 장애가 나면 그 장애가난 컴포넌트를 호출하는 종속된 컴포넌트까지 장애가 전파되는 특성을 가지고 있다.


이해를 돕기 위해서 아래 그림을 보자


Service A가 Service B를 호출하는 상황에서 어떤 문제로 인하여 Service B가 응답을 못하거나 또는 응답 속도가 매우 느려진 상황이라고 가정하자. Service A가 Service B에 대한 호출 시도를 하면, Service A에서 Service B를 호출한 쓰레드는 응답을 받지 못하기 때문에, 계속 응답을 기다리는 상태로 잡혀있게 된다. 지속해서 Service A가 Service B를 호출을 하게 되면 앞과 같은 원리로 각 쓰레드들이 응답을 기다리는 상태로 변하게 되고 결과적으로는 남은 쓰레드가 없어서 다른 요청을 처리할 수 없는 상태가 된다.

이렇게 Service B의 장애가 Service A에 영향을 주는 경우를 장애가 전파 되었다고 한다. 이 상황에서 Service A를 호출하는 서비스가 또 있다면, 같은 원리로 인하여 그 서비스까지 장애가 전파되서 전체 시스템이 장애 상태로 빠질 수 있다.

Circuit breaker 패턴

이런 문제를 해결하는 디자인 패턴이 Circuit breaker 라는 패턴이 있다.

기본적인 원리는 다음과 같다. 서비스 호출 중간 즉 위의 예제에서는 Service A와 Service B에 Circuit Breaker를 설치한다. Service B로의 모든 호출은 이 Circuit Breaker를 통하게 되고 Service B가 정상적인 상황에서는 트래픽을 문제 없이 bypass 한다.

.


만약에 Service B가 문제가 생겼음을 Circuit breaker가 감지한 경우에는 Service B로의 호출을 강제적으로 끊어서 Service A에서 쓰레드들이 더 이상 요청을 기다리지 않도록 해서 장애가 전파하는 것을 방지 한다. 강제적으로 호출을 끊으면 에러 메세지가 Service A에서 발생하기 때문에 장애 전파는 막을 수 있지만, Service A에서 이에 대한 장애 처리 로직이 별도로 필요하다.

이를 조금 더 발전 시킨것이 Fall-back 메시징인데, Circuit breaker에서 Service B가 정상적인 응답을 할 수 없을 때, Circuit breaker가 룰에 따라서 다른 메세지를 리턴하게 하는 방법이다.



예를 들어 Service A가 상품 목록을 화면에 뿌려주는 서비스이고, Service B가 사용자에 대해서 머신러닝을 이용하여 상품을 추천해주는 서비스라고 했을때, Service B가 장애가 나면 상품 추천을 해줄 수 없다.

이때 상품 진열자 (MD)등이 미리 추천 상품 목록을 설정해놓고, Service B가 장애가 난 경우 Circuit breaker에서 이 목록을 리턴해주게 하면 머신러닝 알고리즘 기반의 상품 추천보다는 정확도는 낮아지지만 최소한 시스템이 장애가 나는 것을 방지 할 수 있고 다소 낮은 확률로라도 상품을 추천하여 꾸준하게 구매를 유도할 수 있다.


이 패턴은 넷플릭스에서 자바 라이브러리인 Hystrix로 구현이 되었으며, Spring 프레임웍을 통해서도 손쉽게 적용할 수 있다.

이렇게 소프트웨어 프레임웍 차원에서 적용할 수 있는 방법도 있지만 인프라 차원에서 Circuit breaker를 적용하는 방법도 있는데, envoy.io 라는 프록시 서버를 이용하면 된다.

소프트웨어를 사용하는 경우 관리 포인트가 줄어드는 장점은 있지만, 코드를 수정해야 하는 단점이 있고, 프로그래밍 언어에 따른 종속성이 있다.

반대로 인프라적인 접근의 경우에는 코드 변경은 필요 없으나, Circuit breaker용 프록시를 관리해야하는 추가적인 운영 부담이 늘어나게 된다.


이 글에서는 넷플릭스의 Hystrix, Spring circuit breaker를 이용한 소프트웨어적인 접근 방법과 envoy.io를 이용한 인프라적인 접근 방법 양쪽을 모두 살펴보기로 한다.


넷플릭스 Hystrix

넷플릭스는 MSA를 잘 적용하고 있는 기업이기도 하지만, 적용되어 있는 MSA 디자인 패턴 기술들을 오픈소스화하여 공유하는 것으로도 유명하다. Hystrix는 그중에서 Circuit breaker 패턴을 자바 기반으로 오픈소스화한 라이브러리이다.  


Circuit breaker 자체를 구현한것 뿐만 아니라, 각 서비스의 상태를 한눈에 알아볼 수 있도록 대쉬보드를 같이 제공한다.


Hystrix 라이브러리 사용방법

Hystrix를 사용하기 위해서는 pom.xml에 다음과 같이 라이브러리 의존성을 추가해야 한다.

<dependency>

<groupId>com.netflix.hystrix</groupId>

<artifactId>hystrix-core</artifactId>

<version>1.5.4</version>

</dependency>

<dependency>

<groupId>com.netflix.rxjava</groupId>

<artifactId>rxjava-core</artifactId>

<version>0.20.7</version>

</dependency>


Circuit breaker는 Hystrix 내에서 Command 디자인 패턴으로 구현된다. 먼저 아래 그림과 같이 HystrixCommand 클래스를 상속받은 Command 클래스를 정의한 후에, run() 메서드를 오버라이드하여, run 안에 실제 명령어를 넣으면 된다. HystrixCommand 클래스를 상속받을때 runI()메서드에서 리턴값으로 사용할 데이타 타입을 <>에 정의한다.


public class CommandHelloWorld extends HystrixCommand<String>{

private String name;

CommandHelloWorld(String name){

super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));

this.name = name;

}

@Override

protected String run() {

return "Hello" + name +"!";

}


이렇게 Command가 정의되었으면 호출 방법은 아래와 같다.


CommandHelloWorld helloWorldCommand = new CommandHelloWorld("World");

assertEquals("Hello World", helloWorldCommand.execute());


먼저 Command 클래스의 객체를 생성한 다음에, 객체.execute()를 이용해서 해당 command 를 실행하면 된다. 이렇게 하면, Command 클래스가 응답을 제대로 받지 못할때는 Circuit Breaker를 이용하여 연결을 강제적으로 끊고 에러 메세지등을 리턴하도록 된다.


전체 코드 샘플은 https://github.com/bwcho75/msa_pattern_sample/tree/master/hystrix 를 참고하기 바란다.

웹서비스에 적용하는 방법

대략적인 개념을 이해하였으면 실제로 이 패턴을 REST API로 구성된 MSA 기반의 서비스에 적용해보자.

두 개의 서비스 User와 Item이 있다고 가정하자 User 서비스가 REST API 호출을 이용하여 Item 서비스를 호출하는 구조라고 할때 이 User → Item 서비스로의 호출을 HystrixCommand를 이용하여 Circuit breaker로 구현해보도록 하자.


User 서비스의 전체 코드는 https://github.com/bwcho75/msa_pattern_sample/tree/master/UserService , Item 서비스의 전체코드는 https://github.com/bwcho75/msa_pattern_sample/tree/master/ItemService 에 있다.

각 코드는 Spring Web을 이용하여 구현되었으며 User → Item으로의 호출을 resttemplate을 이용하였다.


User → Item 서비스를 호출하여 해당 사용자에 속한 Item 목록을 읽어오는 Command를 GetCommand라고 하자, 코드는 대략 아래와 같다.


public class GetItemCommand extends HystrixCommand<List<User>>{

String name;

public GetItemCommand(String name) {

super(HystrixCommandGroupKey.Factory.asKey("ItemServiceGroup"));

this.name = name;

}


@Override

protected List<User> run() throws Exception {

List<User> usersList = new ArrayList<User>();

// call REST API

                                                (생략)

return usersList;

}

@Override

protected List<User> getFallback(){

List<User> usersList = new ArrayList<User>();

usersList.add(new User(name,"myemail@mygoogle.com"));

return usersList;

}

}


리턴 값이 List<User>이기 때문에, HystrixCommand <List<User>>를 상속하여 구현하였고, Item 서비스를 호출하는 부분은 run() 메서드에 구현한다. (restTemplate을 이용하여 호출하는 내용은 생략하였다.)


여기서 주목해야할 부분은 getFallBack() 함수인데, 호출되는 서비스 Item이 장애 일때는 이를 인지하고 getFallBack의 리턴값을 fallback 메세지로 호출한다.


Item과 User 서비스를 각각 실행한다.

%java -jar ./target/User-0.0.1-SNAPSHOT.jar

%java -jar ./target/Item-0.0.1-SNAPSHOT.jar


두 서비스를 실행 한후에 아래와 같이 User 서비스를 호출하면 다음과 같이 ItemList가 채워져서 정상적으로 리턴되는 것을 볼 수 있다.


terrycho-macbookpro:~ terrycho$ curl localhost:8081/users/terry

[{"name":"terry","email":"myemail@mygoogle.com","itemList":[{"name":"computer","qtetertertertertetttt


Item 서비스 서버를 인위적으로 죽인 상태에서 호출을 하면 다음과 같이 위에서 정의한 fall back 메세지와 같이 email이 “myemail@mygoogle.com”으로 호출되고 itemList는 비어 있는채로 리턴이 된다.


terrycho-macbookpro:~ terrycho$ curl localhost:8081/users/terry

[{"name":"terry","email":"myemail@mygoogle.com","itemList":[]}]


지금까지 간단하게나마 Circuit breaker 패턴과 넷플릭스의 Hystrix 오픈소스를 이용하여 Circuit breaker를 구현하는 방법에 대해서 알아보았다.

서비스 상태에 따라서 Circuit을 차단하는 방법등도 다양하고, Command 패턴을 처리하는 방법 (멀티 쓰레드, 세마포어 방식)등이 다양하기 때문에, 자세한 내부 동작 방법 및 구현 가이드는 https://github.com/Netflix/Hystrix/wiki/How-it-Works 를 참고하기 바란다.


Circuit breaker 패턴은 개인적인 생각에서는 MSA에서는 거의 필수적으로 적용해야 하는 패턴이라고 생각을 하지만 Hystrix를 이용하면 Command를 일일이 작성해야 하고, 이로 인해서 코드 복잡도가 올라갈 수 있다. 이를 간소화 하기 위해서 Spring 오픈소스에 이 Hystrix를 잘 추상화 해놓은 기능이 있는데, 그 부분 구현에 대해서는 다음글을 통해서 살펴보도록 한다.



Spinnaker #3

Hello Spinnaker

조대협 (http://bcho.tistory.com)


Spinnaker에 대한 개념 이해 및 설치가 끝났으면, 이제 간단한 애플리케이션을 배포해보자.

여기서 사용하는 애플리케이션은 node.js로 8080 포트에 “This is Default” 라는 메세지를 출력하는 간단한 애플리케이션이다. VM이 기동되면 자동으로 이 node.js 서버가 기동되도록 설정을 해놓은 VM이미지를 만들어놓았다. 만약에 같은 테스트를 하고자 한다면 간단한 애프리케이션을 만들어도 좋고, nginx나 apache 웹서버를 설치해놓은 이미지를 사용해도 좋다.

Create Application

먼저 node.js 클러스터를 배포할 애플리케이션을 정의한다. 아래 처럼 메뉴에서 애플리케이션을 선택한 후에, 우측 상단의 Action 메뉴에서 Create Appliaction 메뉴를 선택한다.



다음 애플리케이션 정보에 애플리케이션명을 “hellospinnaker”로 입력하고, 관리자 이메일을 입력한다.





Load Balancer 생성

애플리케이션이 생성되었으면, 애플리케이션에서 사용할 로드밸런서를 사용한다. 구글 클라우드에는 여러 타입의 로드 밸런서가 있지만, 설정이 쉬운 Network 로드 밸런서를 사용하겠다.

Network Load Balancer는 TCP/UDP를 지원하는 Pass through (IP가 바뀌지 않는다.) 방식의 L4 로드 밸런서로, 구글의 망가속 기능을 사용하지 않는 리전 단위의 로드 밸런서이다.



로드 밸런서 타입을 선택했으면 상세 정보를 입력한다.

  • region을 선택한다. 여기서는 일본 리전인 asia-northeast1을 선택하였다.

  • 다음 로드밸런서의 포트를 선택해야 하는데, Listener 부분에서 TCP 프로토콜을 선택하고, 입력 포트를 8080으로 선택한다.

  • 그리고 마지막으로 중요한것은 Health Check 부분을 명시해야 하는데, Health check는 HTTP를 사용하게 된다. HTTP/GET request를 이용하여 Health check를 할 서버의 HTTP URL과 Port를 지정해야 한다. node.js 서버가 8080 포트를 통해 서비스 하기 때문에 Health Check도 8080 포트에 “/” 디렉토리로 지정한다.





Server 생성

로드 밸런서 설정이 끝났으면 여기에 붙일 서버 그룹을 정의해야 한다. 서버그룹 정의는 Clusters 메뉴에서 가능한데, 먼저 Clusters 메뉴로 들어간후, 우측 상단의 Create Server Group 버튼을 클릭하여, 서버 그룹 생성 화면을 불러온다.





서버 그룹에 정보에서는 아래 그림과 같이 region을 선택하고, VM을 생성할때 사용할 Image를 선택한다. 이 예제에서는 앞서 설명한것 처럼 node.js 애플리케이션을 “simple-node-server-default-image”라는 이미지로 준비해놓았다.

다음 Load Balancers 메뉴에서 로드 밸런서를 선택한다. 로드 밸런서는 앞 단계에서 만든 “hellospinnaker” 를 선택한다.





다음으로는 인스턴스 타입을 선택한다. 인스턴스 타입은 먼저 Zone 을 선택해야 선택할 수 있다. Zone은 두개의 존 이상에 걸치도록 설정하기 위해서 “Distribute instance multiple zones” 체크 박스를 클릭하면 선택한 리전에서 두개 이상의 존에 걸쳐서 인스턴스가 생성된다.

그리고 인스턴스 타입을 선택한다. 아래에서는 n1-standard-2 인스턴스를 선택하였다.

마지막으로 Number of instances에 기동시킬 인스턴스 수를 지정한다. 여기서는 4개의 인스턴스를 기동하도록 하였다.




서버 기동 확인

모든 설정이 끝났으면, 인스턴스가 기동되는 것을 확인할 수 있다. 아래 그림과 같이 인스턴스가 정상적으로 올라오면 초록색으로 표시가 된다. 만약 문제가 있어서 인스턴스가 올라오지 않으면 붉은 색으로 표시된다. (대부분 실패 하는 경우는 HeartBeat 설정이 제대로 되어 있지 않는 경우가 많다.)




실제로 구글 클라우드 콘솔의  Compute Engine탭을 확인해 보면 아래와 같이 VM들이 생성 된것을 확인할 수 있다. VM이름은 hellospinnaker-vxxx 라는 이름으로 생성이 되는것을 확인할 수 있다.



테스트

그러면 제대로 작동을 하는지 확인해보자. 로드밸런서의 IP를 확인해야 하는데,  생성된 로드밸런서를 클릭하면 로드밸런서의 IP가 아래 그림과 같이 우측에 나타난다.



이 IP로, HTTP 8080 포트로 접속을 해보면 아래 그림과 같이 접속이 되는 것을 확인할 수 있다.



지금까지 Spinnaker에 대한 제일 간단한 사용방법을 알아보았다.

실제 운영 환경에서는 이런식으로 사용하는 경우는 드물고, github등의 코드 Repository에서 코드가 변경되면 이를 Jenkins 등을 이용하여 빌드하고, 패키징 한 후에, VM등에 배포하는 파이프라인을 거치게 된다.

다음 글에서는 이러한 파이프라인을 하나 만들어 보도록 하겠다.



피닉스 서버

조대협 (http://bcho.tistory.com)


근래에 들어서 인프라 스트럭쳐를 소프트웨어로 정의하는 Infrastructure As a Code (줄여서 IaC라고 부름)를 관심있게 보고 있는데, CI/CD의 단순 연장선상의 하나의 툴링정도로 생각했는데, 생각보다 상당히 넓은 생태계라서 좀더 깊게 보고 있다.

IaC는 일반적인 툴이나 단순한 프로세스가 아니라 하나의 사상이기 때문에 이를 제대로 이해하기 위해서는 툴링 관점의 접근 보다는 사상과 배경에 대해서 제대로 이해할 필요가 있다.

IaC 개념을 이해하는데 도움이 되는 개념으로 Snowflakes Server (스노우플레이크 서버)와 Phoenix Server(피닉스 서버) 두 가지 개념에 대해서 알아볼 필요가 있다.

Snowflakes Server (스노우 플레이크 서버)

예전에 일반적으로 서버를 운영하는 방법은 서버를 설치한 후 OS를 인스톨한 후에, 필요한 소프트웨어와 애플리케이션을 설치하여 운영하는 형태였다. 여기에 문제가 생긴 경우 패치를 하거나 정기적인 보안 패치 튜닝들을 해당 서버에 지속적으로 적용하고, 애플리케이션은 CI/CD 등의 툴을 이용하여 배포하는 구조를 가지고 있었다.


이렇게 한번 설치한 서버에 계속해서 설정을 변경하고 패치를 적용하는 등의 업데이트를 지속적으로 적용하여 운영하는 서버를 스노우 플레이크 서버 (눈송이 서버)라고 하는데, 이렇게 설정된 서버는 다시 똑같이 설정하기가 매우 어렵다. 모든 설정과정이 문서화가 잘되어 있으면 모르겠지만 대부분 문서화가 꼼꼼한 경우도 드물뿐더러,  담당자가 바뀌거나 관리 조직이 바뀌는 경우에는 그 이력이 제대로 유지되는 경우가 없다. 그래서 장비를 업그레이드 하거나 OS를 새로 인스톨해서 같은 환경을 꾸미고자 할때 예전 환경과 동일한 환경을 구성하기가 어렵고 그래서, 누락된 설정이나 패치등에 의해서 장애가 발생하는 경우가 많다.

이렇게 한번 설정을 하고 다시 설정이 불가능한, “마치 눈처럼 녹아버리는" 서버의 형태를 스노우 플레이크 서버라고 한다.


재 구성의 문제뿐 아니라, 이런 스노우 플레이크 서버는 구성 편차를 유발하기도 하는데, 여러대의 웹서버를 운영하고 있는 조직에서, 문제가 있어서 특정 서버를 패치한 경우, 다른 동일한 웹서버를 모두 패치 하지 않는 이상 구성이 달라진다.  이는 또 운영상의 문제를 일으킬 수 있다.

Phoenix Server (피닉스 서버)

그래서 나온 서버 패턴이 피닉스 서버 패턴인데, 피닉스(불사조)는 불멸로도 알려져있지만 정확히는 불속에서 다시 태어나는 re-born (재탄생)의 개념을 가지고 있다. 이 재탄생의 개념을 서버 설정 방식에 적용한 패턴이 피닉스 서버 패턴이다.

새로운 소프트웨어를 인스톨하거나 설정을 변경할때 기존 서버에 변경 작업을 더 하는 것이 아니라, 처음 OS 설치에서 부터, 소프트웨어 인스톨, 설정 변경까지를 다시 반복하는 것이다.

예를 들어 우분투 16, 톰캣 7.0 버전으로 운영되고 있는 서버가 있을때, 이 서버에 로그 수집 모듈은 fluentd를 설치하는 케이스가 있다고 가정하자.


스노우플레이크 서버 패턴의 경우에는 이미 운영되고 있는 서버에 새롭게 fluentd를 일일이 설치하거나 자동화가 되어 있는 경우에는 ansible 이나 chef등의 configuration management 도구를 이용하여 fluentd를 설치하게 된다.


피닉스 서버 패턴의 경우에는 새 VM을 다시 만들고, 우분투 16 OS를 설치하고, 톰캣 7.0을 설치하고 fluentd를 설치한 다음. 이 VM으로 기존 VM 을 교체한다.


매번 전체 설치를 반복한다면 매우 많은 시간이 들텐데, 어떻하냐? 물론 매번 이렇게 새롭게  모든 스택을 설치하지 않는다. 어느정도 공통 스택은 가상머신의 베이스 이미지 (VM Base Image)로 만들어놓고, 이 이미지를 이용하여 VM을 생성한 후에, 차이가 나는 부분만 설정을 하는 구조를 설정하는 구조를 사용하게 되고 이 과정은 스크립트 코드를 이용해서 자동화하기 때문에, 그렇게 많은 시간이 소요되지 않는다.

피닉스 서버 패턴에서는 매번 전체를 스크립트를 이용해서 설치하기 때문에, 다음과 같은 장점을 가지게 된다.


  • 스크립트에 모든 설정 정보가 유지되게 된다.

  • 이 스크립트 코드를, git와 같은 소스 코드 관리 시스템을 이용해서 관리하게 되면, 어떤 부분을 누가 어떻게 수정을 했는지 추적이 가능하게 된다.

피닉스 서버 패턴을 이용한 배포 구조

그러면 이 피닉스 서버 패턴을 이용한 배포 구조를 보도록 하자

앞의 예제와 같이 Ubuntu 16, Tomcat 7이 설치된 VM서버 2대가 서비스되고 있고, 이 서버들은 앞단에 로드밸런서에 연결되어 있다고 생각하자. 이 VM들은 Ubuntu16, Tomcat 7이 설치되어 있는 Base Image로 생성했다고 가정하자.



Fluentd를 설치하기 위해서는 피닉스 서버 패턴 처럼, Fluentd가 설치된 새로운 base image를 생성하고, 이 이미지를 이용하여 새로운 VM들을 만든다. 이 VM들 그룹은 아직 서비스가 되기 전으로, 이 그룹을 Pre-production 그룹이라고 한다.



Pre-production 그룹이 정상적으로 들어왔으면 로드밸런서를 변경하여 기존의 구 버전 VM으로 들어가던 트래픽을 pre-production 그룹으로 옮겨준다.


그리고 마지막으로, 기존의 운영환경을 지워주면 아래와 같이 새 환경으로 서비스 하는 환경만 남게 된다.


이렇게 서버가 구 버전에서 새버전으로 재탄생(re-born)하는 것이 피닉스 서버 패턴이다.


이 패턴의 문제는 VM 이미지를 빌드하기 때문에, 빌드 및 배포 시간이 상대적으로 오래 걸리고, 또한 배포 당시 기존 Production 환경과 Pre-production 환경이 공존하기 때문에, 다소 추가 비용이 소요될 수 있다.


이 피닉스 서버 패턴에서 중요한것은 기존 이미지를 이용하여 변경을 주고, 이를 다시 이미지로 만들어낼 수 있지만, 이렇게 하면 스노우플레이크 서버이지 피닉스 서버가 아니다. 피닉스 서버는 기존 이미지를 재 사용하는게 아니라 처음부터 모든 스택을 새로 설치해야 하기 때문에, 처음부터 모든 스택을 설치하여 이미지를 만들 수 있는 자동화 툴이 필요하다. 다음 글에서는 이미지 생성을 자동화 해주는 HashiCorp의 Packer라는 오픈소스에 대해서 알아보도록 하겠다.


SOA 시스템 설계에서 가장 큰 실수

아키텍쳐 /SOA | 2009.03.16 10:31 | Posted by 조대협
SOA 시스템에 대한 컨설팅 (설계나 Code Inspection)을 다니다 보면,
Goverance나 프로젝트 관리상에서도 문제가 많이 나타나지만, 설계상에서 근본적인 문제로 나타나는 패턴들이 있다.

SOA의 근본적인 정의를 다시 내려보면, "비지니스적인 의미를 가지는 컴포넌트를 기업내의 통합된 프로토콜로 서비스하여 제공한다." 이다.
BPM을 이용한 Composition이나 ESB를 이용한 유연성의 증대도 SOA 에서 큰 의미를 차지하지만, 일단 시작은 SOA를 통해서 제공되는 컴포넌트의 형태이다.

즉 기본이 되는 SOA 서비스와 그 인터페이스에 대한 정의와 구현이 제대로 되어야 하는데
통상적으로 SOA 시스템을 설계하고 구현하는데 있어서 발견되는 실수는 다음과 같다.

1. 표준 전문의 미사용
서비스의 전문 형태는 해당 시스템에서 어느정도 통합된 형태를 가져야 한다. 웹서비스를 사용하더라도, 프로토콜 측면이 아니라 비지니스 측면에서도 통합된 전문 형태가 요구 된다. 메세지 헤더, Message PayLoad의 형태등 표준화된 메세지 포맷은 전문의 가독성을 높여주고 아키텍쳐의 일관성을 가지고 가도록 해준다.

Legacy 시스템에 대한 통합 요건이 있을 경우에는 Legacy 시스템으로부터의 메세지를 표준 전문으로 변환하는 작업이 필요하겠지만, 처음부터 시작하는 SOA 프로젝트는 설계 단계에서부터 표준 전문을 사용하기 때문에, 표준 전문으로의 변환 요건이 나올 수 가 없다. 오직 잘못된 설계에서만 처음 시작하는 SOA (Build from scratch)에서 표준 전문 변환 구현이 추가된다.

2. 헤더의 Message Payload를 분리하지 않음
헤더와 Message Payload는 당연히 다른 의미르 갖는다. 헤더는 공통적으로 사용되는 부분이며 비지니스적 로직 처리 보다는 인증,인가와 같은 보안에 관련된 부분, 거래 추적을 위한 메세지 ID, Call back등의 Message Exchange Pattern(MEP)를 위한 Correation ID와 같이 공통적인 부분과 아키텍쳐에 대한 부분을 처리하도록 설계된다.

그런데, 이 헤더가 Message Payload (메세지 본문)에 포함되어 설계되는 경우가 종종 있다.
웹서비스로 이야기 하면 SOAP Body에 Header 정보가 들어가는 경우인데, SOA 시스템의 전제중의 하나는 "서비스들이 조합되어 비지니스 로직을 구현한다" 이다. 즉 전문은 여러 과정을 거쳐서 긴 여행후에 비지니스 로직을 처리한후 그 값을 리턴한다는 이야기이고, 그 과정에서 로깅이나 라우팅, 인증등의 로직을 수행할 수 있다.
그런데, 문제는 라우팅을 위해서는 헤더내의 특정 필드만이 필요한데 이런 경우에는 Message Payload를 전체를 Parsing해야 그 값을 얻어낼 수 있고, 이는 심각한 성능 저하를 유발하게 된다.
웹서비스의 경우 SOAP Header라는 필드가 있고, 이 Header에 Header값들을 넣게 되면 Header가 필요한 경우에는 (예를 들어 인증의 경우 Header 내용만 파싱해서 체크하고 뒤의 비지니스 로직으로 메세지를 포워딩 하면 된다.) Header만 파싱해서 핸들링하고 Body는 파싱을 하지 않아도 되기 때문에 성능상의 장점을 가지고 갈 수 있다.

REST의 경우에도 SOA와 유사하게 Resource를 기반으로 아키텍쳐가 구성되고 여러 Backend단을 거쳐야 하기 때문에 같은 원리로  HTTP-Header를 사용하며 Header를 전송할 필요가 있다.

3. 벌크 데이타의 전송
SOA나 EAI와 같은 연계(통합)이 필요한 시스템의 경우에는 메세지의 전달 패턴 (Message Exchange Pattern)에 따라서 그 연계 방식이 다르게 정의되어야 한다. 일반적인 Sync나 ASync는 많이들 고려하여 설계가 되고 있지만 벌크 데이타에 대한 전송이나 대용량의 Binary Attach의 경우에는 제대로 아키텍쳐상에 반영되지 않는 경우가 많다
특히 File Attach의 경우 웹서비스 상에 주석 <!-- CDATA로 전송하거나 Base64 encoding등을 이용하여 XML 엘리먼트로 전송하는 경우가 많은데, 이런 경우에는 메세지 전송 자체에 부하를 초래할 수 있기 때문에,
Swa (SOAP with Attachment)등을 이용하는 것이 바람직하고, 대용량 레코드의 경우에는 Batch를 이용한 전송이나 비동기식으로 (near realtime)형태로 리스트를 전송하는 아키텍쳐를 고려하는 것이 바람직하다.

4. Fine grainned 메세지
SOA는 기본적으로 서비스의 재사용을 전제로 한다. 서비스가 재사용될만큼 비지니스적인 의미를 가지고 Coarse grainned되어야 하는데, 일선의 개발 현장을 보면 SQL하나 보내는 것과 같이 작은 단위의 서비스가 많이 존재하는 것을 종종 볼 수 있다. 이는 기존의 CBD와 같은 개발 사상에서 벗어나지 못한 상태에서 설계를 하면 Fine grainned된 서비스들이 난무하고 전체적으로 서비스개수가 올라가고 관리 포인트가 증가하는 형태의 시스템이 만들어지고, 또한 각각의 Fine grainned된 서비스들을 호출하여 네트워크 부하를 늘리는 요인이 될 수 가 있다.

5. 불필요한 필드의 사용
메세지를 리턴할때 Consumer 쪽에서 사용하는 내용만을 리턴하는 것이 바람직하다.
Consumer 쪽에서는 사용하지도 않는 필드가 주렁주렁 매달려 있거나, 추후를 위해서 예약해놓는 다는 필드들이 주렁주렁 매달려 있는 경우는 전체적인 XML 메세지의 크기를 증가 시켜 성능을 저하 시킨다.
최적화된 메세지를 사용하는 것이 성능과 가독성에 큰 영향을 준다.

6. 불필요한 메세지 변환 사용
많이 있는 문제중의 하나인데, ESB의 경우 강력한 메세지 변환 기능이 있기 때문에 이를 남용하는 사례이다.
메세지 변환이 필요한 경우도 있지만.
예를 들어
1) 데이타의 내용은 바뀌지 않는데, UI에서 보여주기 편하게 하기 위해서 변환을 수행한다.
2) 데이타에서 불필요한 내용을 제거하기 위해서 변환을 수행한다.
와 같은 경우는 정말 금지해야하는 사례이다.
보여주기 위한 데이타나, 재사용되기 위한 데이타의 정재는 Consumer side에서 이루어지는 것이 맞으며, 데이타의 비지니스적인 의미 자체만 제대로 전달된다면 변환을 수행할 필요가 없다.

ESB는 SOA 시스템에 대한 유연성을 부여해주기 위함이고, 유연성을 제공하기 위해서 XQuery,XPath와 같은 엔진을 제공한다. 유연성을 제공하는 만큼 이 XML관련 연산은 CPU등을 SAX나 DOMParser와 같은 Pure XML 처리 방식보다 많이 사용하게 되는 것이다.
 이것이 실제 Code로 작성하는 것보다 비용이 높은지 낮은지에 대한 ROI관점에서 ESB에 로직이 들어가야 되느냐 말아야 되느냐를 결정해야 한다.

 갑자기 SOA 시스템 설계에서 문제점이 생각이 나서 정리를 해봐서인지.. 깔끔하게 정리는 되지 않았는데 혹시 의견이나 토론할 거리가 있으면 환영합니다.

참고 문서 : http://www.infoq.com/news/2009/03/threecommon


'아키텍쳐  > SOA' 카테고리의 다른 글

JEE enterprise Application Grid Architecture  (0) 2009.06.12
괜찮은 SOA 테스팅 툴 발견  (0) 2009.03.16
SOA 시스템 설계에서 가장 큰 실수  (0) 2009.03.16
OMG released SOAML draft  (0) 2009.01.16
Composition 과 Mashup의 차이  (0) 2008.11.13
SOA 가 어려운 이유..  (0) 2008.11.12