블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 

'빅데이타'에 해당되는 글 69

  1. 2017.03.15 연예인 얼굴 인식 서비스를 만들어보자 #2-CSV에 있는 이미지 목록을 텐서로 읽어보자 (4)
  2. 2017.03.14 연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습 데이타 준비하기 (1)
  3. 2017.03.11 텐서플로우 - 파일에서 학습데이타를 읽어보자#2 (Reader와 Decoder)
  4. 2017.03.07 텐서플로우-파일에서 학습 데이타를 읽어보자 #1 (큐 사용 방법과 구조) (1)
  5. 2017.02.25 텐서플로우에서 이미지 데이타 처리 성능 향상방법
  6. 2017.02.25 머신러닝 이미지 데이타 뻥튀기 방법
  7. 2017.01.31 텐서 보드를 이용하여 학습 과정을 시각화 해보자
  8. 2017.01.09 딥러닝을 이용한 숫자 이미지 인식 #2/2-예측 (4)
  9. 2017.01.09 딥러닝을 이용한 숫자 이미지 인식 #1/2-학습 (4)
  10. 2016.12.28 텐서플로우 #3-숫자를 인식하는 모델을 만들어보자 (3)
  11. 2016.12.26 텐서플로우 #2 - 행렬과 텐서플로우 (1)
  12. 2016.12.09 텐서플로우-#1 자료형의 이해 (1)
  13. 2016.11.30 딥러닝 - 초보자를 위한 컨볼루셔널 네트워크를 이용한 이미지 인식의 이해 (2)
  14. 2016.11.30 머신러닝의 과학습 / 오버피팅의 개념
  15. 2016.11.27 딥러닝의 개념과 유례 (1)
  16. 2016.10.10 수학포기자를 위한 딥러닝-#4 로지스틱 회귀를 이용한 분류 모델 (2)
  17. 2016.10.05 수학포기자를 위한 딥러닝-#3 텐서플로우로 선형회귀 학습을 구현해보자 (2)
  18. 2016.10.04 수학포기자를 위한 딥러닝-#2 머신러닝 개념 이해 (6)
  19. 2016.10.04 수학포기자를 위한 딥러닝-#1 머신러닝과 딥러닝 개요 (4)
  20. 2016.09.22 노트7의 소셜 반응을 분석해 보았다. - #3 제플린 노트북을 이용한 상세 데이타 분석
 

연예인 얼굴 인식 서비스를 만들어보자 #2


CSV 목록에 있는 이미지 데이타를 읽어보자


조대협 (http://bcho.tistory.com)


앞의 글(http://bcho.tistory.com/1166) 에서는 얼굴 인식 데이타를 확보하고, 전처리를 통해서 96x96 사이즈로 만드는 것을 살펴보았다.

그러면, 이 전처리가 끝난 데이타를 텐서플로우에서 학습용으로 쓰기 위해서 데이타를 읽어 들이는 것을 살펴보겠다.


파일에서 학습데이타를 읽는 방법과 큐에 대한 설명은 아래 두 글을 참고하기 바란다.

http://bcho.tistory.com/1165

http://bcho.tistory.com/1163

파일 포맷

파일 포맷은 다음과 같다

/Users/terrycho/traning_datav2/training/007BIL_Aaron_Eckhart_001.jpg,Aaron Eckhart

/Users/terrycho/traning_datav2/training/08486023.jpg,Aaron Eckhart

/Users/terrycho/traning_datav2/training/09.jpg,Aaron Eckhart

/Users/terrycho/traning_datav2/training/0_61_091107_411.jpg,Aaron Eckhart


‘,’로 구분되는 CSV 형태의 파일 포맷이며, 앞에는 이미지의 경로, 뒤에는 해당 이미지의 라벨이 명시되어 있다.


예제 코드

예제코드를 살펴보자

예제 코드의 형태는 http://bcho.tistory.com/1165 에 소개된 CSV 파일을 읽는 코드와 크게 드리지 않다.


import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt


csv_file =  tf.train.string_input_producer(['/Users/terrycho/dev/ws_gae_demo/terry-face-recog/training_file.txt']

                                               ,name='filename_queue')

textReader = tf.TextLineReader()

_,line = textReader.read(csv_file)

imagefile,label = tf.decode_csv(line,record_defaults=[ [""],[""] ])

image = tf.image.decode_jpeg(tf.read_file(imagefile),channels=3)



with tf.Session() as sess:

   

   coord = tf.train.Coordinator()

   threads = tf.train.start_queue_runners(sess=sess, coord=coord)

   

   for i in range(100):

       image_value,label_value,imagefile_value = sess.run([image,label,imagefile])

       plt.imshow(image_value)

       plt.show()

       print label_value,":",imagefile_value

   

   coord.request_stop()

   coord.join(threads)


특별한 부분만 살펴보자면

imagefile,label = tf.decode_csv(line,record_defaults=[ [""],[""] ])

image = tf.image.decode_jpeg(tf.read_file(imagefile),channels=3)

부분인데, TextReader로 읽어드린 문자열을 파싱해서 이미지 파일명 (imagefile)과 라벨(label)로 추출하고

이 imagefile을가지고, tf.image.decode_jpeg 메서드를 이용하여 jpeg  파일을 읽어서 텐서형으로 바꾼다. 이때, channel=3 으로 설정하였는데, 이유는 이 이미지는 칼라 이미지로 RGB 3개의 값을 가지기 때문에 3차원으로 정의하였다.


다음 텐서 플로우 세션을 시작한 다음에

image_value,label_value,imagefile_value = sess.run([image,label,imagefile])

Image,label,imagefile 값을 읽은 후에, 확인을 위해서 matplotlib를 이용하여, 이미지와, 라벨, 그리고 파일 경로를 출력하여, 값이 정확하게 읽히는지 순서에 맞게 읽히고 누락은 없는지 확인할수 있다.

(확인을 위해서 데이타를 읽을때 shuffle을 하지 않고 순차적으로 읽었다.)


실행 결과

그 실행 결과를 보면 다음과 같다.



다른 코드


만약에 읽어드린 이미지들을 한꺼번에 보고 싶을 경우에는 아래와 같은 코드를 사용한다. 아래 코드는 200개의 이미지를 읽어서 가로로 10개씩 출력하는 코드이다. 아래 코드 부분을 바꿔치면 된다.

   fig = plt.figure(figsize=(20,120))

   for i in range(200):

       image_value,label_value,imagefile_value = sess.run([image,label,imagefile])

    

       subplot = fig.add_subplot(50,10,i+1)

       subplot.set_xlabel(label_value)

       plt.imshow(image_value)

       print label_value ,imagefile_value

   plt.show(


출력 결과는 다음과 같다.


다음번에는 텐서로 읽어드린 이미지 데이타를 활용하여 얼굴 인식 모델을 CNN으로 만들어보고 학습 시켜 보겠다.




저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

연예인 얼굴 인식 서비스를 만들어보자 #1 - 학습데이타 준비하기


조대협 (http://bcho.tistory.com)


CNN 에 대한 이론 공부와 텐서 플로우에 대한 기본 이해를 끝내서 실제로 모델을 만들어보기로 하였다.

CNN을 이용한 이미지 인식중 대중적인 주제로 얼굴 인식 (Face recognition)을 주제로 잡아서, 이 모델을 만들기로 하고 아직 실력이 미흡하여 호주팀에서 일하고 있는 동료인 Win woo 라는 동료에게 모델과 튜토리얼 개발을 부탁하였다.


이제 부터 연재하는 연예인 얼굴 인식 서비스는 Win woo 가 만든 코드를 기반으로 하여 설명한다. (코드 원본 주소 : https://github.com/wwoo/tf_face )

얼굴 데이타를 내려 받자

먼저 얼굴 인식 모델을 만들려면, 학습을 시킬 충분한 데이타가 있어야 한다. 사람 얼굴을 일일이 구할 수 도 없고, 구글이나 네이버에서 일일이 저장할 수 도 없기 때문에, 공개된 데이타셋을 활용하였는데, PubFig (Public Figures Face Database - http://www.cs.columbia.edu/CAVE/databases/pubfig/) 를 사용하였다.



이 데이타셋에는 약 200명에 대한 58,000여장의 이미지를 저장하고 있는데, 이 중의 일부만을 사용하였다.

Download 페이지로 가면, txt 파일 형태 (http://www.cs.columbia.edu/CAVE/databases/pubfig/download/dev_urls.txt) 로 아래와 같이


Abhishek Bachan 1 http://1.bp.blogspot.com/_Y7rzCyUABeI/SNIltEyEnjI/AAAAAAAABOg/E1keU_52aFc/s400/ash_abhishek_365x470.jpg 183,60,297,174 f533da9fbd1c770428c8961f3fa48950
Abhishek Bachan 2 http://1.bp.blogspot.com/_v9nTKD7D57Q/SQ3HUQHsp_I/AAAAAAAAQuo/DfPcHPX2t_o/s400/normal_14thbombaytimes013.jpg 49,71,143,165 e36a8b24f0761ec75bdc0489d8fd570b
Abhishek Bachan 3 http://2.bp.blogspot.com/_v9nTKD7D57Q/SL5KwcwQlRI/AAAAAAAANxM/mJPzEHPI1rU/s400/ERTYH.jpg 32,68,142,178 583608783525c2ac419b41e538a6925d


사람이름, 이미지 번호, 다운로드 URL, 사진 크기, MD5 체크섬을 이 필드로 저장되어 있다.

이 파일을 이용하여 다운로드 URL에서 사진을 다운받아서, 사람이름으로된 폴더에 저장한다.

물론 수동으로 할 수 없으니 HTTP Client를 이용하여, URL에서 사진을 다운로드 하게 하고, 이를 사람이름 폴더 별로 저장하도록 해야 한다.


HTTP Client를 이용하여 파일을 다운로드 받는 코드는 일반적인 코드이기 때문에 별도로 설명하지 않는다.

본인의 경우에는 Win이 만든 https://github.com/wwoo/tf_face/blob/master/tf/face_extract/pubfig_get.py 코드를 이용하여 데이타를 다운로드 받았다.

사용법은  https://github.com/wwoo/tf_face 에 나와 있는데,


$> python tf/face_extract/pubfig_get.py tf/face_extract/eval_urls.txt ./data

를 실행하면 ./data 디렉토리에 이미지를 다운로드 받아서 사람 이름별 폴더에 저장해준다.

evals_urls.txt에는 위에서 언급한 dev_urls.txt 형태의 데이타가 들어간다.


사람 종류가 너무 많으면 데이타를 정재하는 작업이 어렵고, (왜 어려운지는 뒤에 나옴) 학습 시간이 많이 걸리기 때문에, 약 47명의 데이타를 다운로드 받아서 작업하였다.

쓰레기 데이타 골라내기

데이타를 다운받고 나니, 아뿔사!! PubFig 데이타셋이 오래되어서 없는 이미지도 있고 학습에 적절하지 않은 이미지도 있다.


주로 학습에 적절하지 않은 데이타는 한 사진에 두사람 이상의 얼굴이 있거나, 이미지가 사라져서 위의 우측 그림처럼, 이미지가 없는 형태로 나오는 경우인데, 이러한 데이타는 어쩔 수 없이 눈으로 한장한장 다 걸러내야만 하였다.

아마 이 작업이 가장 오랜 시간이 걸린 작업이 아닐까도 한다. 더불어서 머신러닝이 정교한 수학이나 알고리즘이 아니라 노가다라고 불리는 이유를 알았다.

얼굴 추출하기

다음 학습에 가능한 데이타를 잘 골라내었으면, 학습을 위해서 사진에서 얼굴만을 추출해내야 한다. 포토샵으로 일일이 할 수 없기 때문에 얼굴 영역을 인식하는 API를 사용하기로한다. OPEN CV와 같은 오픈소스 라이브러리를 사용할 수 도 있지만 구글의 VISION API의 경우 얼굴 영역을 아주 잘 잘라내어주고, 코드 수십줄만 가지고도 얼굴 영역을 알아낼 수 있기 때문에 구글 VISION API를 사용하였다.

https://cloud.google.com/vision/




VISION API ENABLE 하기

VISION API를 사용하기 위해서는 해당 구글 클라우드 프로젝트에서 VISION API를 사용하도록 ENABLE 해줘야 한다.

VISION API를 ENABLE하기 위해서는 아래 화면과 같이 구글 클라우드 콘솔 > API Manager 들어간후




+ENABLE API를 클릭하여 아래 그림과 같이 Vision API를 클릭하여 ENABLE 시켜준다.




SERVICE ACCOUNT 키 만들기

다음으로 이 VISION API를 호출하기 위해서는 API 토큰이 필요한데, SERVICE ACCOUNT 라는 JSON 파일을 다운 받아서 사용한다.

구글 클라우드 콘솔에서 API Manager로 들어간후 Credentials 메뉴에서 Create creadential 메뉴를 선택한후, Service account key 메뉴를 선택한다



다음 Create Service Account key를 만들도록 하고, accountname과 id와 같은 정보를 넣는다. 이때 중요한것이 이 키가 가지고 있는 사용자 권한을 설정해야 하는데, 편의상 모든 권한을 가지고 있는  Project Owner 권한으로 키를 생성한다.


(주의. 실제 운영환경에서 전체 권한을 가지는 키는 보안상의 위험하기 때문에 특정 서비스에 대한 접근 권한만을 가지도록 지정하여 Service account를 생성하기를 권장한다.)




Service account key가 생성이 되면, json 파일 형태로 다운로드가 된다.

여기서는 terrycho-ml-80abc460730c.json 이름으로 저장하였다.


예제 코드

그럼 예제를 보자 코드의 전문은 https://github.com/bwcho75/facerecognition/blob/master/com/terry/face/extract/crop_face.py 에 있다.


이 코드는 이미지 파일이 있는 디렉토리를 지정하고, 아웃풋 디렉토리를 지정해주면 이미지 파일을 읽어서 얼굴이 있는지 없는지를 체크하고 얼굴이 있으면, 얼굴 부분만 잘라낸 후에, 얼굴 사진을 96x96 사이즈로 리사즈 한후에,

70%의 파일들은 학습용으로 사용하기 위해서 {아웃풋 디렉토리/training/} 디렉토리에 저장하고

나머지 30%의 파일들은 검증용으로 사용하기 위해서 {아웃풋 디렉토리/validate/} 디렉토리에 저장한다.


그리고 학습용 파일 목록은 다음과 같이 training_file.txt에 파일 위치,사람명(라벨) 형태로 저장하고

/Users/terrycho/traning_datav2/training/wsmith.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith061408.jpg,Will Smith

/Users/terrycho/traning_datav2/training/wsmith1.jpg,Will Smith


검증용 파일들은 validate_file.txt에 마찬가지로  파일위치와, 사람명(라벨)을 저장한다.

사용 방법은 다음과 같다.

python com/terry/face/extract/crop_face.py “원본 파일이있는 디렉토리" “아웃풋 디렉토리"

(원본 파일 디렉토리안에는 {사람이름명} 디렉토리 아래에 사진들이 쭈욱 있는 구조라야 한다.)


자 그러면, 코드의 주요 부분을 살펴보자


VISION API 초기화 하기

  def __init__(self):

       # initialize library

       #credentials = GoogleCredentials.get_application_default()

       scopes = ['https://www.googleapis.com/auth/cloud-platform']

       credentials = ServiceAccountCredentials.from_json_keyfile_name(

                       './terrycho-ml-80abc460730c.json', scopes=scopes)

       self.service = discovery.build('vision', 'v1', credentials=credentials)


초기화 부분은 Google Vision API를 사용하기 위해서 OAuth 인증을 하는 부분이다.

scope를 googleapi로 정해주고, 인증 방식을 Service Account를 사용한다. credentials 부분에 service account key 파일인 terrycho-ml-80abc460730c.json를 지정한다.


얼굴 영역 찾아내기

다음은 이미지에서 얼굴을 인식하고, 얼굴 영역(사각형) 좌표를 리턴하는 함수를 보자


   def detect_face(self,image_file):

       try:

           with io.open(image_file,'rb') as fd:

               image = fd.read()

               batch_request = [{

                       'image':{

                           'content':base64.b64encode(image).decode('utf-8')

                           },

                       'features':[{

                           'type':'FACE_DETECTION',

                           'maxResults':MAX_RESULTS,

                           }]

                       }]

               fd.close()

       

           request = self.service.images().annotate(body={

                           'requests':batch_request, })

           response = request.execute()

           if 'faceAnnotations' not in response['responses'][0]:

                print('[Error] %s: Cannot find face ' % image_file)

                return None

               

           face = response['responses'][0]['faceAnnotations']

           box = face[0]['fdBoundingPoly']['vertices']

           left = box[0]['x']

           top = box[1]['y']

               

           right = box[2]['x']

           bottom = box[2]['y']

               

           rect = [left,top,right,bottom]

               

           print("[Info] %s: Find face from in position %s" % (image_file,rect))

           return rect

       except Exception as e:

           print('[Error] %s: cannot process file : %s' %(image_file,str(e)) )

 

VISION API를 이용하여, 얼굴 영역을 추출하는데, 위의 코드에서 처럼 image_file을 읽은후에, batch_request라는 문자열을 만든다. JSON 형태의 문자열이 되는데, 이때 image라는 항목에 이미지 데이타를 base64 인코딩 방식으로 인코딩해서 전송한다. 그리고 VISION API는 얼굴인식뿐 아니라 사물 인식, 라벨인식등 여러가지 기능이 있기 때문에 그중에서 타입을 ‘FACE_DETECTION’으로 정의하여 얼굴 영역만 인식하도록 한다.


request를 만들었으면, VISION API로 요청을 보내면 응답이 오는데, 이중에서 response 엘리먼트의 첫번째 인자 ( [‘responses’][0] )은 첫번째 얼굴은 뜻하는데, 여기서 [‘faceAnnotation’]을 하면 얼굴에 대한 정보만을 얻을 수 있다. 이중에서  [‘fdBoundingPoly’] 값이 얼굴 영역을 나타내는 사각형이다. 이 갑ㄱㅅ을 읽어서 left,top,right,bottom 값에 세팅한 후 리턴한다.


얼굴 잘라내고 리사이즈 하기

앞의 detect_face에서 찾아낸 얼굴 영역을 가지고 그 부분만 전체 사진에서 잘라내고, 잘라낸 얼굴을 학습에 적합하도록 같은 크기 (96x96)으로 리사이즈 한다.

이런 이미지 처리를 위해서 PIL (Python Imaging Library - http://www.pythonware.com/products/pil/)를 사용하였다.

   def crop_face(self,image_file,rect,outputfile):

       try:

           fd = io.open(image_file,'rb')

           image = Image.open(fd)  

           crop = image.crop(rect)

           im = crop.resize(IMAGE_SIZE,Image.ANTIALIAS)

           im.save(outputfile,"JPEG")

           fd.close()

           print('[Info] %s: Crop face %s and write it to file : %s' %(image_file,rect,outputfile) )

       except Exception as e:

           print('[Error] %s: Crop image writing error : %s' %(image_file,str(e)) )

image_file을 인자로 받아서 , rect 에 정의된 사각형 영역 만큼 crop를 해서 잘라내고, resize 함수를 이용하여 크기를 96x96으로 조정한후 (참고 IMAGE_SIZE = 96,96 로 정의되어 있다.) outputfile 경로에 저장하게 된다.        


실행을 해서 정재된 데이타는 다음과 같다.


생각해볼만한점들

이 코드는 간단한 토이 프로그램이기 때문에 간단하게 작성했지만 실제 운영환경에 적용하기 위해서는 몇가지 고려해야 할 사항이 있다.

먼저, 이 코드는 싱글 쓰레드로 돌기 때문에 속도가 상대적으로 느리다 그래서 멀티 쓰레드로 코드를 수정할 필요가 있으며, 만약에 수백만장의 사진을 정재하기 위해서는 한대의 서버로 되지 않기 때문에, 원본 데이타를 여러 서버로 나눠서 처리할 수 있는 분산 처리 구조가 고려되어야 한다.

또한, VISION API로 사진을 전송할때는 BASE64 인코딩된 구조로 서버에 이미지를 직접 전송하기 때문에, 자칫 이미지 사이즈들이 크면 네트워크 대역폭을 많이 잡아먹을 수 있기 때문에 가능하다면 식별이 가능한 크기에서 리사이즈를 한 후에, 서버로 전송하는 것이 좋다. 실제로 필요한 얼굴 크기는 96x96 픽셀이기 때문에 필요없이 1000만화소 고화질의 사진들을 전송해서 네트워크 비용을 낭비하지 않기를 바란다.


다음은 이렇게 정재한 파일들을 텐서플로우에서 읽어서 학습 데이타로 활용하는 방법에 대해서 알아보겠다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우 - 파일에서 학습데이타를 읽어보자#2


CSV 파일을 읽어보자

조대협 (http://bcho.tistory.com)


이 글은 http://bcho.tistory.com/1163 의 두번째 글이다. 앞의 글을 먼저 읽고 읽기를 권장한다.

앞의 글에서는 트레이닝 파일명의 목록을 읽어서 큐에 넣고, 파일명을 하나씩 읽어오는 처리 방법에 대해서 알아보았다. 이번 글에서는 그 파일들에 있는 데이타를 읽어서 파싱한 후, 실제 트레이닝 세션에 학습용 데이타로 불러들이는 방법을 설명하도록 한다.

파일에서 데이타 읽기 (Reader)

finename_queue에 파일명이 저장되었으면, 이 파일들을 하나씩 읽어서 처리하는 방법을 알아본다.

파일에서 데이타를 읽어오는 컴포넌트를 Reader라고 한다. 이 Reader들은 filename_queue에 저장된 파일들을 하나씩 읽어서, 그 안에 있는 데이타를 읽어서 리턴한다.


예를 들어 TextLineReader의 경우에는 , 텍스트 파일에서, 한줄씩 읽어서 문자열을 리턴한다.


꼭 텐서플로우에서 미리 정해져있는 Reader 들을 사용할 필요는 없지만, 미리 정의된 Reader를 쓰면 조금 더 편리하다.

미리 정의된 Reader로는 Text File에서, 각 필드가 일정한 길이를 가지고 있을때 사용할 수 있는, FixedLengthRecordReader 그리고, 텐서플로우 데이타를 바이너리 포맷으로 저장하는 TFRecord 포맷에 대한 리더인 TFRecordReader 등이 있다.


Reader를 사용하는 방법은 다음과 같다.

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)


먼저 Reader 변수를 지정한 다음, reader.read를 이용하여 filename_queue 로 부터 파일을 읽게 하면 value에 파일에서 읽은 값이 리턴이 된다

예를 들어 csv 파일에 아래와 같은 문자열이 들어가 있다고 할때


167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54

67ea7e52-333e-43f3-a668-6d7893baa8fb,1,2016,REG,2:11

9e44593b-a870-446e-aed5-90a22ab0c952,1,2016,REG,2:32

48832a52-e56c-467f-a1ef-c6f8c6e908ea,1,2016,REG,2:17


위의 코드 처럼, TextLineReader를 이용하여 파일을 읽게 되면 value에는

처음에는 “167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54”이, 다음에는 “67ea7e52-333e-43f3-a668-6d7893baa8fb,1,2016,REG,2:11” 문자열이 순차적으로 리턴된다.

읽은 데이타를 디코딩 하기 (Decoder)

Reader에서 읽은 값은 파일의 원시 데이타 (raw)데이타이다. 아직 파싱(해석)이 된 데이타가 아닌데,

예를 들어 Reader를 이용해서 csv 파일을 읽었을 때, Reader에서 리턴되는 값은 csv 파일의 각 줄인 문자열이지, csv 파일의 각 필드 데이타가 아니다.


즉 우리가 학습에서 사용할 데이타는

167c9599-c97d-4d42-bdb1-027ddaed07c0,1,2016,REG,3:54

하나의 문자열이 아니라

Id = “167c9599-c97d-4d42-bdb1-027ddaed07c0”,

Num  = 1

Year = 2016

rType = “REG”

rTime = “3:54”

과 같이 문자열이 파싱된 각 필드의 값이 필요하다.


이렇게 읽어드린 데이타를 파싱 (해석) 하는 컴포넌트를 Decoder라고 한다.


Reader와 마찬가지로, Decoder 역시 미리 정해진 Decoder 타입이 있는데, JSON,CSV 등 여러가지 데이타 포맷에 대한 Decoder를 지원한다.

위의 CSV 문자열을 csv 디코더를 이용하여 파싱해보자


record_defaults = [ ["null"],[1],[1900],["null"],["null"]]

id, num, year, rtype , rtime = tf.decode_csv(

   value, record_defaults=record_defaults,field_delim=',')


csv decoder를 사용하기 위해서는 각 필드의 디폴트 값을 지정해줘야 한다. record_default는 각 필드의 디폴트 값을 지정해 주는 것은 물론이고, 각 필드의 데이타 타입을 (string,int,float etc)를 정의 하는 역할을 한다.

디폴트 값은 csv 데이타에서 해당 필드가 비워져 있을때 채워 진다.

위에서는 record_deafult에서 첫번째 필드는 string 형이고 디폴트는 “null”로, 두번째 필드는 integer 형이고, 디폴트 값은 1로, 세번째 필드는 integer 형이고 디폴트는 1900 으로, 네번째와 다섯번째 필드는 모두 string형이고, 디폴트 값을 “null” 로 지정하였다.

이 디폴트 값 세팅을 가지고 tf.decode_csv를 이용하여 파싱 한다.

value는 앞에서 읽어 드린 CSV 문자열이다. record_defaults= 를 이용하여 레코드의 형과 디폴트 값을 record_defaults에 정해진 값으로 지정하였고, CSV 파일에서 각 필드를 구분하기 위한 구분자를 ‘,’를 사용한다는 것을 명시 하였다.

다음 Session을 실행하여, 이 Decoder를 실행하면 csv의 각 행을 파싱하여, 각 필드를 id,num,year,rtype,rtime이라는 필드에 리턴하게 된다.


이를 정리해보면 다음과 같은 구조를 가지게 된다.


예제

위에서 설명한 CSV 파일명을 받아서 TextLineReader를 이용하여 각 파일을 읽고, 각 파일에서 CSV 포맷의 데이타를 읽어서 출력하는 예제의 전체 코드를 보면 다음과 같다.


import tensorflow as tf

from numpy.random.mtrand import shuffle


#define filename queue

filename_queue = tf.train.string_input_producer(['/Users/terrycho/training_datav2/queue_test_data/b1.csv'

                                                ,'/Users/terrycho/training_datav2/queue_test_data/c2.csv']

                                                ,shuffle=False,name='filename_queue')

# define reader

reader = tf.TextLineReader()

key,value = reader.read(filename_queue)


#define decoder

record_defaults = [ ["null"],[1],[1900],["null"],["null"]]

id, num, year, rtype , rtime = tf.decode_csv(

   value, record_defaults=record_defaults,field_delim=',')


with tf.Session() as sess:

   

   coord = tf.train.Coordinator()

   threads = tf.train.start_queue_runners(sess=sess, coord=coord)

   

   for i in range(100):

       print(sess.run([id, num, year, rtype , rtime]))

   

   coord.request_stop()

   coord.join(threads)                                        


지금까지 파일에서 데이타를 읽어서 학습 데이타로 사용하는 방법에 대해서 알아보았다.

다음에는 이미지 기반의 CNN 모델을 학습 시키기 위해서 이미지 데이타를 전처리 하고 읽는 방법에 대해서 설명하도록 하겠다.

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우 - 파일에서 학습데이타를 읽어보자#1


조대협 (http://bcho.tistory.com)


텐서플로우를 학습하면서 실제 모델을 만들어보려고 하니 생각보다 데이타 처리에 대한 부분에서 많은 노하우가 필요하다는 것을 알게되었다. MNIST와 같은 예제는 데이타가 다 이쁘게 정리되어서 학습 하기 좋은 형태로 되어 있지만, 실제로 내 모델을 만들고 학습을 하기 위해서는 데이타에 대한 정재와 분류 작업등이 많이 필요하다.


이번글에서는 학습에 필요한 데이타를 파일에서 읽을때 필요한 큐에 대한 개념에 대해서 알아보도록 한다.


피딩 (Feeding) 개념 복습


텐서플로우에서 모델을 학습 시킬때, 학습 데이타를 모델에 적용하는 방법은 일반적으로 피딩 (feeding)이라는 방법을 사용한다. 메모리상의 어떤 변수 리스트 형태로 값을 저장한 후에, 모델을 세션에서 실행할 때, 리스트에서 값을 하나씩 읽어서 모델에 집어 넣는 방식이다.



위의 그림을 보면, y=W*x라는 모델에서 학습 데이타 x는 [1,2,3,4,5]로, 첫번째 학습에는 1, 두번째 학습에는 2를 적용하는 식으로 피딩이 된다.

그런데, 이렇게 피딩을 하려면, 학습 데이타 [1,2,3,4,5]가 메모리에 모두 적재되어야 하는데, 실제로 모델을 만들어서 학습을할때는 데이타의 양이 많기 때문에 메모리에 모두 적재하고 학습을 할 수 가 없고, 파일에서 읽어드리면서 학습을 해야 한다.


텐서플로우 큐에 대해서

이러한 문제를 해결하기 위해서는 파일에서 데이타를 읽어가면서, 읽은 데이타를 순차적으로 모델에 피딩하면 되는데, 이때 큐를 사용한다.


파일에서 데이타를 읽는 방법에 앞서서 큐를 설명하면, 큐에 데이타를 넣는 것(Enqueue) 은 Queue Runner 라는 것이 한다.

이 Queue Runner가 큐에 어떤 데이타를 어떻게 넣을지를 정의 하는 것이 Enqueue_operation인데, 데이타를 읽어서 실제로 어떻게 Queue에 Enqueue 하는지를 정의한다.


이 Queue Runner는 멀티 쓰레드로 작동하는데, Queue Runner 안의 쓰레드들을 관리해주기 위해서 별도로 Coordinator라는 것을 사용한다.


이 개념을 정리해서 도식화 해주면 다음과 같다.


=


Queue Runner 는 여러개의 쓰레드 (T)를 가지고 있고, 이 쓰레드들은 Coordinator들에 의해서 관리된다. Queue Runner 가 Queue에 데이타를 넣을때는 Enqueue_op이라는 operation에 의해 정의된 데로 데이타를 Queue에 집어 넣는다.


위의 개념을 코드로 구현해보자


import tensorflow as tf


QUEUE_LENGTH = 20

q = tf.FIFOQueue(QUEUE_LENGTH,"float")

enq_ops = q.enqueue_many(([1.0,2.0,3.0,4.0],) )

qr = tf.train.QueueRunner(q,[enq_ops,enq_ops,enq_ops])


sess = tf.Session()

# Create a coordinator, launch the queue runner threads.

coord = tf.train.Coordinator()

threads = qr.create_threads(sess, coord=coord, start=True)


for step in xrange(20):

   print(sess.run(q.dequeue()))


coord.request_stop()

coord.join(threads)


sess.close()


Queue 생성

tf.FIFOQUEUE를 이용해서 큐를 생성한다.

q = tf.FIFOQueue(QUEUE_LENGTH,"float")

첫번째 인자는 큐의 길이를 정하고, 두번째는 dtype으로 큐에 들어갈 데이타형을 지정한다.

Queue Runner 생성

다음은 Queue Runner를 만들기 위해서 enqueue_operation 과, QueueRunner를 생성한다.

enq_ops = q.enqueue_many(([1.0,2.0,3.0,4.0],) )

qr = tf.train.QueueRunner(q,[enq_ops,enq_ops,enq_ops])

enqueue operation인 enq_ops는 위와 같이 한번에 [1.0,2.0,3.0,4.0] 을 큐에 넣는 operation으로 지정한다.

그리고 Queue Runner를 정의하는데, 앞에 만든 큐에 데이타를 넣을것이기 때문에 인자로 큐 ‘q’를 넘기고 list 형태로 enq_ops를 3개를 넘긴다. 3개를 넘기는 이유는 Queue Runner가 멀티쓰레드 기반이기 때문에 각 쓰레드에서 Enqueue시 사용할 Operation을 넘기는 것으로, 3개를 넘긴것은 3개의 쓰레드에 Enqueue 함수를 각각 지정한 것이다.

만약 동일한 enqueue operation을 여러개의 쓰레드로 넘길 경우 위 코드처럼 일일이 enqueue operation을 쓸 필요 없이

qr = tf.train.QueueRunner(q,[enq_ops]*NUM_OF_THREAD)

[enq_ops] 에 쓰레드 수 (NUM_OF_THREAD)를 곱해주면 된다.

Coordinator 생성

이제 Queue Runner에서 사용할 쓰레드들을 관리할 Coordinator를 생성하자

coord = tf.train.Coordinator()

Queue Runner용 쓰레드 생성

Queue Runner와 쓰레드를 관리할 Coordinator 가 생성되었으면, Queue Runner에서 사용할 쓰레드들을 생성하자

threads = qr.create_threads(sess, coord=coord, start=True)

생성시에는 세션과, Coordinator를 지정하고, start=True로 해준다.

start=True로 설정하지 않으면, 쓰레드가 생성은 되었지만, 동작을 하지 않기 때문에, 큐에 메세지를 넣지 않는다.

큐 사용

이제 큐에서 데이타를 꺼내와 보자. 아래코드는 큐에서 20번 데이타를 꺼내와서 출력하는 코드이다.

for step in xrange(20):

   print(sess.run(q.dequeue()))


큐가 비워지면, QueueRunner를 이용하여 계속해서 데이타를 채워 넣는다. 즉 큐가 비기전에 계속해서 [1.0,2.0,3.0,4.0] 데이타가 큐에 계속 쌓인다.

쓰레드 정지

큐 사용이 끝났으면 Queue Runner의 쓰레드들을 모두 정지 시켜야 한다.

coord.request_stop()

을 이용하면 모든 쓰레드들을 정지 시킨다.

coord.join(threads)

는 다음 코드를 진행하기전에, Queue Runner의 모든 쓰레드들이 정지될때 까지 기다리는 코드이다.

멀티 쓰레드

Queue Runner가 멀티 쓰레드라고 하는데, 그렇다면 쓰레드들이 어떻게 데이타를 큐에 넣고 enqueue 연산은 어떻게 동작할까?

그래서, 간단한 테스트를 해봤다. 3개의 쓰레드를 만든 후에, 각 쓰레드에 따른 enqueue operation을 다르게 지정해봤다.

import tensorflow as tf


QUEUE_LENGTH = 20

q = tf.FIFOQueue(QUEUE_LENGTH,"float")

enq_ops1 = q.enqueue_many(([1.0,2.0,3.0],) )

enq_ops2 = q.enqueue_many(([4.0,5.0,6.0],) )

enq_ops3 = q.enqueue_many(([6.0,7.0,8.0],) )

qr = tf.train.QueueRunner(q,[enq_ops1,enq_ops2,enq_ops3])


sess = tf.Session()

# Create a coordinator, launch the queue runner threads.

coord = tf.train.Coordinator()

threads = qr.create_threads(sess, coord=coord, start=True)


for step in xrange(20):

   print(sess.run(q.dequeue()))


coord.request_stop()

coord.join(threads)


sess.close()


실행을 했더니, 다음과 같은 결과를 얻었다.


첫번째 실행 결과

1.0

2.0

3.0

4.0

5.0

6.0

6.0

7.0

8.0



두번째 실행결과

1.0

2.0

3.0

1.0

2.0

3.0

4.0

5.0

6.0


결과에서 보는것과 같이 Queue Runner의 3개의 쓰레드중 하나가 무작위로 (순서에 상관없이) 실행되서 데이타가 들어가는 것을 볼 수 있었다.


파일에서 데이타 읽기


자 그러면 이 큐를 이용해서, 파일 목록을 읽고, 파일을 열어서 학습 데이타를 추출해서 학습 파이프라인에 데이타를 넣어주면 된다.

텐서 플로우에서는 파일에서 데이타를 읽는 처리를 위해서 앞에서 설명한 큐 뿐만 아니라 Reader와 Decoder와 같은 부가적인 기능을 제공한다.


  1. 파일 목록을 읽는다.

  2. 읽은 파일목록을 filename queue에 저장한다.

  3. Reader 가 finename queue 에서 파일명을 하나씩 읽어온다.

  4. Decoder에서 해당 파일을 열어서 데이타를 읽어들인다.

  5. 필요하면 읽어드린 데이타를 텐서플로우 모델에 맞게 정재한다. (이미지를 리사이즈 하거나, 칼라 사진을 흑백으로 바꾸거나 하는 등의 작업)

  6. 텐서 플로우에 맞게 정재된 학습 데이타를 학습 데이타 큐인 Example Queue에 저장한다.

  7. 모델에서 Example Queue로 부터 학습 데이타를 읽어서 학습을 한다.


먼저 파일 목록을 읽는 부분은 파일 목록을 읽어서 각 파일명을  큐에 넣은 부분을 살펴보자.

다음 예제코드는 파일명 목록을 받은 후에, filename queue에 파일명을 넣은후에, 파일명을 하나씩 꺼내는 예제이다.

import tensorflow as tf


filename_queue = tf.train.string_input_producer(["1","2","3"],shuffle=False)


with tf.Session() as sess:

   

   coord = tf.train.Coordinator()

   threads = tf.train.start_queue_runners(coord=coord,sess=sess)

   

   for step in xrange(10):

       print(sess.run(filename_queue.dequeue()) )


   coord.request_stop()

   coord.join(threads)


코드를 보면 큐 생성이나, enqueue operation 처리들이 다소 다른것을 볼 수 있는데, 이는 텐서플로우에서는  학습용 파일 목록을 편리하게 처리 하기 위해서 조금 더 추상화된 함수들을 제공하기 때문이다.


filename_queue = tf.train.string_input_producer(["1","2","3"],shuffle=False)


train.xx_input_producer() 함수는 입력 받은 큐를 만드는 역할을 한다.

위의 명령을 수행하면, filename queue 가 FIFO (First In First Out)형태로 생긴다.


큐가 생기기는 하지만, 실제로 큐에 파일명이 들어가지는 않는다. (아직 Queue Runner와 쓰레드들을 생성하지 않았기 때문에)

다음으로 쓰레드를 관리하기 위한 Coordinator 를 생성한다.

   coord = tf.train.Coordinator()

Coordinator 가 생성이 되었으면 Queue Runner와 Queue Runner에서 사용할 Thread들을 생성해주는데,  start_queue_runner 라는 함수로, 이 기능들을 모두 구현해놨다.

   threads = tf.train.start_queue_runners(coord=coord,sess=sess)

이 함수는 Queue Runner와, 쓰레드 생성 및 시작 뿐 만 아니라 Queue Runner 쓰레드가 사용하는 enqueue operation 까지 파일형태에 맞춰서 자동으로 생성 및 지정해준다.






Queue, Queue Runner, Coordinator와 Queue Runner가 사용할 쓰레드들이 생성되고 시작되었기 때문에,Queue Runner는 filename queue에 파일명을 enqueue 하기 시작한다.

파일명 Shuffling

위의 예제를 실행하면 파일명이 다음과 같이 1,2,3 이 순차적으로 반복되서 나오는 것을 볼 수 있다.

실행 결과

1

2

3

1

2

3

1

2

3

1


만약에 파일명을 랜덤하게 섞어서 나오게 하려면 어떻게해야 할까? (매번 학습시 학습데이타가 일정 패턴으로 몰려서 편향되지 않고, 랜덤하게 나와서 학습 효과를 높이고자 할때)

filename_queue = tf.train.string_input_producer(["1","2","3"],shuffle=False)

큐를 만들때, 다음과 같이 셔플 옵션을 True로 주면 된다.

filename_queue = tf.train.string_input_producer(["1","2","3"],shuffle=True)

실행 결과

2

1

3

2

3

1

2

3

1

1

지금까지 파일명을 지정해서 이 파일명들을 filename queue에 넣는 방법에 대해서 알아보았다.

다음은 이 file name queue에서 파일을 순차적으로 꺼내서

  • 파일을 읽어드리고

  • 각 파일을 파싱해서 학습 데이타를 만들고

  • 학습 데이타용 큐 (example queue)에 넣는 방법

에 대해서 설명하도록 한다.



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우에서 이미지 데이타 처리 성능 향상방법


이미지 인식 모델을 만들다가 파일 포맷 성능 향상 관련해서 좋은 팁을 찾아서 메모


if you are working with >O(1000) JPEG images, keep in mind that it is extremely inefficient to individually ready 1000's of small files. This will slow down your training quite a bit.

A more robust and faster solution to convert a dataset of images to a sharded TFRecord of Example protos. Here is a fully worked script for converting the ImageNet data set to such a format. And here is a set of instructions for running a generic version of this preprocessing script on an arbitrary directory containing JPEG images.

http://stackoverflow.com/questions/37126108/how-to-read-data-into-tensorflow-batches-from-example-queue

1000개 이상의 JPEG나 PNG 이미지를 매번 읽어서 트레이닝을 시킬 경우, 트레이닝 성능이 낮아진다.

그래서 JPEG 포맷을 사용하지 말고 TFRecord 포맷을 사용하고, TFRecord 포맷에서 한 파일에 하나의 데이타를 넣지말고 여러 데이타를 넣는 방법을 사용해야 한다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

머신러닝에서 학습용 데이타양 늘리기


머신러닝에 대해서 공부하다가 강연을 들은적이 있었는데, 그때 많이 들었던 이야기가 데이타 뻥튀기에 대한 이야기 였다.

확보할 수 있는 원본 데이타의 양이 한정되어 있으니, 현재의 데이타를 가지고 그 양을 늘리는 방법인데. 어떻게 하나 사실 궁금했는데.

(얼굴의 경우 선글라스를 씌우거나 기타의 방법을 생각했는데..)


오늘 튜토리얼을 보다보니, 구체적인 그 방법이 나와 있어서 잠깐 메모 해놓는다

https://www.tensorflow.org/tutorials/deep_cnn


여기서 소개된 방법은

  • 이미지의 좌/우를 바꾼다거나, 
  • 이미지의 밝기나 선명도를 바꾸는 방법을 사용한다.




저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서보드를 이용하여 학습 과정을 시각화 해보자


조대협 (http://bcho.tistory.com)


텐서플로우로 머신러닝 모델을 만들어서 학습해보면, 각 인자에 어떤 값들이 학습이 진행되면서 어떻게 변화하는지 모니터링 하기가 어렵다. 앞의 예제들에서는 보통 콘솔에 텍스트로 loss 값이나, accuracy 값을 찍어서, 학습 상황을 봤는데, 텐서보다는 학습에 사용되는 각종 지표들이 어떻게 변화하는지 손쉽게 시각화를 해준다.


예를 들어 보면 다음 그림은 학습을 할때 마다 loss 값이 어떻게 변하는지를 보여주는 그래프이다.

가로축은 학습 횟수를 세로축은 모델의 loss 값을 나타낸다.





잘 보면 두개의 그래프가 그려져 있는 것을 볼 수 있는데, 1st 그래프는 첫번째 학습, 2nd 는 두번째 학습에서  추출한 loss 값이다.

Visualize Learning

그러면 어떻게 학습 과정을 시각화할 수 있는지를 알아보자

학습 과정을 시각화 하려면 학습중에 시각화 하려는 데이타를 tf.summary 모듈을 이용해서 중간중간에 파일로 기록해놨다가, 학습이 끝난 후에 이 파일을 텐서 보드를 통해서 읽어서 시각화 한다. 이를 위해서 다음과 같이 크게 4가지 메서드가 주로 사용이 된다.

  • tf.summary.merge_all
    Summary를 사용하기 위해서 초기화 한다.

  • tf.summary.scalar(name,value)
    Summary에 추가할 텐서를 정의 한다. name에는 이름, vallue에는 텐서를 정의한다. Scalar 형 텐서로 (즉 다차원 행렬이 아닌, 단일 값을 가지는 텐서형만 사용이 가능하다.) 주로 accuracy나 loss와 같은 스칼라형 텐서에 사용한다.

  • tf.summary.histogram(name,value)
    값(value) 에 대한 분포도를 보고자 할때 사용한다. .scalar와는 다르게 다차원 텐서를 사용할 수 있다. 입력 데이타에 대한 분포도나, Weight, Bias값의 변화를 모니터링할 수 있다.

  • tf.train.SummaryWriter
    파일에 summary 데이타를 쓸때 사용한다.


예제는 https://www.tensorflow.org/tutorials/mnist/tf/ 를 참고하면 된다.


mnist.py에서 아래와 같이 loss 값을 모니터링 하기 위해서 tf.summary.scalar를 이용하여 ‘loss’라는 이름으로 loss 텐서를 모니터링하기 위해서 추가하였다.


다음 fully_connected_feed.py에서

Summary를 초기화 하고, 세션이 시작된 후에, summary_writer를 아래와 같이 초기화 하였다.


이때, 파일 경로 (FLAGS.log_dir)을 설정하고, 텐서 플로우의 세션 그래프(sess.graph)를 인자로 넘긴다.




다음 트레이닝 과정에서, 100번마다, summary 값을 문자열로 변환하여, summary_writer를 이용하여 파일에 저장하였다.


트레이닝이 끝나면 위에서 지정된 디렉토리에 아래와 같이 summary 데이타 파일이 생성 된다.



이를 시각화 하려면 콘솔에서 tensorboard --logdir=”Summary 파일 디렉토리 경로" 를 지정해주면 6060 포트로 텐서보드 웹 사이트가 준비된다.



웹 브라우져를 열어서 localhost:6060에 접속해보면 다음과 같은 그림이 나온다.


Loss 값이 트레이닝이 수행됨에 따라 작아 지는 것을 볼 수 있다. (총 2000번 트레이닝을 하였다.)

세로축은 loss 값, 가로축은 학습 스텝이 된다.


만약에 여러번 학습을 하면서 모델을 튜닝했다면, 각 학습 별로 loss 값이나 accuracy 값이 어떻게 변하는지 그래프를 중첩하여 비교하고 싶을 수 있는데, 이 경우에는


% tensorboard --logdir=이름1:로그경로2,이름2:로그경로2,....


이런식으로 “이름:로그경로"를 ,로 구분하여 여러개를 써주면 그래프를 중첩하여 볼 수 있다.

아래는 1st, 2nd 두개의 이름으로 두개의 summary 로그를 중첩하여 시각화하여 각 학습 별로 loss 값이 어떻게 변화 하는지를 보여주는 그래프 이다.



Histogram

히스토 그램은 다차원 텐서에 대한 분포를 볼 수 있는 방법인데,

https://github.com/llSourcell/Tensorboard_demo 에 히스토그램을 텐서보드로 모니터링할 수 있는 좋은 샘플이 있다. 이 코드는 세개의 히든레이어를 갖는 뉴럴네트워크인데, (사실 좀 코드는 이상하다. Bias 값도 더하지 않았고, 일반 레이어 없이 dropout 레이어만 엮었다. 모델 자체가 맞는지 틀리는지는 따지지 말고 어떻게 Histogram을 모니터링 하는지를 살펴보자)


모델 그래프는 다음과 같다.




다음, 각 레이어에서 사용된 weight 값인 w_h,w_h2,w_o를 모니터링 하기 위해서 이 텐서들을 tf.historgram_summary를 이용하여 summary에 저장 한다.



이렇게 저장된 데이타를 텐서 보드로 시각화 해보면


Distribution 탭에서는 다음과 같은 값을 볼 수 있다.



w_h_summ 값의 분포인데, 세로 축은 w의 값, 가로축은 학습 횟수 이다.

학습이 시작되는 초기에는 w값이 0을 중심으로 좌우 대칭으로 모여 있는 것을 볼 수 있다. 잘 보면, 선이 있는 것을 볼 수 있는데, 색이 진할 수 록, 값이 많이 모여 있는 것이고 흐릴 수 록 값이 적게 있는 것이다.


다른 뷰로는 Histogram View를 보면, 다음과 같은 그래프를 볼 수 있는데,



세로축이 학습 횟수, 가로축이 Weight의 값이다.

그래프가 여러개가 중첩 되어 있는 것을 볼 수 있는데, 각각의 그래프는 각 학습시에 나온 Weight의 값으로, 위의 그래프에서 보면 중앙에 값이 집중되어 있다가, 아래 그래프를 보면 값이 점차적으로 옆으로 퍼지는 것을 볼 수 있다.


사실 개인적인 의견이지만 Weight 값의 분포를 보는 것이 무슨 의미를 가지는지는 잘 모르겠다. CNN에서 필터링 된 피쳐의 분포나, 또는 원본 데이타의 분포에는 의미가 있을듯하다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

딥러닝을 이용한 숫자 이미지 인식 #2/2


앞서 MNIST 데이타를 이용한 필기체 숫자를 인식하는 모델을 컨볼루셔널 네트워크 (CNN)을 이용하여 만들었다. 이번에는 이 모델을 이용해서 필기체 숫자 이미지를 인식하는 코드를 만들어 보자


조금 더 테스트를 쉽게 하기 위해서, 파이썬 주피터 노트북내에서 HTML 을 이용하여 마우스로 숫자를 그릴 수 있도록 하고, 그려진 이미지를 어떤 숫자인지 인식하도록 만들어 보겠다.



모델 로딩

먼저 앞의 예제에서 학습을한 모델을 로딩해보도록 하자.

이 코드는 주피터 노트북에서 작성할때, 모델을 학습 시키는 코드 (http://bcho.tistory.com/1156) 와 별도의 새노트북에서 구현을 하도록 한다.


코드

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data


#이미 그래프가 있을 경우 중복이 될 수 있기 때문에, 기존 그래프를 모두 리셋한다.

tf.reset_default_graph()


num_filters1 = 32


x = tf.placeholder(tf.float32, [None, 784])

x_image = tf.reshape(x, [-1,28,28,1])


#  layer 1

W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,num_filters1],

                                         stddev=0.1))

h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')


b_conv1 = tf.Variable(tf.constant(0.1, shape=[num_filters1]))

h_conv1_cutoff = tf.nn.relu(h_conv1 + b_conv1)


h_pool1 =tf.nn.max_pool(h_conv1_cutoff, ksize=[1,2,2,1],

                       strides=[1,2,2,1], padding='SAME')


num_filters2 = 64


# layer 2

W_conv2 = tf.Variable(

           tf.truncated_normal([5,5,num_filters1,num_filters2],

                               stddev=0.1))

h_conv2 = tf.nn.conv2d(h_pool1, W_conv2,

                      strides=[1,1,1,1], padding='SAME')


b_conv2 = tf.Variable(tf.constant(0.1, shape=[num_filters2]))

h_conv2_cutoff = tf.nn.relu(h_conv2 + b_conv2)


h_pool2 =tf.nn.max_pool(h_conv2_cutoff, ksize=[1,2,2,1],

                       strides=[1,2,2,1], padding='SAME')


# fully connected layer

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*num_filters2])


num_units1 = 7*7*num_filters2

num_units2 = 1024


w2 = tf.Variable(tf.truncated_normal([num_units1, num_units2]))

b2 = tf.Variable(tf.constant(0.1, shape=[num_units2]))

hidden2 = tf.nn.relu(tf.matmul(h_pool2_flat, w2) + b2)


keep_prob = tf.placeholder(tf.float32)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)


w0 = tf.Variable(tf.zeros([num_units2, 10]))

b0 = tf.Variable(tf.zeros([10]))

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, '/Users/terrycho/anaconda/work/cnn_session')


print 'reload has been done'


그래프 구현

코드를 살펴보면, #prepare session 부분 전까지는 이전 코드에서의 그래프를 정의하는 부분과 동일하다. 이 코드는 우리가 만든 컨볼루셔널 네트워크를 복원하는 부분이다.


변수 데이타 로딩

그래프의 복원이 끝나면, 저장한 세션의 값을 다시 로딩해서 학습된 W와 b값들을 다시 로딩한다.


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, '/Users/terrycho/anaconda/work/cnn_session')


이때 saver.restore 부분에서 앞의 예제에서 저장한 세션의 이름을 지정해준다.

HTML을 이용한 숫자 입력

그래프와 모델 복원이 끝났으면 이 모델을 이용하여, 숫자를 인식해본다.

테스트하기 편리하게 HTML로 마우스로 숫자를 그릴 수 있는 화면을 만들어보겠다.

주피터 노트북에서 새로운 Cell에 아래와 같은 내용을 입력한다.


코드

input_form = """

<table>

<td style="border-style: none;">

<div style="border: solid 2px #666; width: 143px; height: 144px;">

<canvas width="140" height="140"></canvas>

</div></td>

<td style="border-style: none;">

<button onclick="clear_value()">Clear</button>

</td>

</table>

"""


javascript = """

<script type="text/Javascript">

   var pixels = [];

   for (var i = 0; i < 28*28; i++) pixels[i] = 0

   var click = 0;


   var canvas = document.querySelector("canvas");

   canvas.addEventListener("mousemove", function(e){

       if (e.buttons == 1) {

           click = 1;

           canvas.getContext("2d").fillStyle = "rgb(0,0,0)";

           canvas.getContext("2d").fillRect(e.offsetX, e.offsetY, 8, 8);

           x = Math.floor(e.offsetY * 0.2)

           y = Math.floor(e.offsetX * 0.2) + 1

           for (var dy = 0; dy < 2; dy++){

               for (var dx = 0; dx < 2; dx++){

                   if ((x + dx < 28) && (y + dy < 28)){

                       pixels[(y+dy)+(x+dx)*28] = 1

                   }

               }

           }

       } else {

           if (click == 1) set_value()

           click = 0;

       }

   });

   

   function set_value(){

       var result = ""

       for (var i = 0; i < 28*28; i++) result += pixels[i] + ","

       var kernel = IPython.notebook.kernel;

       kernel.execute("image = [" + result + "]");

   }

   

   function clear_value(){

       canvas.getContext("2d").fillStyle = "rgb(255,255,255)";

       canvas.getContext("2d").fillRect(0, 0, 140, 140);

       for (var i = 0; i < 28*28; i++) pixels[i] = 0

   }

</script>

"""


다음 새로운 셀에서, 다음 코드를 입력하여, 앞서 코딩한 HTML 파일을 실행할 수 있도록 한다.


from IPython.display import HTML

HTML(input_form + javascript)


이제 앞에서 만든 두 셀을 실행시켜 보면 다음과 같이 HTML 기반으로 마우스를 이용하여 숫자를 입력할 수 있는 박스가 나오는것을 확인할 수 있다.



입력값 판정

앞의 HTML에서 그린 이미지는 앞의 코드의 set_value라는 함수에 의해서, image 라는 변수로 784 크기의 벡터에 저장된다. 이 값을 이용하여, 이 그림이 어떤 숫자인지를 앞서 만든 모델을 이용해서 예측을 해본다.


코드


p_val = sess.run(p, feed_dict={x:[image], keep_prob:1.0})


fig = plt.figure(figsize=(4,2))

pred = p_val[0]

subplot = fig.add_subplot(1,1,1)

subplot.set_xticks(range(10))

subplot.set_xlim(-0.5,9.5)

subplot.set_ylim(0,1)

subplot.bar(range(10), pred, align='center')

plt.show()

예측

예측을 하는 방법은 쉽다. 이미지 데이타가 image 라는 변수에 들어가 있기 때문에, 어떤 숫자인지에 대한 확률을 나타내는 p 의 값을 구하면 된다.


p_val = sess.run(p, feed_dict={x:[image], keep_prob:1.0})


를 이용하여 x에 image를 넣고, 그리고 dropout 비율을 0%로 하기 위해서 keep_prob를 1.0 (100%)로 한다. (예측이기 때문에 당연히 dropout은 필요하지 않다.)

이렇게 하면 이 이미지가 어떤 숫자인지에 대한 확률이 p에 저장된다.

그래프로 표현

그러면 이 p의 값을 찍어 보자


fig = plt.figure(figsize=(4,2))

pred = p_val[0]

subplot = fig.add_subplot(1,1,1)

subplot.set_xticks(range(10))

subplot.set_xlim(-0.5,9.5)

subplot.set_ylim(0,1)

subplot.bar(range(10), pred, align='center')

plt.show()


그래프를 이용하여 0~9 까지의 숫자 (가로축)일 확률을 0.0~1.0 까지 (세로축)으로 출력하게 된다.

다음은 위에서 입력한 숫자 “4”를 인식한 결과이다.



(보너스) 첫번째 컨볼루셔널 계층 결과 출력

컨볼루셔널 네트워크를 학습시키다 보면 종종 컨볼루셔널 계층을 통과하여 추출된 특징 이미지들이 어떤 모양을 가지고 있는지를 확인하고 싶을때가 있다. 그래서 각 필터를 통과한 값을 이미지로 출력하여 확인하고는 하는데, 여기서는 이렇게 각 필터를 통과하여 인식된 특징이 어떤 모양인지를 출력하는 방법을 소개한다.


아래는 우리가 만든 네트워크 중에서 첫번째 컨볼루셔널 필터를 통과한 결과 h_conv1과, 그리고 이 결과에 bias 값을 더하고 활성화 함수인 Relu를 적용한 결과를 출력하는 예제이다.


코드


conv1_vals, cutoff1_vals = sess.run(

   [h_conv1, h_conv1_cutoff], feed_dict={x:[image], keep_prob:1.0})


fig = plt.figure(figsize=(16,4))


for f in range(num_filters1):

   subplot = fig.add_subplot(4, 16, f+1)

   subplot.set_xticks([])

   subplot.set_yticks([])

   subplot.imshow(conv1_vals[0,:,:,f],

                  cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()


x에 image를 입력하고, dropout을 없이 모든 네트워크를 통과하도록 keep_prob:1.0으로 주고, 첫번째 컨볼루셔널 필터를 통과한 값 h_conv1 과, 이 값에 bias와 Relu를 적용한 값 h_conv1_cutoff를 계산하였다.

conv1_vals, cutoff1_vals = sess.run(

   [h_conv1, h_conv1_cutoff], feed_dict={x:[image], keep_prob:1.0})


첫번째 필터는 총 32개로 구성되어 있기 때문에, 32개의 결과값을 imshow 함수를 이용하여 흑백으로 출력하였다.




다음은 bias와 Relu를 통과한 값인 h_conv_cutoff를 출력하는 예제이다. 위의 코드와 동일하며 subplot.imgshow에서 전달해주는 인자만 conv1_vals → cutoff1_vals로 변경되었다.


코드


fig = plt.figure(figsize=(16,4))


for f in range(num_filters1):

   subplot = fig.add_subplot(4, 16, f+1)

   subplot.set_xticks([])

   subplot.set_yticks([])

   subplot.imshow(cutoff1_vals[0,:,:,f],

                  cmap=plt.cm.gray_r, interpolation='nearest')

   

plt.show()


출력 결과는 다음과 같다



이제까지 컨볼루셔널 네트워크를 이용한 이미지 인식을 텐서플로우로 구현하는 방법을 MNIST(필기체 숫자 데이타)를 이용하여 구현하였다.


실제로 이미지를 인식하려면 전체적인 흐름은 같지만, 이미지를 전/후처리 해내야 하고 또한 한대의 머신이 아닌 여러대의 머신과 GPU와 같은 하드웨어 장비를 사용한다. 다음 글에서는 MNIST가 아니라 실제 칼라 이미지를 인식하는 방법에 대해서 데이타 전처리에서 부터 서비스까지 전체 과정에 대해서 설명하도록 하겠다.


예제 코드 : https://github.com/bwcho75/tensorflowML/blob/master/MNIST_CNN_Prediction.ipynb


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

딥러닝을 이용한 숫자 이미지 인식 #1/2


조대협 (http://bcho.tistory.com)


지난 글(http://bcho.tistory.com/1154 ) 을 통해서 소프트맥스 회귀를 통해서, 숫자를 인식하는 모델을 만들어서 학습 시켜 봤다.

이번글에서는 소프트맥스보다 정확성이 높은 컨볼루셔널 네트워크를 이용해서 숫자 이미지를 인식하는 모델을 만들어 보겠다.


이 글의 목적은 CNN 자체의 설명이나, 수학적 이론에 대한 이해가 목적이 아니다. 최소한의 수학적 지식만 가지고, CNN 네트워크 모델을 텐서플로우로 구현하는데에 그 목적을 둔다. CNN을 이해하기 위해서는 Softmax 등의 함수를 이해하는게 좋기 때문에 가급적이면 http://bcho.tistory.com/1154 예제를 먼저 보고 이 문서를 보는게 좋다. 그 다음에 CNN 모델에 대한 개념적인 이해를 위해서 http://bcho.tistory.com/1149  문서를 참고하고 이 문서를 보는 것이 좋다.


이번 글은 CNN을 적용하는 것 이외에, 다음과 같은 몇가지 팁을 추가로 소개한다.

  • 학습이 된 모델을 저장하고 다시 로딩 하는 방법

  • 학습된 모델을 이용하여 실제로 주피터 노트북에서 글씨를 써보고 인식하는 방법

MNIST CNN 모델


우리가 만들고자 하는 모델은 두개의 컨볼루셔널 레이어(Convolutional layer)과, 마지막에 풀리 커넥티드 레이어 (fully connected layer)을 가지고 있는 컨볼루셔널 네트워크 모델(CNN) 이다.

모델의 모양을 그려보면 다음과 같다.


입력 데이타

입력으로 사용되는 데이타는 앞의 소프트맥스 예제에서 사용한 데이타와 동일한 손으로 쓴 숫자들이다. 각 숫자 이미지는 28x28 픽셀로 되어 있고, 흑백이미지이기 때문에 데이타는 28x28x1 행렬이 된다. (만약에 칼라 RGB라면 28x28x3이 된다.)

컨볼루셔널 계층

총 두 개의 컨볼루셔널 계층을 사용했으며, 각 계층에서 컨볼루셔널 필터를 사용해서, 특징을 추출한다음에, 액티베이션 함수 (Activation function)으로, ReLu를 적용한 후, 맥스풀링 (Max Pooling)을 이용하여, 주요 특징을 정리해낸다.

이와 같은 컨볼루셔널 필터를 두개를 중첩하여 적용하였다.

마지막 풀리 커넥티드 계층

컨볼루셔널 필터를 통해서 추출된 특징은 풀리 커넥티드 레이어(Fully connected layer)에 의해서 분류 되는데, 풀리 커넥티드 레이어는 하나의 뉴럴 네트워크를 사용하고, 그 뒤에 드롭아웃 (Dropout) 계층을 넣어서, 오버피팅(Overfitting)이 발생하는 것을 방지한다.  마지막으로 소프트맥스 (Softmax) 함수를 이용하여 0~9 열개의 숫자로 분류를 한다.


학습(트레이닝) 코드

이를 구현하기 위한 코드는 다음과 같다.


코드

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data



tf.reset_default_graph()


np.random.seed(20160704)

tf.set_random_seed(20160704)


# load data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)


# define first layer

num_filters1 = 32


x = tf.placeholder(tf.float32, [None, 784])

x_image = tf.reshape(x, [-1,28,28,1])


W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,num_filters1],

                                         stddev=0.1))

h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')


b_conv1 = tf.Variable(tf.constant(0.1, shape=[num_filters1]))

h_conv1_cutoff = tf.nn.relu(h_conv1 + b_conv1)


h_pool1 = tf.nn.max_pool(h_conv1_cutoff, ksize=[1,2,2,1],

                        strides=[1,2,2,1], padding='SAME')


# define second layer

num_filters2 = 64


W_conv2 = tf.Variable(

           tf.truncated_normal([5,5,num_filters1,num_filters2],

                               stddev=0.1))

h_conv2 = tf.nn.conv2d(h_pool1, W_conv2,

                      strides=[1,1,1,1], padding='SAME')


b_conv2 = tf.Variable(tf.constant(0.1, shape=[num_filters2]))

h_conv2_cutoff = tf.nn.relu(h_conv2 + b_conv2)


h_pool2 = tf.nn.max_pool(h_conv2_cutoff, ksize=[1,2,2,1],

                        strides=[1,2,2,1], padding='SAME')


# define fully connected layer

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*num_filters2])


num_units1 = 7*7*num_filters2

num_units2 = 1024


w2 = tf.Variable(tf.truncated_normal([num_units1, num_units2]))

b2 = tf.Variable(tf.constant(0.1, shape=[num_units2]))

hidden2 = tf.nn.relu(tf.matmul(h_pool2_flat, w2) + b2)


keep_prob = tf.placeholder(tf.float32)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)


w0 = tf.Variable(tf.zeros([num_units2, 10]))

b0 = tf.Variable(tf.zeros([10]))

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)


#define loss (cost) function

t = tf.placeholder(tf.float32, [None, 10])

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k,t))

train_step = tf.train.AdamOptimizer(0.0001).minimize(loss)

correct_prediction = tf.equal(tf.argmax(p, 1), tf.argmax(t, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()


# start training

i = 0

for _ in range(1000):

   i += 1

   batch_xs, batch_ts = mnist.train.next_batch(50)

   sess.run(train_step,

            feed_dict={x:batch_xs, t:batch_ts, keep_prob:0.5})

   if i % 500 == 0:

       loss_vals, acc_vals = [], []

       for c in range(4):

           start = len(mnist.test.labels) / 4 * c

           end = len(mnist.test.labels) / 4 * (c+1)

           loss_val, acc_val = sess.run([loss, accuracy],

               feed_dict={x:mnist.test.images[start:end],

                          t:mnist.test.labels[start:end],

                          keep_prob:1.0})

           loss_vals.append(loss_val)

           acc_vals.append(acc_val)

       loss_val = np.sum(loss_vals)

       acc_val = np.mean(acc_vals)

       print ('Step: %d, Loss: %f, Accuracy: %f'

              % (i, loss_val, acc_val))


saver.save(sess, 'cnn_session')

sess.close()



데이타 로딩 파트

그러면 코드를 하나씩 살펴보도록 하자.

맨 처음 블럭은 데이타를 로딩하고 각종 변수를 초기화 하는 부분이다.

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data


#Call tf.reset_default_graph() before you build your model (and the Saver). This will ensure that the variables get the names you intended, but it will invalidate previously-created graphs.


tf.reset_default_graph()


np.random.seed(20160704)

tf.set_random_seed(20160704)


# load data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)


Input_data 는 텐서플로우에 내장되어 있는 MNIST (손으로 쓴 숫자 데이타)셋으로, read_data_sets 메서드를 이요하여 데이타를 읽었다. 데이타 로딩 부분은 앞의 소프트맥스 MNIST와 같으니 참고하기 바란다.


여기서 특히 주목해야 할 부분은 tf.reset_default_graph()  인데, 주피터 노트북과 같은 환경에서 실행을 하게 되면, 주피터 커널을 리스타트하지 않는 이상 변수들의 컨택스트가 그대로 유지 되기 때문에, 위의 코드를 같은 커널에서 tf.reset_default_graph() 없이, 두 번 이상 실행하게 되면 에러가 난다. 그 이유는 텐서플로우 그래프를 만들어놓고, 그 그래프가 지워지지 않은 상태에서 다시 같은 그래프를 생성하면서 나오는 에러인데, tf.reset_default_graph() 메서드는 기존에 생성된 디폴트 그래프를 모두 삭제해서 그래프가 중복되는 것을 막아준다. 일반적인 파이썬 코드에서는 크게 문제가 없지만, 컨택스트가 계속 유지되는 주피터 노트북 같은 경우에는 발생할 수 있는 문제이니, 반드시 디폴트 그래프를 리셋해주도록 하자

첫번째 컨볼루셔널 계층

필터의 정의

다음은 첫번째 컨볼루셔널 계층을 정의 한다. 컨볼루셔널 계층을 이해하려면 컨볼루셔널 필터에 대한 개념을 이해해야 하는데, 다시 한번 되짚어 보자.

컨볼루셔널 계층에서 하는 일은 입력 데이타에 필터를 적용하여, 특징을 추출해 낸다.


이 예제에서 입력 받는 이미지 데이타는  28x28x1 행렬로 표현된 흑백 숫자 이미지이고, 예제 코드에서는 5x5x1 사이즈의 필터를 적용한다.

5x5x1 사이즈의 필터 32개를 적용하여, 총 32개의 특징을 추출할것이다.


코드

필터 정의 부분까지 코드로 살펴보면 다음과 같다.

# define first layer

num_filters1 = 32


x = tf.placeholder(tf.float32, [None, 784])

x_image = tf.reshape(x, [-1,28,28,1])


W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,num_filters1],


x는 입력되는 이미지 데이타로, 2차원 행렬(28x28)이 아니라, 1차원 벡터(784)로 되어 있고, 데이타의 수는 무제한으로 정의하지 않았다. 그래서 placeholder정의에서 shape이 [None,784] 로 정의 되어 있다.  

예제에서는 연산을 편하게 하기 위해서 2차원 행렬을 사용할것이기 때문에, 784 1차원 벡터를 28x28x1 행렬로 변환을 해준다.

x_image는 784x무한개인 이미지 데이타 x를 , (28x28x1)이미지의 무한개 행렬로  reshape를 이용하여 변경하였다. [-1,28,28,1]은 28x28x1 행렬을 무한개(-1)로 정의하였다.


필터를 정의하는데, 필터는 앞서 설명한것과 같이 5x5x1 필터를 사용할것이고, 필터의 수는 32개이기 때문에, 필터 W_conv1의 차원(shape)은 [5,5,1,32] 가된다. (코드에서 32는 num_filters1 이라는 변수에 저장하여 사용하였다.) 그리고 W_conv1의 초기값은 [5,5,1,32] 차원을 가지는 난수를 생성하도록 tf.truncated_normal을 사용해서 임의의 수가 지정되도록 하였다.

필터 적용

필터를 정의했으면 필터를 입력 데이타(이미지)에 적용한다.


h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')


필터를 적용하는 방법은 tf.nn.conv2d를 이용하면 되는데, 28x28x1 사이즈의 입력 데이타인 x_image에 앞에서 정의한 필터 W_conv1을 적용하였다.

스트라이드 (Strides)

필터는 이미지의 좌측 상단 부터 아래 그림과 같이 일정한 간격으로 이동하면서 적용된다.


이를 개념적으로 표현하면 다음과 같은 모양이 된다.


이렇게 필터를 움직이는 간격을 스트라이드 (Stride)라고 한다.

예제에서는 우측으로 한칸 그리고 끝까지 이동하면 아래로 한칸을 이동하도록 각각 가로와 세로의 스트라이드 값을 1로 세팅하였다.

코드에서 보면

h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')

에서 strides=[1,1,1,1] 로 정의한것을 볼 수 있다. 맨앞과 맨뒤는 통상적으로 1을 쓰고, 두번째 1은 가로 스트라이드 값, 그리고 세번째 1은 세로 스트라이드 값이 된다.

패딩 (Padding)

위의 그림과 같이 필터를 적용하여 추출된 특징 행렬은 원래 입력된 이미지 보다 작게 된다.

연속해서 필터를 이런 방식으로 적용하다 보면 필터링 된 특징들이  작아지게되는데, 만약에 특징을  다 추출하기 전에 특징들이 의도하지 않게 유실되는 것을 막기 위해서 패딩이라는 것을 사용한다.


패딩이란, 입력된 데이타 행렬 주위로, 무의미한 값을 감싸서 원본 데이타의 크기를 크게 해서, 필터를 거치고 나온 특징 행렬의 크기가 작아지는 것을 방지한다.

또한 무의미한 값을 넣음으로써, 오버피팅이 발생하는 것을 방지할 수 있다. 코드상에서 padding 변수를 이용하여 패딩 방법을 정의하였다.


h_conv1 = tf.nn.conv2d(x_image, W_conv1,

                      strides=[1,1,1,1], padding='SAME')



padding=’SAME’을 주게 되면, 텐서플로우가 자동으로 패딩을 삽입하여 입력값과 출력값 (특징 행렬)의 크기가 같도록 한다. padding=’VALID’를 주게 되면, 패딩을 적용하지 않고 필터를 적용하여 출력값 (특징 행렬)의 크기가 작아진다.

활성함수 (Activation function)의 적용

필터 적용이 끝났으면, 이 필터링된 값에 활성함수를 적용한다. 컨볼루셔널 네트워크에서 일반적으로 사용하는 활성함수는 ReLu 함수이다.


코드

b_conv1 = tf.Variable(tf.constant(0.1, shape=[num_filters1]))

h_conv1_cutoff = tf.nn.relu(h_conv1 + b_conv1)


먼저 bias 값( y=WX+b 에서 b)인 b_conv1을 정의하고, tf.nn.relu를 이용하여, 필터된 결과(h_conv1)에 bias 값을 더한 값을 ReLu 함수로 적용하였다.

Max Pooling

추출된 특징 모두를 가지고 특징을 판단할 필요가 없이, 일부 특징만을 가지고도 특징을 판단할 수 있다. 즉 예를 들어서 고해상도의 큰 사진을 가지고도 어떤 물체를 식별할 수 있지만, 작은 사진을 가지고도 물체를 식별할 수 있다. 이렇게 특징의 수를 줄이는 방법을 서브샘플링 (sub sampling)이라고 하는데, 서브샘플링을 해서 전체 특징의 수를 의도적으로 줄이는 이유는 데이타의 크기를 줄이기 때문에, 컴퓨팅 파워를 절약할 수 있고, 데이타가 줄어드는 과정에서 데이타가 유실이 되기 때문에, 오버 피팅을 방지할 수 있다.


이러한 서브 샘플링에는 여러가지 방법이 있지만 예제에서는 맥스 풀링 (max pooling)이라는 방법을 사용했는데, 맥스 풀링은 풀링 사이즈 (mxn)로 입력데이타를 나눈후 그 중에서 가장 큰 값만을 대표값으로 추출하는 것이다.


아래 그림을 보면 원본 데이타에서 2x2 사이즈로 맥스 풀링을 해서 결과를 각 셀별로 최대값을 뽑아내었고, 이 셀을 가로 2칸씩 그리고 그다음에는 세로로 2칸씩 이동하는 stride 값을 적용하였다.


코드

h_pool1 = tf.nn.max_pool(h_conv1_cutoff, ksize=[1,2,2,1],

                        strides=[1,2,2,1], padding='SAME')


Max pooling은 tf.nn.max_pool이라는 함수를 이용해서 적용할 수 있는데, 첫번째 인자는 활성화 함수 ReLu를 적용하고 나온 결과 값인 h_conv1_cutoff 이고, 두 번째 인자인 ksize는 풀링 필터의 사이즈로 [1,2,2,1]은 2x2 크기로 묶어서 풀링을 한다는 의미이다.


다음 stride는 컨볼루셔널 필터 적용과 마찬가지로 풀링 필터를 가로와 세로로 얼마만큼씩 움직일 것인데, strides=[1,2,2,1]로, 가로로 2칸, 세로로 2칸씩 움직이도록 정의하였다.


행렬의 차원 변환

텐서플로우를 이용해서 CNN을 만들때 각각 개별의 알고리즘을 이해할 필요는 없지만 각 계층을 추가하거나 연결하기 위해서는 행렬의 차원이 어떻게 바뀌는지는 이해해야 한다.

다음 그림을 보자


첫번째 컨볼루셔널 계층은 위의 그림과 같이, 처음에 28x28x1 의 이미지가 들어가면 32개의 컨볼루셔널 필터 W를 적용하게 되고, 각각은 28x28x1의 결과 행렬을 만들어낸다. 컨볼루셔널 필터를 거치게 되면 결과 행렬의 크기는 작아져야 정상이지만, 결과 행렬의 크기를 입력 행렬의 크기와 동일하게 유지하도록 padding=’SAME’으로 설정하였다.

다음으로 bias 값 b를 더한후 (위의 그림에는 생략하였다) 에 이 값에 액티베이션 함수 ReLu를 적용하고 나면 행렬 크기에 변화 없이 28x28x1 행렬 32개가 나온다. 이 각각의 행렬에 size가 2x2이고, stride가 2인 맥스풀링 필터를 적용하게 되면 각각의 행렬의 크기가 반으로 줄어들어 14x14x1 행렬 32개가 리턴된다.


두번째 컨볼루셔널 계층


이제 두번째 컨볼루셔널 계층을 살펴보자. 첫번째 컨볼루셔널 계층과 다를 것이 없다.


코드

# define second layer

num_filters2 = 64


W_conv2 = tf.Variable(

           tf.truncated_normal([5,5,num_filters1,num_filters2],

                               stddev=0.1))

h_conv2 = tf.nn.conv2d(h_pool1, W_conv2,

                      strides=[1,1,1,1], padding='SAME')


b_conv2 = tf.Variable(tf.constant(0.1, shape=[num_filters2]))

h_conv2_cutoff = tf.nn.relu(h_conv2 + b_conv2)


h_pool2 = tf.nn.max_pool(h_conv2_cutoff, ksize=[1,2,2,1],

                        strides=[1,2,2,1], padding='SAME')


단 필터값인 W_conv2의 차원이 [5,5,32,64] ([5,5,num_filters1,num_filters2] 부분 )로 변경되었다.


W_conv2 = tf.Variable(

           tf.truncated_normal([5,5,num_filters1,num_filters2],

                               stddev=0.1))


필터의 사이즈가 5x5이고, 입력되는 값이 32개이기 때문에, 32가 들어가고, 총 64개의 필터를 적용하기 때문에 마지막 부분이 64가 된다.

첫번째 필터와 똑같이 stride를 1,1을 줘서 가로,세로로 각각 1씩 움직이고, padding=’SAME’으로 입력과 출력 사이즈를 같게 하였다.


h_pool2 = tf.nn.max_pool(h_conv2_cutoff, ksize=[1,2,2,1],

                        strides=[1,2,2,1], padding='SAME')


맥스풀링 역시 첫번째 필터와 마찬가지로 2,2 사이즈의 필터(ksize=[1,2,2,1]) 를 적용하고 stride값을 2,2로 줘서 (strides=[1,2,2,1]) 가로 세로로 두칸씩 움직이게 하여 결과의 크기가 반으로 줄어들게 하였다.


14x14 크기의 입력값 32개가 들어가서, 7x7 크기의 행렬 64개가 리턴된다.

풀리 커넥티드 계층

두개의 컨볼루셔널 계층을 통해서 특징을 뽑아냈으면, 이 특징을 가지고 입력된 이미지가 0~9 중 어느 숫자인지를 풀리 커넥티드 계층 (Fully connected layer)를 통해서 판단한다.


코드

# define fully connected layer

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*num_filters2])


num_units1 = 7*7*num_filters2

num_units2 = 1024


w2 = tf.Variable(tf.truncated_normal([num_units1, num_units2]))

b2 = tf.Variable(tf.constant(0.1, shape=[num_units2]))

hidden2 = tf.nn.relu(tf.matmul(h_pool2_flat, w2) + b2)


keep_prob = tf.placeholder(tf.float32)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)


w0 = tf.Variable(tf.zeros([num_units2, 10]))

b0 = tf.Variable(tf.zeros([10]))

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)


입력된 64개의 7x7 행렬을 1차원 행렬로 변환한다.


h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*num_filters2])


다음으로 풀리 커넥티드 레이어에 넣는데, 이때 입력값은 64x7x7 개의 벡터 값을 1024개의 뉴런을 이용하여 학습한다.


w2 = tf.Variable(tf.truncated_normal([num_units1, num_units2]))

b2 = tf.Variable(tf.constant(0.1, shape=[num_units2]))


그래서 w2의 값은 [num_units1,num_units2]로 num_units1은 64x7x7 로 입력값의 수를, num_unit2는 뉴런의 수를 나타낸다. 다음 아래와 같이 이 뉴런으로 계산을 한 후 액티베이션 함수 ReLu를 적용한다.


hidden2 = tf.nn.relu(tf.matmul(h_pool2_flat, w2) + b2)


다음 레이어에서는 드롭 아웃을 정의하는데, 드롭 아웃은 오버피팅(과적합)을 막기 위한 계층으로, 원리는 다음 그림과 같이 몇몇 노드간의 연결을 끊어서 학습된 데이타가 도달하지 않도록 하여서 오버피팅이 발생하는 것을 방지하는 기법이다.


출처 : http://cs231n.github.io/neural-networks-2/


텐서 플로우에서 드롭 아웃을 적용하는 것은 매우 간단하다. 아래 코드와 같이 tf.nn.dropout 이라는 함수를 이용하여, 앞의 네트워크에서 전달된 값 (hidden2)를 넣고 keep_prob에, 연결 비율을 넣으면 된다.

keep_prob = tf.placeholder(tf.float32)

hidden2_drop = tf.nn.dropout(hidden2, keep_prob)


연결 비율이란 네트워크가 전체가 다 연결되어 있으면 1.0, 만약에 50%를 드롭아웃 시키면 0.5 식으로 입력한다.

드롭 아웃이 끝난후에는 결과를 가지고 소프트맥스 함수를 이용하여 10개의 카테고리로 분류한다.


w0 = tf.Variable(tf.zeros([num_units2, 10]))

b0 = tf.Variable(tf.zeros([10]))

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)

비용 함수 정의

여기까지 모델 정의가 끝났다. 이제 이 모델을 학습 시키기 위해서 비용함수(코스트 함수)를 정의해보자.

코스트 함수는 크로스엔트로피 함수를 이용한다.

#define loss (cost) function

t = tf.placeholder(tf.float32, [None, 10])

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k,t))

train_step = tf.train.AdamOptimizer(0.0001).minimize(loss)


k는 앞의 모델에 의해서 앞의 모델에서

k = tf.matmul(hidden2_drop, w0) + b0

p = tf.nn.softmax(k)


으로 softmax를 적용하기 전의 값이다.  Tf.nn.softmax_cross_entropy_with_logits 는 softmax가 포함되어 있는 함수이기 때문에, p를 적용하게 되면 softmax 함수가 중첩 적용되기 때문에, softmax 적용전의 값인 k 를 넣었다.


WARNING: This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. Do not call this op with the output of softmax, as it will produce incorrect results

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.softmax_cross_entropy_with_logits.md


t는 플레이스 홀더로 정의하였는데, 나중에 학습 데이타 셋에서 읽을 라벨 (그 그림이 0..9 중 어느 숫자인지)이다.


그리고 이 비용 함수를 최적화 하기 위해서 최적화 함수 AdamOptimizer를 사용하였다.

(앞의 소프트맥스 예제에서는 GradientOptimizer를 사용하였는데, 일반적으로 AdamOptimizer가 좀 더 무난하다.)

학습

이제 모델 정의와, 모델의 비용함수와 최적화 함수까지 다 정의하였다. 그러면 이 그래프들을 데이타를 넣어서 학습 시켜보자.  학습은 배치 트레이닝을 이용할것이다.


학습 도중 학습의 진행상황을 보기 위해서 학습된 모델을 중간중간 테스트할것이다. 테스트할때마다 학습의 정확도를 측정하여 출력하는데, 이를 위해서 정확도를 계산하는 함수를 아래와 같이 정의한다.


#define validation function

correct_prediction = tf.equal(tf.argmax(p, 1), tf.argmax(t, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


correct_prediction은 학습 결과와 입력된 라벨(정답)을 비교하여 맞았는지 틀렸는지를 리턴한다.

argmax는 인자에서 가장 큰 값의 인덱스를 리턴하는데, 0~9 배열이 들어가 있기 때문에 가장 큰 값이 학습에 의해 예측된 숫자이다. p는 예측에 의한 결과 값이고, t는 라벨 값이다 이 두 값을 비교하여 가장 큰 값이 있는 인덱스가 일치하면 예측이 성공한것이다.

correct_pediction은 bool 값이기 때문에, 이 값을 숫자로 바꾸기 위해서 tf.reduce_mean을 사용하여, accuracy에 저장하였다.


이제 학습을 세션을 시작하고, 변수들을 초기화 한다.

# prepare session

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()


다음 배치 학습을 시작한다.

# start training

i = 0

for _ in range(10000):

   i += 1

   batch_xs, batch_ts = mnist.train.next_batch(50)

   sess.run(train_step,

            feed_dict={x:batch_xs, t:batch_ts, keep_prob:0.5})

   if i % 500 == 0:

       loss_vals, acc_vals = [], []

       for c in range(4):

           start = len(mnist.test.labels) / 4 * c

           end = len(mnist.test.labels) / 4 * (c+1)

           loss_val, acc_val = sess.run([loss, accuracy],

               feed_dict={x:mnist.test.images[start:end],

                          t:mnist.test.labels[start:end],

                          keep_prob:1.0})

           loss_vals.append(loss_val)

           acc_vals.append(acc_val)

       loss_val = np.sum(loss_vals)

       acc_val = np.mean(acc_vals)

       print ('Step: %d, Loss: %f, Accuracy: %f'

              % (i, loss_val, acc_val))


학습은 10,000번 루프를 돌면서 한번에 50개씩 배치로 데이타를 읽어서 학습을 진행하고, 500 번째 마다 중각 학습 결과를 출력한다. 중간 학습 결과에서는 10,000 중 몇번째 학습인지와, 비용값 그리고 정확도를 출력해준다.


코드를 보자


   batch_xs, batch_ts = mnist.train.next_batch(50)


MNIST 학습용 데이타 셋에서 50개 단위로 데이타를 읽는다. batch_xs에는 학습에 사용할 28x28x1 사이즈의 이미지와, batch_ts에는 그 이미지에 대한 라벨 (0..9중 어떤 수인지) 가 들어 있다.

읽은 데이타를 feed_dict를 통해서 피딩(입력)하고 트레이닝 세션을 시작한다.


  sess.run(train_step,

            feed_dict={x:batch_xs, t:batch_ts, keep_prob:0.5})


이때 마지막 인자에 keep_prob를 0.5로 피딩하는 것을 볼 수 있는데, keep_prob는 앞의 드롭아웃 계층에서 정의한 변수로 드롭아웃을 거치지 않을 비율을 정의한다. 여기서는 0.5 즉 50%의 네트워크를 인위적으로 끊도록 하였다.


배치로 학습을 진행하다가 500번 마다 중간중간 정확도와 학습 비용을 계산하여 출력한다.

   if i % 500 == 0:

       loss_vals, acc_vals = [], []


여기서 주목할 점은 아래 코드 처럼 한번에 검증을 하지 않고 테스트 데이타를 4등분 한후, 1/4씩 테스트 데이타를 로딩해서 학습비용(loss)와 학습 정확도(accuracy)를 계산하는 것을 볼 수 있다.


       for c in range(4):

           start = len(mnist.test.labels) / 4 * c

           end = len(mnist.test.labels) / 4 * (c+1)

           loss_val, acc_val = sess.run([loss, accuracy],

               feed_dict={x:mnist.test.images[start:end],

                          t:mnist.test.labels[start:end],

                          keep_prob:1.0})

           loss_vals.append(loss_val)

           acc_vals.append(acc_val)


이유는 한꺼번에 많은 데이타를 로딩해서 검증을 할 경우 메모리 문제가 생길 수 있기 때문에, 4번에 나눠 걸쳐서 읽고 검증한 다음에 아래와 같이 학습 비용은 4번의 학습 비용을 합하고, 정확도는 4번의 학습 정확도를 평균으로 내어 출력하였다.


       loss_val = np.sum(loss_vals)

       acc_val = np.mean(acc_vals)

       print ('Step: %d, Loss: %f, Accuracy: %f'

              % (i, loss_val, acc_val))

학습 결과 저장

학습을 통해서 최적의 W와 b값을 구했으면 이 값을 예측에 이용해야 하는데, W 값들이 많고, 이를 일일이 출력해서 파일로 저장하는 것도 번거롭고 해서, 텐서플로우에서는 학습된 모델을 저장할 수 있는 기능을 제공한다. 학습을 통해서 계산된 모든 변수 값을 저장할 수 있는데,  앞에서 세션을 생성할때 생성한 Saver (saver = tf.train.Saver())를 이용하면 현재 학습 세션을  저장할 수 있다.


코드

saver.save(sess, 'cnn_session')

sess.close()


이렇게 하면 현재 디렉토리에 cnn_session* 형태의 파일로 학습된 세션 값들이 저장된다.

그래서 추후 예측을 할때 다시 학습할 필요 없이 이 파일을 로딩해서, 모델의 값들을 복귀한 후에, 예측을 할 수 있다. 이 파일을 읽어서 예측을 하는 것은 다음글에서 다루기로 한다.


예제 코드 : https://github.com/bwcho75/tensorflowML/blob/master/MNIST_CNN_Training.ipynb


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


텐서플로우로 모델을 만들어보자

Softmax를 이용한 숫자 인식

조대협 (http://bcho.tistory.com)


텐서플로우와 머신러닝에 대한 개념에 대해서 대략적으로 이해 했으면 간단한 코드를 한번 짜보자.

MNIST

그러면 이제 실제로 텐서플로우로 모델을 만들어서 학습을 시켜보자. 예제에 사용할 시나리오는 MNIST (Mixed National Institute of Standards and Technology database) 라는 데이타로, 손으로 쓴 숫자이다. 이 손으로 쓴 숫자 이미지를 0~9 사이의 숫자로 인식하는 예제이다.



이 예제는 텐서플로우 MNIST 튜토리얼 (https://www.tensorflow.org/tutorials/mnist/beginners/) 을 기반으로 작성하였는데, 설명이 빠진 부분과 소스코드 일부분이 수정되었으니 내용이 약간 다르다는 것을 인지해주기를 바란다.


MNIST 숫자 이미지를 인식하는 모델을 softmax 알고리즘을 이용하여 만든 후에, 트레이닝을 시키고, 정확도를 체크해보도록 하겠다.

데이타셋

MNIST 데이타는 텐서플로우 내에 라이브러리 형태로 내장이 되어 있어서 쉽게 사용이 가능하다. tensorflow.examples.tutorials.mnist 패키지에 데이타가 들어 있는데, read_data_sets 명령어를 이용하면 쉽게 데이타를 로딩할 수 있다.


데이타 로딩 코드

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data


mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)


Mnist 데이타셋에는 총 60,000개의 데이타가 있는데, 이 데이타는  크게 아래와 같이 세종류의 데이타 셋으로 나눠 진다. 모델 학습을 위한 학습용 데이타인 mnist.train 그리고, 학습된 모델을 테스트하기 위한 테스트 데이타 셋은 minst.test, 그리고 모델을 확인하기 위한 mnist.validation 데이타셋으로 구별된다.

각 데이타는 아래와 같이 학습용 데이타 55000개, 테스트용 10,000개, 그리고, 확인용 데이타 5000개로 구성되어 있다.


데이타셋 명

행렬 차원

데이타 종류

노트

mnist.train.images

55000 x 784

학습 이미지 데이타


mnist.train.labels

55000 x 10

학습 라벨 데이타


mnist.test.images

10000 x 784

테스트용 이미지 데이타


mnist.test.labels

10000 x 10

테스트용 라벨 데이타


mnist.validation.images

5000 x 784

확인용 이미지 데이타


mnist.validation.labels

5000 x 10

확인용 라벨 데이타



각 데이타셋은 학습을 위한 글자 이미지를 저장한 데이타 image 와, 그 이미지가 어떤 숫자인지를 나타낸 라벨 데이타인 label로 두개의 데이타 셋으로 구성되어 있다.

이미지

먼저 이미지 데이타를 보면 아래 그림과 같이 28x28 로 구성되어 있는데,


이를 2차원 행렬에서 1차원으로 쭈욱 핀 형태로 784개의 열을 가진 1차원 행렬로 변환되어 저장이 되어 있다.

mnist.train.image는 이러한 784개의 열로 구성된 이미지가 55000개가 저장이 되어 있다.


텐서플로우의 행렬을 나타내는 shape의 형태로는 shape=[55000,784] 이 된다.


마찬가지로, mnist.train.image 도 784개의 열로 구성된 숫자 이미지 데이타를 10000개를 가지고 있고 텐서플로우의 shape으로는 shape=[10000,784] 로 표현될 수 있다.


라벨

Label 은 이미지가 나타내는 숫자가 어떤 숫자인지를 나타내는 라벨 데이타로 10개의 숫자로 이루어진 1행 행렬이다. 0~9 순서로, 그 숫자이면 1 아니면 0으로 표현된다. 예를 들어 1인경우는 [0,1,0,0,0,0,0,0,0,0,0]  9인 경우는 [0,0,0,0,0,0,0,0,0,1] 로 표현된다.

이미지 데이타에 대한 라벨이기 때문에, 당연히 이미지 데이타 수만큼의 라벨을 가지게 된다.



Train 데이타 셋은 이미지가 55000개 였기 때문에, Train의 label의 수 역시도 55000개가 된다.


소프트맥스 회귀(Softmax regression)

숫자 이미지를 인식하는 모델은 많지만, 여기서는 간단한 알고리즘 중 하나인 소프트 맥스 회귀 모델을 사용하겠다.

소프트맥스 회귀에 대한 알고리즘 자체는 자세히 설명하지 않는다. 소프트맥스 회귀는 classification 알고리즘중의 하나로, 들어온 값이 어떤 분류인지 구분해주는 알고리즘이다.

예를 들어 A,B,C 3개의 결과로 분류해주는 소프트맥스의 경우 결과값은 [0.7,0.2,0.1] 와 같이 각각 A,B,C일 확률을 리턴해준다. (결과값의 합은 1.0이 된다.)


(cf. 로지스틱 회귀는 두 가지로만 분류가 가능하지만, 소프트맥스 회귀는 n 개의 분류로 구분이 가능하다.)


모델 정의

소프트맥스로 분류를 할때, x라는 값이 들어 왔을때, 분류를 한다고 가정했을때, 모델에서 사용하는 가설은 다음과 같다.  

y = softmax (W*x + b)

W는 weight, 그리고 b는 bias 값이다.

y는 최종적으로 10개의 숫자를 감별하는 결과가 나와야 하기 때문에, 크기가 10인 행렬이 되고,

10개의 결과를 만들기 위해서 W역시 10개가 되어야 하며, 이미지 하나는 784개의 숫자로 되어 있기 때문에, 10개의 값을 각각 784개의 숫자에 적용해야 하기 때문에, W는 784x10 행렬이 된다. 그리고, b 는 10개의 값에 각각 더하는 값이기 때문에, 크기가 10인 행렬이 된다.


이를 표현해보면 다음과 같은 그림이 된다.


이를 텐서플로우 코드로 표현하면 다음과 같다.

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


우리가 구하고자 하는 값은 x 값으로 학습을 시켜서 0~9를 가장 잘 구별해내는 W와 b의 값을 찾는 일이다.


여기서 코드를 주의깊게 봤다면 하나의 의문이 생길것이다.

x의 데이타는 총 55000개로, 55000x784 행렬이 되고, W는 784x10 행렬이다. 이 둘을 곱하면, 55000x10 행렬이 되는데, b는 1x10 행렬로 차원이 달라서 합이 되지 않는다.

텐서플로우와 파이썬에서는 이렇게 차원이 다른 행렬을 큰 행렬의 크기로 늘려주는 기능이 있는데, 이를 브로드 캐스팅이라고 한다. (브로드 캐스팅 개념 참고 - http://bcho.tistory.com/1153)

브로드 캐스팅에 의해서 b는 55000x10 사이즈로 자동으로 늘어나고 각 행에는 첫행과 같은 데이타들로 채워지게 된다.


소프트맥스 알고리즘을 이해하고 사용해도 좋지만, 텐서플로우에는 이미 tf.nn.softmax 라는 함수로 만들어져 있고, 대부분 많이 알려진 머신러닝 모델들은 샘플들이 많이 있기 때문에, 대략적인 원리만 이해하고 가져다 쓰는 것을 권장한다. 보통 모델을 다 이해하려고 하다가 수학에서 부딪혀서 포기하는 경우가 많은데, 디테일한 모델을 이해하기 힘들면, 그냥 함수나 예제코드를 가져다 쓰는 방법으로 접근하자. 우리가 일반적인 프로그래밍에서도 해쉬테이블이나 트리와 같은 자료구조에 대해서 대략적인 개념만 이해하고 미리 정의된 라이브러리를 사용하지 직접 해쉬 테이블등을 구현하는 경우는 드물다.

코스트(비용) 함수

이 소프트맥스 함수에 대한 코스트 함수는 크로스엔트로피 (Cross entropy) 함수의 평균을 이용하는데, 복잡한 산식 없이 그냥 외워서 쓰자. 다행이도 크로스엔트로피 함수역시 함수로 구현이 되어있다.


Cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y_))


가설에 의해 계산된 값 y를 넣지 않고 tf.matmul(x, W) + b 를 넣은 이유는 tf.nn.softmax_cross_entropy_with_logits 함수 자체가 softmax를 포함하기 때문이다.

y_은 학습을 위해서 입력된 값이다.


텐서플로우로 구현

자 그럼 학습을 위한 전체 코드를 보자


샘플코드

# Import data

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

 

mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)


# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])                                                                               

learning_rate = 0.5

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)


print ("Training")

sess = tf.Session()

init = tf.global_variables_initializer() #.run()

sess.run(init)

for _ in range(1000):

   # 1000번씩, 전체 데이타에서 100개씩 뽑아서 트레이닝을 함.  

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})


print ('b is ',sess.run(b))

print('W is',sess.run(W))

데이타 로딩

# Import data

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

 

mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)


앞에서 데이타에 대해서 설명한것과 같이 데이타를 로딩하는 부분이다. read_data_sets에 들어가 있는 디렉토리는 샘플데이타를 온라인에서 다운 받는데, 그 데이타를 임시로 저장해놓을 위치이다.

모델 정의

다음은 소프트맥스를 이용하여 모델을 정의한다.

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


x는 트레이닝 데이타를 저장하는 스테이크홀더, W는 Weight, b는 bias 값이고, 모델은 y = tf.nn.softmax(tf.matmul(x, W) + b) 이 된다.

코스트함수와 옵티마이저 정의

모델을 정의했으면 학습을 위해서, 코스트 함수를 정의한다.

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])                                                                               

learning_rate = 0.5

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)


코스트 함수는 크로스 엔트로피 함수의 평균값을 사용한다. 크로스엔트로피 함수는 아래와 같은 모양인데, 이 값을 전체 트레이닝 데이타셋의 수로 나눠 준다.  


그래서 최종적으로 cost 함수는 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_)) 이 된다.

이 때 주의할점은 y가 아니라 k를 넣어야 한다. softmax_cross_entropy_with_logits 함수는 softmax를 같이 하기 때문에, 위의 y값은 이미 softmax를 해버린 함수이기 때문에 softmax가 중복될 수 있다.



이 코스트 함수를 가지고 코스트가 최소화가 되는 W와 b를 구해야 하는데, 옵티마이져를 사용한다. 여기서는 경사 하강법(Gradient Descent Optimizer)를 사용하였고 경사하강법에 대한 개념은 http://bcho.tistory.com/1141 를 참고하기 바란다.

GradientDescent에서 learning rate는 학습속도 인데, 학습 속도에 대한 개념은 http://bcho.tistory.com/1141 글을 참고하기 바란다.

세션 초기화  

print ("Training")

sess = tf.Session()

init = tf.global_variables_initializer() #.run()

sess.run(init)


tf.Session() 을 이용해서 세션을 만들고, global_variable_initializer()를 이용하여, 변수들을 모두 초기화한후, 초기화 값을 sess.run에 넘겨서 세션을 초기화 한다.

트레이닝 시작

세션이 생성되었으면 이제 트레이닝을 시작한다.

for _ in range(1000):

   # 1000번씩, 전체 데이타에서 100개씩 뽑아서 트레이닝을 함.  

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})


여기서 주목할점은 Batch training 과 Stochastic training 인데, Batch training이란, 학습을 할때 전체 데이타를 가지고 한번에 학습을 하는게 아니라 전체 데이타셋을 몇 개로 쪼갠후 나눠서 트레이닝을 하는 방법을 배치 트레이닝이라고 한다. 그중에서 여기에 사용된 배치 방법은 Stochastic training 이라는 방법인데, 원칙대로라면 전체 55000개 의 학습데이타가 있기 때문에 배치 사이즈를 100으로 했다면, 100개씩 550번 순차적으로 데이타를 읽어서 학습을 해야겠지만, Stochastic training은 전체 데이타중 일부를 샘플링해서 학습하는 방법으로, 여기서는 배치 한번에 100개씩의 데이타를 뽑아서 1000번 배치로 학습을 하였다.

(텐서플로우 문서에 따르면, 전체 데이타를 순차적으로 학습 시키기에는 연산 비용이 비싸기 때문에, 샘플링을 해도 비슷한 정확도를 낼 수 있기 때문에, 예제 차원에서 간단하게, Stochastic training을 사용한것으로 보인다.)


결과값 출력

print ('b is ',sess.run(b))

print('W is',sess.run(W))


마지막으로 학습에서 구해진 W와 b를 출력해보자

다음은 실행 결과 스크린 샷이다.




먼저 앞에서 데이타를 로딩하도록 지정한 디렉토리에, 학습용 데이타를 다운 받아서 압축 받는 것을 확인할 수 있다. (Extracting.. 부분)

그 다음 학습이 끝난후에, b와 W 값이 출력되었다. W는 784 라인이기 때문에, 중간을 생략하고 출력되었으나, 각 행을 모두 찍어보면 아래와 같이 W 값이 들어가 있는 것을 볼 수 있다.


모델 검증

이제 모델을 만들고 학습을 시켰으니, 이 모델이 얼마나 정확하게 작동하는지를 테스트 해보자.  mnist.test.image 와 mnist.test.labels 데이타셋을 이용하여 테스트를 진행하는데, 앞에서 나온 모델에 mnist.test.image 데이타를 넣어서 예측을 한 후에, 그 결과를 mnist.test.labels (정답)과 비교해서 정답률이 얼마나 되는지를 비교한다.


다음은 모델 테스팅 코드이다. 이 코드를 위의 코드 뒤에 붙여서 실행하면 된다.


모델 검증 코드

print ("Testing model")

# Test trained model

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print('accuracy ',sess.run(accuracy, feed_dict={x: mnist.test.images,

                                    y_: mnist.test.labels}))

print ("done")

   

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

코드를 보자, tf.argmax 함수를 이해해야 하는데, argmax(y,1)은 행렬 y에서 몇번째에 가장 큰 값이 들어가 있는지를 리턴해주는 함수이다. 아래 예제 코드를 보면


session = tf.InteractiveSession()


data = tf.constant([9,2,11,4])

idx = tf.argmax(data,0)

print idx.eval()


session.close()


[9,2,11,4] 에서 최대수는 11이고, 이 위치는 두번째 (0 부터 시작한다)이기 때문에 0을 리턴한다.

두번째 변수는 어느축으로 카운트를 할것인지를 선택한다. , 1차원 배열의 경우에는 0을 사용한다.

여기서 y는 2차원 행렬인데, 0이면 같은 열에서 최대값인 순서, 1이면 같은 행에서 최대값인 순서를 리턴한다.

그럼 원래 코드로 돌아오면 tf.argmax(y,1)은 y의 각행에서 가장 큰 값의 순서를 찾는다. y의 각행을 0~9으로 인식한 이미지의 확률을 가지고 있다.

아래는 4를 인식한 y 값인데, 4의 값이 0.7로 가장높기 (4일 확률이 70%, 3일 확률이 10%, 1일 확률이 20%로 이해하면 된다.) 때문에, 4로 인식된다.

여기서 tf.argmax(y,1)을 사용하면, 행별로 가장 큰 값을 리턴하기 때문에, 위의 값에서는 4가 리턴이된다.

테스트용 데이타에서 원래 정답이 4로 되어 있다면, argmax(y_,1)도 4를 리턴하기 때문에, tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))는 tf.equals(4,4)로 True를 리턴하게 된다.


모든 테스트 셋에 대해서 검증을 하고 나서 그 결과에서 True만 더해서, 전체 트레이닝 데이타의 수로 나눠 주면 결국 정확도가 나오는데, tf.cast(boolean, tf.float32)를 하면 텐서플로우의 bool 값을 float32 (실수)로 변환해준다. True는 1.0으로 False는 0.0으로 변환해준다. 이렇게 변환된 값들의 전체 평균을 구하면 되기 때문에, tf.reduce_mean을 사용한다.


이렇게 정확도를 구하는 함수가 정의되었으면 이제 정확도를 구하기 위해 데이타를 넣어보자

sess.run(accuracy, feed_dict={x: mnist.test.images,y_: mnist.test.labels})

x에 mnist.test.images 데이타셋으로 이미지 데이타를 입력받아서  y (예측 결과)를 계산하고, y_에는 mnist.test.labels 정답을 입력 받아서, y와 y_로 정확도 accuracy를 구해서 출력한다.


최종 출력된 accuracy 정확도는 0.9 로 대략 90% 정도가 나온다.


Testing model
('accuracy ', 0.90719998)
done


다른 알고리즘의 정확도는 http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html 를 참고하면 된다.


다음글에서는 소프트맥스 모델 대신 CNN (Convolutional Neural Network)를 이용하여, 조금 더 정확도가 높은  MNIST를 구현하고 테스트해보도록 하겠다.


참고 자료

  • 텐서플로우 MNIST https://www.tensorflow.org/tutorials/mnist/beginners/


2017년 1월 6일 추가

위의 코드 부분에 잘못된 부분이 있어서 수정합니다.


k = tf.matmul(x, W) + b

y = tf.nn.softmax(k)


# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])                                                                               

learning_rate = 0.5

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(k, y_))


https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard7/tf.nn.softmax_cross_entropy_with_logits.md 레퍼런스에 따르면


WARNING: This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. Do not call this op with the output of softmax, as it will produce incorrect results.


tf.nn.softmax_cross_entropy_with_logits 함수는 softmax를 포함하고 있다. 그래서 softmax를 적용한 y를 넣으면 안되고 softmax 적용전인 k를 넣어야 한다.



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우 #2 - 행렬과 텐서플로우


조대협 (http://bcho.tistory.com)


머신러닝은 거의 모든 연산을 행렬을 활용한다. 텐서플로우도 이 행렬을 기반으로 하고, 이 행렬의 차원을 shape 라는 개념으로 표현하는데, 행렬에 대한 기본적이 개념이 없으면 헷갈리기 좋다. 그래서 이 글에서는 간략하게 행렬의 기본 개념과 텐서플로우내에서 표현 방법에 대해서 알아보도록 한다.


행렬의 기본 개념 훝어보기

행과 열

행렬의 가장 기본 개념은 행렬이다. mxn 행렬이 있을때, m은 행, n은 열을 나타내며, 행은 세로의 줄수, 열은 가로줄 수 를 나타낸다. 아래는 3x4 (3행4열) 행렬이다.


곱셈


곱셈은 앞의 행렬에서 행과, 뒤의 행렬의 열을 순차적으로 곱해준다.

아래 그림을 보면 쉽게 이해가 될것이다.



이렇게 앞 행렬의 행과 열을 곱해나가면 결과적으로 아래와 같은 결과가 나온다.


이때 앞의 행렬의 열과, 뒤의 행렬의 행이 같아야 곱할 수 있다.

즉 axb 행렬과 mxn 행렬이 있을때, 이 두 행렬을 곱하려면 b와 m이 같아야 한다.

그리고 이 두 행렬을 곱하면 axn 사이즈의 행렬이 나온다.

행렬의 덧셈과 뺄셈

행렬의 덧셈과 뺄셈은 단순하다. 같은 행과 열에 있는 값을 더하거나 빼주면 되는데, 단지 주의할점은 덧셈과 뺄샘을 하는 두개의 행렬의 차원이 동일해야 한다.


텐서 플로우에서 행렬의 표현

행렬에 대해서 간단하게 되짚어 봤으면, 그러면 텐서 플로우에서는 어떻게 행렬을 표현하는지 알아보자


을 하는 코드를 살펴보자


예제코드

import tensorflow as tf


x = tf.constant([ [1.0,2.0,3.0] ])

w = tf.constant([ [2.0],[2.0],[2.0] ])

y = tf.matmul(x,w)

print x.get_shape()


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y)


print result


실행 결과

(1, 3)
[[ 12.]]



텐서플로우에서 행렬의 곱셈은 일반 * 를 사용하지 않고, 텐서플로우 함수  “tf.matmul” 을 사용한다.

중간에, x.get_shape()를 통해서, 행렬 x의 shape를 출력했는데, shape는 행렬의 차원이라고 생각하면 된다. x는 1행3열인 1x3 행렬이기 때문에, 위의 결과와 같이 (1,3)이 출력된다.


앞의 예제에서는 contant 에 저장된 행렬에 대한 곱셈을 했는데, 당연히 Variable 형에서도 가능하다.


예제 코드

import tensorflow as tf


x = tf.Variable([ [1.,2.,3.] ], dtype=tf.float32)

w = tf.constant([ [2.],[2.],[2.]], dtype=tf.float32)

y = tf.matmul(x,w)


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y)


print result


Constant 및 Variable 뿐 아니라,  PlaceHolder에도 행렬로 저장이 가능하다 다음은 PlaceHolder에 행렬 데이타를 feeding 해주는 예제이다.

입력 데이타 행렬 x는 PlaceHolder 타입으로 3x3 행렬이고, 여기에 곱하는 값 w는 1x3 행렬이다.


예제 코드는 다음과 같다.


예제코드

import tensorflow as tf


input_data = [ [1.,2.,3.],[1.,2.,3.],[2.,3.,4.] ] #3x3 matrix

x = tf.placeholder(dtype=tf.float32,shape=[None,3])

w = tf.Variable([ [2.],[2.],[2.] ], dtype = tf.float32) #3x1 matrix

y = tf.matmul(x,w)


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y,feed_dict={x:input_data})


print result


실행결과

[[ 12.]
[ 12.]
[ 18.]]


이 예제에서 주의 깊게 봐야 할부분은 placeholder x 를 정의하는 부분인데, shape=[None,3] 으로 정의했다 3x3 행렬이기 때문에, shape=[3,3]으로 지정해도 되지만 None 이란, 갯수를 알수 없음을 의미하는 것으로, 텐서플로우 머신러닝 학습에서 학습 데이타가 계속해서 들어오고  학습 때마다 데이타의 양이 다를 수 있기 때문에, 이를 지정하지 않고 None으로 해놓으면 들어오는 숫자 만큼에 맞춰서 저장을 한다.

브로드 캐스팅

텐서플로우 그리고 파이썬으로 행렬 프로그래밍을 하다보면 헷갈리는 개념이 브로드 캐스팅이라는 개념이 있다. 먼저 다음 코드를 보자


예제코드

import tensorflow as tf


input_data = [

    [1,1,1],[2,2,2]

   ]

x = tf.placeholder(dtype=tf.float32,shape=[2,3])

w  =tf.Variable([[2],[2],[2]],dtype=tf.float32)

b  =tf.Variable([4],dtype=tf.float32)

y = tf.matmul(x,w)+b


print x.get_shape()

sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y,feed_dict={x:input_data})


print result


실행결과

(2, 3)
[[ 24.]
[ 48.]]


행렬 x는 2x3 행렬이고 w는 3x1 행렬이다. x*w를 하면 2*1 행렬이 나온다.

문제는 +b 인데, b는 1*1 행렬이다. 행렬의 덧셈과 뺄셈은 차원이 맞아야 하는데, 이 경우 더하고자 하는 대상은 2*1, 더하려는 b는 1*1로 행렬의 차원이 다르다. 그런데 어떻게 덧셈이 될까?

이 개념이 브로드 캐스팅이라는 개념인데, 위에서는 1*1인 b행렬을 더하는 대상에 맞게 2*1 행렬로 자동으로 늘려서 (stretch) 계산한다.


브로드 캐스팅은 행렬 연산 (덧셈,뺄셈,곱셈)에서 차원이 맞지 않을때, 행렬을 자동으로 늘려줘서(Stretch) 차원을 맞춰주는 개념으로 늘리는 것은 가능하지만 줄이는 것은 불가능하다.


브로드 캐스팅 개념은 http://scipy.github.io/old-wiki/pages/EricsBroadcastingDoc 에 잘 설명되어 있으니 참고하기 바란다. (아래 그림은 앞의 링크를 참조하였다.)


아래는 4x3 행렬 a와 1x3 행렬 b를 더하는 연산인데, 차원이 맞지 않기 때문에, 행렬 b의 열을 늘려서 1x3 → 4x3 으로 맞춰서 연산한 예이다.


만약에 행렬 b가 아래 그림과 같이 1x4 일 경우에는 열을 4 → 3으로 줄이고, 세로 행을 1→ 4 로 늘려야 하는데, 앞에서 언급한바와 같이, 브로드 캐스팅은 행이나 열을 줄이는 것은 불가능하다.


다음은 양쪽 행렬을 둘다 늘린 케이스 이다.

4x1 행렬 a와 1x3 행렬 b를 더하면 양쪽을 다 수용할 수 있는 큰 차원인 4x3 행렬로 변환하여 덧셈을 수행한다.



텐서플로우 행렬 차원 용어


텐서플로우에서는 행렬을 차원에 따라서 다음과 같이 호칭한다.

행렬이 아닌 숫자나 상수는 Scalar, 1차원 행렬을 Vector, 2차원 행렬을 Matrix, 3차원 행렬을 3-Tensor 또는 cube, 그리고 이 이상의 다차원 행렬을 N-Tensor라고 한다.


그리고 행렬의 차원을 Rank라고 부른다. scalar는 Rank가 0, Vector는 Rank 가 1, Matrix는 Rank가 2가 된다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

텐서플로우-#1 자료형의 이해

빅데이타/머신러닝 | 2016.12.09 22:42 | Posted by 조대협

텐서플로우-#1 자료형의 이해


조대협 (http://bcho.tistory.com)


딥러닝에 대한 대략적인 개념을 익히고 실제로 코딩을 해보려고 하니, 모 하나를 할때 마다 탁탁 막힌다. 파이썬이니 괜찮겠지 했는데, (사실 파이썬도 다 까먹어서 헷갈린다.) 이건 라이브러리로 도배가 되어 있다.

당연히 텐서플로우 프레임웍은 이해를 해야 하고, 데이타를 정재하고 시각화 하는데, numpy,pandas와 같은 추가적인 프레임웍에 대한 이해가 필요하다.


node.js 시작했을때도 자바스크립트 때문에 많이 헤매고 몇달이 지난후에야 어느정도 이해하게 되었는데, 역시나 차근차근 기초 부터 살펴봐야 하지 않나 싶다.


텐서 플로우에 대해 공부한 내용들을 하나씩 정리할 예정인데, 이 컨텐츠들은 유투브의 이찬우님의 강의를 기반으로 정리하였다. 무엇보다 한글이고 개념을 쉽게 풀어서 정리해주시기 때문에, 왠만한 교재 보다 났다.

https://www.youtube.com/watch?v=a74pFg8paVc


텐서플로우 환경 설정

텐서 플로우 환경을 설정 하는 방법은 쉽지 않다. 텐서플로우 뿐 아니라, 여러 파이썬 버전과 그에 맞는 라이브러리도 함께 설정해야 하기 때문에 여간 까다로운게 아닌데, 텐서플로우 환경은 크게 대략 두 가지 환경으로 쉽게 설정이 가능하다.

구글 데이타랩

첫번째 방법은 구글에서 주피터 노트북을 도커로 패키징해놓은 패키지를 이용하는 방법이다. 도커 패키지안에, numpy,pandas,matplotlib,tensorflow,python 등 텐서플로우 개발에 필요한 모든 환경이 패키징 되어 있다. 데이타 랩 설치 방법은 http://bcho.tistory.com/1134 링크를 참고하면 된다.

도커 런타임이 설치되어 있다면, 데이타랩 환경 설정은 10분이면 충분하다.

아나콘다

다음 방법은 일반적으로 가장 많이 사용하는 방법인데, 파이썬 수학관련 라이브러리를 패키징해놓은 아나콘다를 이용하는 방법이 있다. 자세한 환경 설정 방법은 https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html#anaconda-installation 를 참고하기 바란다. 아나콘다를 설치해놓고, tensorflow 환경(environment)를 정의한 후에, 주피터 노트북을 설치하면 된다. http://stackoverflow.com/questions/37061089/trouble-with-tensorflow-in-jupyter-notebook 참고


Tensorflow 환경을 만든 후에,

$ source activate tensorflow

를 실행해서 텐서 플로우 환경으로 전환한후, 아래와 같이 ipython 을 설치한후에, 주피터 (jupyter) 노트북을 설치하면 된다.

(tensorflow) username$ conda install ipython
(tensorflow) username$ pip install jupyter #(use pip3 for python3)


아나콘다 기반의 텐서플로우 환경 설정은 나중에 시간이 될때 다른 글을 통해서 다시 설명하도록 하겠다.

텐서플로우의 자료형

텐서플로우는 뉴럴네트워크에 최적화되어 있는 개발 프레임웍이기 때문에, 그 자료형과, 실행 방식이 약간 일반적인 프로그래밍 방식과 상의하다. 그래서 삽질을 많이 했다.


상수형 (Constant)

상수형은 말 그대로 상수를 저장하는 데이타 형이다.

  • tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)

와 같은 형태로 정의 된다. 각 정의되는 내용을 보면

  • value : 상수의 값이다.

  • dtype : 상수의 데이타형이다. tf.float32와 같이 실수,정수등의 데이타 타입을 정의한다.

  • shape : 행렬의 차원을 정의한다. shape=[3,3]으로 정의해주면, 이 상수는 3x3 행렬을 저장하게 된다.

  • name : name은 이 상수의 이름을 정의한다. name에 대해서는 나중에 좀 더 자세하게 설명하도록 하겠다.

간단한 예제를 하나 보자.

a,b,c 상수에, 각각 5,10,2 의 값을 넣은 후에, d=a*b+c 를 계산해서 계산 결과 d를 출력하려고 한다.

import tensorflow as tf


a = tf.constant([5],dtype=tf.float32)

b = tf.constant([10],dtype=tf.float32)

c = tf.constant([2],dtype=tf.float32)


d = a*b+c


print d

그런데, 막상 실행해보면, a*b+c의 값이 아니라 다음과 같이 Tensor… 라는 문자열이 출력된다.


Tensor("add_8:0", shape=(1,), dtype=float32)

그래프와 세션의 개념

먼저 그래프와 세션이라는 개념을 이해해야 텐서플로우의 프로그래밍 모델을 이해할 수 있다.

위의 d=a*b+c 에서 d 역시 계산을 수행하는 것이 아니라 다음과 같이 a*b+c 그래프를 정의하는 것이다.


실제로 값을 뽑아내려면, 이 정의된 그래프에 a,b,c 값을 넣어서 실행해야 하는데, 세션 (Session)을 생성하여,  그래프를 실행해야 한다. 세션은 그래프를 인자로 받아서 실행을 해주는 일종의 러너(Runner)라고 생각하면 된다.


자 그러면 위의 코드를 수정해보자


import tensorflow as tf


a = tf.constant([5],dtype=tf.float32)

b = tf.constant([10],dtype=tf.float32)

c = tf.constant([2],dtype=tf.float32)


d = a*b+c


sess = tf.Session()

result = sess.run(d)

print result



tf.Session()을 통하여 세션을 생성하고, 이 세션에 그래프 d를 실행하도록 sess.run(d)를 실행한다

이 그래프의 실행결과는 리턴값으로 result에 저장이 되고, 출력을 해보면 다음과 같이 정상적으로 52라는 값이 나오는 것을 볼 수 있다.


플레이스 홀더 (Placeholder)

자아 이제 상수의 개념을 알았으면, 이제는 플레이스 홀더에 대해서 알아보자.

y = x * 2 를 그래프를 통해서 실행한다고 하자. 입력값으로는 1,2,3,4,5를 넣고, 출력은 2,4,6,8,10을 기대한다고 하자. 이렇게 여러 입력값을 그래프에서 넣는 경우는 머신러닝에서 y=W*x + b 와 같은 그래프가 있다고 할 때, x는 학습을 위한 데이타가 된다.

즉 지금 살펴보고자 하는 데이타 타입은 학습을 위한 학습용 데이타를 위한 데이타 타입이다.


y=x*2를 정의하면 내부적으로 다음과 같은 그래프가 된다.


그러면, x에는 값을 1,2,3,4,5를 넣어서 결과값을 그래프를 통해서 계산해 내야한다. 개념적으로 보면 다음과 같다.



이렇게 학습용 데이타를 담는 그릇을 플레이스홀더(placeholder)라고 한다.

플레이스홀더에 대해서 알아보면, 플레이스 홀더의 위의 그래프에서 x 즉 입력값을 저장하는 일종의 통(버킷)이다.

tf.placeholder(dtype,shape,name)

으로 정의된다.

플레이스 홀더 정의에 사용되는 변수들을 보면

  • dtype : 플레이스홀더에 저장되는 데이타형이다. tf.float32와 같이 실수,정수등의 데이타 타입을 정의한다.

  • shape : 행렬의 차원을 정의한다. shapre=[3,3]으로 정의해주면, 이 플레이스홀더는 3x3 행렬을 저장하게 된다.

  • name : name은 이 플레이스 홀더의 이름을 정의한다. name에 대해서는 나중에 좀 더 자세하게 설명하도록 하겠다.


그러면 이 x에 학습용 데이타를 어떻게 넣을 것인가? 이를 피딩(feeding)이라고 한다.

다음 예제를 보자


import tensorflow as tf


input_data = [1,2,3,4,5]

x = tf.placeholder(dtype=tf.float32)

y = x * 2


sess = tf.Session()

result = sess.run(y,feed_dict={x:input_data})


print result


처음 input_data=[1,2,3,4,5]으로 정의하고

다음으로 x=tf.placeholder(dtype=tf.float32) 를 이용하여, x를 float32 데이타형을 가지는 플레이스 홀더로 정의하다. shape은 편의상 생략하였다.

그리고 y=x * 2 로 그래프를 정의하였다.


세션이 실행될때, x라는 통에 값을 하나씩 집어 넣는데, (앞에서도 말했듯이 이를 피딩이라고 한다.)

sess.run(y,feed_dict={x:input_data}) 와 같이 세션을 통해서 그래프를 실행할 때, feed_dict 변수를 이용해서 플레이스홀더 x에, input_data를 피드하면, 세션에 의해서 그래프가 실행되면서 x는 feed_dict에 의해서 정해진 피드 데이타 [1,2,3,4,5]를 하나씩 읽어서 실행한다.


변수형 (Variable)

마지막 데이타형은 변수형으로,

y=W*x+b 라는 학습용 가설이 있을때, x가 입력데이타 였다면, W와 b는 학습을 통해서 구해야 하는 값이 된다.  이를 변수(Variable)이라고 하는데, 변수형은 Variable 형의 객체로 생성이 된다.


  • tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None)


변수형에 값을 넣는 것은 다음과 같이 한다.


var = tf.Variable([1,2,3,4,5], dtype=tf.float32)


자 그러면 값을 넣어보고 코드를 실행해보자


import tensorflow as tf


input_data = [1,2,3,4,5]

x = tf.placeholder(dtype=tf.float32)

W = tf.Variable([2],dtype=tf.float32)

y = W*x


sess = tf.Session()

result = sess.run(y,feed_dict={x:input_data})


print result


우리가 기대하는 결과는 다음과 같다. y=W*x와 같은 그래프를 가지고,


x는 [1,2,3,4,5] 값을 피딩하면서, 변수 W에 지정된 2를 곱해서 결과를 내기를 바란다.

그렇지만 코드를 실행해보면 다음과 같이 에러가 출력되는 것을 확인할 수 있다.



이유는 텐서플로우에서 변수형은 그래프를 실행하기 전에 초기화를 해줘야 그 값이 변수에 지정이 된다.


세션을 초기화 하는 순간 변수 W에 그 값이 지정되는데, 초기화를 하는 방법은 다음과 같이 변수들을 global_variables_initializer() 를 이용해서 초기화 한후, 초기화된 결과를 세션에 전달해 줘야 한다.


init = tf.global_variables_initializer()

sess.run(init)


그러면 초기화를 추가한 코드를 보자


import tensorflow as tf


input_data = [1,2,3,4,5]

x = tf.placeholder(dtype=tf.float32)

W = tf.Variable([2],dtype=tf.float32)

y = W*x


sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

result = sess.run(y,feed_dict={x:input_data})


print result


초기화를 수행한 후, 코드를 수행해보면 다음과 같이 우리가 기대했던 결과가 출력됨을 확인할 수 있다.



텐서플로우를 처음 시작할때, Optimizer나 모델등에 대해 이해하는 것도 중요하지만, “데이타를 가지고 학습을 시켜서 적정한 값을 찾는다" 라는 머신러닝 학습 모델의 특성상, 모델을 그래프로 정의하고, 세션을 만들어서 그래프를 실행하고, 세션이 실행될때 그래프에 동적으로 값을 넣어가면서 (피딩) 실행한 다는 기본 개념을 잘 이해해야, 텐서플로우 프로그래밍을 제대로 시작할 수 있다.


저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

딥러닝 - 컨볼루셔널 네트워크를 이용한 이미지 인식의 개념


조대협 (http://bcho.tistory.com)


이번 글에서는 딥러닝 중에서 이미지 인식에 많이 사용되는 컨볼루셔널 뉴럴 네트워크 (Convolutional neural network) 이하 CNN에 대해서 알아보도록 하자.


이 글을 읽기에 앞서서 머신러닝에 대한 기본 개념이 없는 경우는 다음 글들을 참고하기 바란다.



CNN은 전통적인 뉴럴 네트워크 앞에 여러 계층의 컨볼루셔널 계층을 붙인 모양이 되는데, 그 이유는 다음과 같다. CNN은 앞의 컨볼루셔널 계층을 통해서 입력 받은 이미지에 대한 특징(Feature)를 추출하게 되고, 이렇게 추출된 특징을 기반으로 기존의 뉴럴 네트워크를 이용하여 분류를 해내게 된다.




컨볼루셔널 레이어  (Convolutional Layer)

컨볼루셔널 레이어는 앞에서 설명 했듯이 입력 데이타로 부터 특징을 추출하는 역할을 한다.

컨볼루셔널 레이어는 특징을 추출하는 기능을 하는 필터(Filter)와, 이 필터의 값을 비선형 값으로 바꾸어 주는 액티베이션 함수(Activiation 함수)로 이루어진다.

그럼 각 부분의 개념과 원리에 대해서 살펴보도록 하자.


<그림 Filter와 Activation 함수로 이루어진 Convolutional 계층>

필터 (Filter)

필터 개념 이해

필터는 그 특징이 데이타에 있는지 없는지를 검출해주는 함수이다. 예를 들어 아래와 같이 곡선을 검출해주는 필터가 있다고 하자.



필터는 구현에서는 위의 그림 좌측 처럼 행렬로 정의가 된다.

입력 받은 이미지 역시 행렬로 변환이 되는데, 아래 그림을 보자.


쥐 그림에서 좌측 상단의 이미지 부분을 잘라내서 필터를 적용하는 결과이다.

잘라낸 이미지와, 필터를 곱하면

과 같이 결과 값이 매우 큰 값이 나온다.

만약에 아래 그림처럼 쥐 그림에서 곡선이 없는 부분에 같은 필터를 적용해보면


결과 값이 0에 수렴하게 나온다.


즉 필터는 입력받은 데이타에서 그 특성을 가지고 있으면 결과 값이 큰값이 나오고, 특성을 가지고 있지 않으면 결과 값이 0에 가까운 값이 나오게 되서 데이타가 그 특성을 가지고 있는지 없는지 여부를 알 수 있게 해준다.

다중 필터의 적용

입력값에는 여러가지 특징이 있기 때문에 하나의 필터가 아닌 여러개의 다중 필터를 같이 적용하게 된다.

다음과 같이 |,+,- 모양을 가지고 있는 데이타가 있다고 하자


각 데이타가 |와 - 의 패턴(특징을) 가지고 있는지를 파악하기 위해서 먼저 | (세로) 필터를 적용해보면 다음과 같은 결과가 나온다.


(맨앞의 상자는 필터이다.) 두번째 상자부터 원본 이미지에 세로선(|) 이 없는 경우 결과 이미지에 출력이 없고, 세로선이 있는 경우에는 결과 이미지에 세로 선이 있는 것을 확인할 수 있다.

마찬가지로 가로선(-) 특징이 있는지 가로 선을 추출하는 필터를 적용해보면 다음과 같은 결과를 얻을 수 있다.



이렇게 각기 다른 특징을 추출하는 필터를 조합하여 네트워크에 적용하면, 원본 데이타가 어떤 형태의 특징을 가지고 있는지 없는지를 판단해 낼 수 있다. 다음은 하나의 입력 데이타에 앞서 적용한 세로와 가로선에 대한 필터를 동시에 적용한 네트워크의 모양이다.



Stride

그러면 이 필터를 어떻게 원본 이미지에 적용할까? 큰 사진 전체에 하나의 큰 필터 하나만을 적용할까?

아래 그림을 보자, 5x5 원본 이미지가 있을때, 3x3인 필터를 좌측 상단에서 부터 왼쪽으로 한칸씩 그 다음 한줄을 내려서 또 왼쪽으로 한칸씩 적용해서 특징을 추출해낸다.

오른쪽 Convolved Feature 행렬이 바로 원본 이미지에 3x3 필터를 적용하여 얻어낸 결과 이다.



이렇게 필터를 적용 하는 간격 (여기서는 우측으로 한칸씩 그리고 아래로 한칸씩 적용하였다.) 값을 Stride라고 하고, 필터를 적용해서 얻어낸 결과를 Feature map 또는 activation map 이라고 한다.

Padding

앞에서 원본 데이타에 필터를 적용한 내용을 보면 필터를 적용한 후의 결과값은 필터 적용전 보다 작아졌다. 5x5 원본 이미지가 3x3의 1 stride 값을 가지고 적용되었을때, 결과 값은 3x3으로 크기가 작아졌다.

그런데, CNN 네트워크는 하나의 필터 레이어가 아니라 여러 단계에 걸쳐서 계속 필터를 연속적으로 적용하여 특징을 추출하는 것을 최적화 해나가는데, 필터 적용 후 결과 값이 작아지게 되면 처음에 비해서 특징이 많이 유실 될 수 가 있다. 필터를 거쳐감에 따라서 특징이 유실되는 것을 기대했다면 문제가 없겠지만, 아직까지 충분히 특징이 추출되기 전에, 결과 값이 작아지면 특징이 유실된다. 이를 방지 하기 위한 방법으로 padding 이라는 기법이 있는데, padding은 결과 값이 작아지는 것을 방지하기 위해서 입력값 주위로 0 값을 넣어서 입력 값의 크기를 인위적으로 키워서, 결과값이 작아지는 것을 방지 하는 기법이다.


다음 그림을 보자, 32x32x3 입력값이 있을때, 5x5x3 필터를 적용 시키면 결과값 (feature map)의 크기는 28x28x3 이 된다. 이렇게 사이즈가 작아지는 것을 원하지 않았다면 padding을 적용하는데, input 계층 주위로 0을 둘러 싸서, 결과 값이 작아지고 (피쳐가 소실 되는것)을 막는다

32x32x3 입력값 주위로 2 두깨로 0을 둘러싸주면 36x36x3 이 되고 5x5x3 필터 적용하더라도, 결과값 은 32x32x3으로 유지된다.


< 그림, 32x32x3 데이타에 폭이 2인 padding을 적용한 예 >


패딩은 결과 값을 작아지는 것을 막아서 특징이 유실되는 것을 막는 것 뿐 아니라, 오버피팅도 방지하게 되는데, 원본 데이타에 0 값을 넣어서 원래의 특징을 희석 시켜 버리고, 이것을 기반으로 머신러닝 모델이 트레이닝 값에만 정확하게 맞아 들어가는 오버피팅 현상을 방지한다.


오버 피팅에 대해서는 별도의 다른 글을 통해서 설명한다.

필터는 어떻게 만드는 것일까?

그렇다면 CNN에서 사용되는 이런 필터는 어떻게 만드는 것일까? CNN의 신박한 기능이 바로 여기에 있는데, 이 필터는 데이타를 넣고 학습을 시키면, 자동으로 학습 데이타에서 학습을 통해서 특징을 인식하고 필터를 만들어 낸다.

Activation function

필터들을 통해서 Feature map이 추출되었으면, 이 Feature map에 Activation function을 적용하게 된다.

Activation function의 개념을 설명하면, 위의 쥐 그림에서 곡선값의 특징이 들어가 있는지 안들어가 있는지의 필터를 통해서 추출한 값이 들어가 있는 예에서는 6000, 안 들어가 있는 예에서는 0 으로 나왔다.

이 값이 정량적인 값으로 나오기 때문에, 그 특징이 “있다 없다”의 비선형 값으로 바꿔 주는 과정이 필요한데, 이 것이 바로 Activation 함수이다.


예전에 로지스틱 회귀 ( http://bcho.tistory.com/1142 )에서 설명하였던 시그모이드(sigmoid) 함수가 이 Activation 함수에 해당한다.

간단하게 짚고 넘어가면, 결과 값을 참/거짓 으로 나타내는 것이 아니라, 참에 가까워면 0.5~1사이에서 1에 가까운 값을 거짓에 가까우면 0~0.5 사이의 값으로 리턴하는 것이다.


<그림. Sigmoid 함수>

뉴럴 네트워크나 CNN (CNN도 뉴럴 네트워크이다.) 이 Activation 함수로 이 sigmoid 함수는 잘 사용하지 않고, 아래 그림과 같은 ReLu 함수를 주요 사용한다.




<그림. ReLu 함수>

이 함수를 이용하는 이유는 뉴럴 네트워크에서 신경망이 깊어질 수 록 학습이 어렵기 때문에, 전체 레이어를 한번 계산한 후, 그 계산 값을 재 활용하여 다시 계산하는 Back propagation이라는 방법을 사용하는데, sigmoid 함수를 activation 함수로 사용할 경우, 레이어가 깊어지면 이 Back propagation이 제대로 작동을 하지 않기 때문에,(값을 뒤에서 앞으로 전달할때 희석이 되는 현상. 이를 Gradient Vanishing 이라고 한다.) ReLu라는 함수를 사용한다.

풀링 (Sub sampling or Pooling)

이렇게 컨볼루셔날 레이어를 거쳐서 추출된 특징들은 필요에 따라서 서브 샘플링 (sub sampling)이라는 과정을 거친다.


컨볼루셔널 계층을 통해서 어느정도 특징이 추출 되었으면, 이 모든 특징을 가지고 판단을 할 필요가 없다.

쉽게 예를 들면, 우리가 고해상도 사진을 보고 물체를 판별할 수 있지만, 작은 사진을 가지고도 그 사진의 내용이 어떤 사진인지 판단할 수 있는 원리이다.


그래서, 추출된 Activation map을 인위로 줄이는 작업을 하는데, 이 작업을 sub sampling 도는 pooling 이라고 한다. Sub sampling은 여러가지 방법이 있는데, max pooling, average pooling, L2-norm pooling 등이 있고, 그중에서 max pooling 이라는 기법이 많이 사용된다.


Max pooling (맥스 풀링)

맥스 풀링은 Activation map을 MxN의 크기로 잘라낸 후, 그 안에서 가장 큰 값을 뽑아내는 방법이다.

아래 그림을 보면 4x4 Activation map에서 2x2 맥스 풀링 필터를 stride를 2로 하여 2칸씩 이동하면서 맥스 풀링을 한 예인데, 좌측 상단에서는 6이 가장 큰 값이기 때문에 6을 뽑아내고, 우측 상단에는 2,4,7,8 중 8 이 가장 크기 때문에 8을 뽑아 내었다.


맥스 풀링은 특징의 값이 큰 값이 다른 특징들을 대표한다는 개념을 기반으로 하고 있다.

(주의 풀링은 액티베이션 함수 마다 매번 적용하는 것이 아니라, 데이타의 크기를 줄이고 싶을때 선택적으로 사용하는 것이다.)


이런 sampling 을 통해서 얻을 수 있는 장점은 다음과 같다.

  • 전체 데이타의 사이즈가 줄어들기 때문에 연산에 들어가는 컴퓨팅 리소스가 적어지고

  • 데이타의 크기를 줄이면서 소실이 발생하기 때문에, 오버피팅을 방지할 수 있다.


컨볼루셔널 레이어

이렇게 컨볼루셔널 필터와 액티베이션 함수 (ReLU) 그리고 풀링 레이어를 반복적으로 조합하여 특징을 추출한다.

아래 그림을 보면 여러개의 컨볼루셔널 필터(CONV)와 액티베이션 함수 (RELU)와 풀링 (POOL) 사용된것을 볼 수 있다.


Fully connected Layer

컨볼루셔널 계층에서 특징이 추출이 되었으면 이 추출된 특징 값을 기존의 뉴럴 네트워크 (인공 신경 지능망)에 넣어서 분류를 한다.

그래서 CNN의 최종 네트워크 모양은 다음과 같이 된다.



<그림. CNN 네트워크의 모양>

Softmax 함수

Fully connected network (일반적인 뉴럴 네트워크)에 대해서는 이미 알고 있겠지만, 위의 그림에서 Softmax 함수가 가장 마지막에 표현되었기 때문에, 다시 한번 짚고 넘어가자.

Softmax도 앞에서 언급한 sigmoid나 ReLu와 같은 액티베이션 함수의 일종이다.


Sigmoid 함수가 이산 분류 (결과값에 따라 참 또는 거짓을 나타내는) 함수라면, Softmax 는 여러개의 분류를 가질 수 있는 함수이다. 아래 그림이 Softmax 함수의 그림이다.




이것이 의미하는 바는 다음과 같다. P3(x)는 특징(feature) x에 대해서 P3일 확률, P1(x)는 특징 x 에 대해서 P1인 확률이다.

Pn 값은 항상 0~1.0의 범위를 가지며,  P1+P2+...+Pn = 1이 된다.


예를 들어서 사람을 넣었을때, 설현일 확률 0.9, 지현인 확율 0.1 식으로 표시가 되는 것이다.

Dropout 계층

위 CNN 그래프에서 특이한 점중 하나는 Fully connected 네트워크와 Softmax 함수 중간에 Dropout layer (드롭아웃) 라는 계층이 있는 것을 볼 수 있다.


드롭 아웃은 오버피팅(over-fit)을 막기 위한 방법으로 뉴럴 네트워크가 학습중일때, 랜덤하게 뉴런을 꺼서 학습을 방해함으로써, 학습이 학습용 데이타에 치우치는 현상을 막아준다.



<그림. 드롭 아웃을 적용한 네트워크 >

그림 출처 : https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/dropout_layer.html


일반적으로 CNN에서는 이 드롭아웃 레이어를 Fully connected network 뒤에 놓지만, 상황에 따라서는 max pooling 계층 뒤에 놓기도 한다.


다음은 드롭아웃을 적용하고 학습시킨 모델과 드롭 아웃을 적용하지 않은 모델 사이의 예측 정확도를 비교한 결과 이다.



<그림. 드룹아웃을 적용한 경우와 적용하지 않고 학습한 경우, 에러율의 차이 >

이렇게 복잡한데 어떻게 구현을 하나요?

대략적인 개념은 이해를 했다. 그렇다면 구현을 어떻게 해야 할까? 앞에서 설명을 할때, softmax 나 뉴런에 대한 세부 알고리즘 ReLu 등과 같은 알고리즘에 대한 수학적인 공식을 설명하지 않았다. 그렇다면 이걸 하나하나 공부해야 할까?


아니다. 작년에 구글에서 머신러닝용 프로그래밍 프레임워크로 텐서 플로우라는 것을 발표했다.

이 텐서 플로우는 (http://www.tensorflow.org)는 이런 머신 러닝에 특화된 프레임웍으로, 머신러닝에 필요한 대부분의 함수들을 이미 구현하여 제공한다.

실제로 CNN을 구현한 코드를 보자. 이 코드는 홍콩 과학기술 대학교의 김성훈 교수님의 강의를 김성훈님이란 분이 텐서 플로우 코드로 구현하여 공유해놓은 코드중 CNN 구현 예제이다. https://github.com/FuZer/Study_TensorFlow/blob/master/08%20-%20CNN/CNN.py




첫번째 줄을 보면, tf.nn.conv2d 라는 함수를 사용하였는데, 이 함수는 컨볼루셔널 필터를 적용한 함수 이다. 처음 X는 입력값이며, 두번째 w 값은 필터 값을 각각 행렬로 정의 한다. 그 다음 strides 값을 정의해주고, 마지막으로 padding 인자를 통해서  padding 사이즈를 정한다.

컨볼루셔널 필터를 적용한 후 액티베이션 함수로 tf.nn.relu를 이용하여 ReLu 함수를 적용한 것을 볼 수 있다.

다음으로는 tf.nn.max_pool 함수를 이용하여, max pooling을 적용하고 마지막으로 tf.nn.dropout 함수를 이용하여 dropout을 적용하였다.


전문적인 수학 지식이 없이도, 이미 잘 추상화된 텐서플로우 함수를 이용하면, 기본적인 개념만 가지고도 머신러닝 알고리즘 구현이 가능하다.


텐서 플로우를 공부하는 방법은 여러가지가 있겠지만, 유투브에서 이찬우님이 강의 하고 계신 텐서 플로우 강의를 듣는 것을 추천한다. 한글이고 설명이 매우 쉽다. 그리고 매주 일요일에 생방송을 하는데, 궁금한것도 물어볼 수 있다.

https://www.youtube.com/channel/UCRyIQSBvSybbaNY_JCyg_vA


그리고 텐서플로우 사이트의 튜토리얼도 상당히 잘되어 있는데, https://www.tensorflow.org/versions/r0.12/tutorials/index.html 를 보면 되고 한글화도 잘 진행되고 있다. 한글화된 문서는 https://tensorflowkorea.gitbooks.io/tensorflow-kr/content/ 에서 찾을 수 있다.

구현은 할 수 있겠는데, 그러면 이 모델은 어떻게 만드나요?

그럼 텐서플로우를 이용하여 모델을 구현할 수 있다는 것은 알았는데, 그렇다면 모델은 어떻게 만들까? 정확도를 높이려면 수십 계층의 뉴럴 네트워크를 설계해야 하고, max pooling  함수의 위치와 padding등 여러가지를 고려해야 하는데, 과연 이게 가능할까?


물론 전문적인 지식을 가진 데이타 과학자라면 이런 모델을 직접 설계하고 구현하고 테스트 하는게 맞겠지만, 이런 모델들은 이미 다양한 모델이 만들어져서 공개 되어 있다.


그중에서 CNN 모델은 매년 이미지넷 (http://www.image-net.org/) 이라는데서 추최하는 ILSVRC (Large Scale Visual Recognition Competition) 이라는 대회에서, 주최측이 제시하는 그림을 누가 잘 인식하는지를 겨루는 대회이다.



<그림. 이미지넷 대회에 사용되는 이미지들 일부>


이 대회에서는 천만장의 이미지를 학습하여, 15만장의 이미지를 인식하는 정답률을 겨루게 된다. 매년 알고리즘이 향상되는데, 딥러닝이 주목 받은 계기가된 AlexNet은 12년도 우승으로, 8개의 계층으로 16.4%의 에러율을 내었고, 14년에는 19개 계층을 가진 VGG 알고리즘이 7.3%의 오차율을 기록하였고, 14년에는 구글넷이 22개의 레이어로 6.7%의 오차율을 기록하였다. 그리고 최근에는 마이크로소프트의 152개의 레이어로 ResNet이 3.57%의 오차율을 기록하였다. (참고로 인간의 평균 오류율은 5% 내외이다.)

현재는 ResNet을 가장 많이 참고해서 사용하고 있고, 쉽게 사용하려면 VGG 모델을 사용하고 있다.




결론

머신러닝과 딥러닝에 대해서 공부를 하면서 이게 더이상 수학자나 과학자만의 영역이 아니라 개발자도 들어갈 수 있는 영역이라는 것을 알 수 있었고, 많은 딥러닝과 머신러닝 강의가 복잡한 수학 공식으로 설명이 되지만, 이건 아무래도 설명하는 사람이 수학쪽에 배경을 두고 있기 때문 일것이고, 요즘은 텐서플로우 프레임웍을 사용하면 복잡한 수학적인 지식이 없이 기본적인 머신러닝에 대한 이해만을 가지고도 머신러닝 알고리즘을 개발 및 서비스에 적용이 가능한 시대가 되었다고 본다.


그림 출처 및 참고 문서



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

머신러닝의 과학습 / 오버피팅의 개념


조대협 (http://bcho.tistory.com)


머신 러닝을 공부하다보면 자주 나오는 용어 중에 하나가 오버피팅 (Overfitting)이다.

과학습이라고도 하는데, 그렇다면 오버 피팅은 무엇일까?


머신 러닝을 보면 결과적으로 입력 받은 데이타를 놓고, 데이타를 분류 (Classification) 하거나 또는 데이타에 인접한 그래프를 그리는 (Regression) , “선을 그리는 작업이다.”

그러면 선을 얼마나 잘 그리느냐가 머신 러닝 모델의 정확도와 연관이 되는데, 다음과 같이 붉은 선의 샘플 데이타를 받아서, 파란선을 만들어내는 모델을 만들었다면 잘 만들어진 모델이다. (기대하는)


언더 피팅


만약에 학습 데이타가 모자라거나 학습이 제대로 되지 않아서, 트레이닝 데이타에 가깝게 가지 못한 경우에는 다음과 같이 그래프가 트레이닝 데이타에서 많이 떨어진것을 볼 수 있는데, 이를 언더 피팅 (under fitting)이라고 한다.



오버 피팅

오버 피팅은 반대의 경우로, 다음 그림과 같이 트레이닝 데이타에 그래프가 너무 정확히 맞아 들어갈때 발생한다.


샘플 데이타에 너무 정확하게 학습이 되었기 때문에, 샘플데이타를 가지고 판단을 하면 100%에 가까운 정확도를 보이지만 다른 데이타를 넣게 되면, 정확도가 급격하게 떨어지는 문제이ㅏㄷ.

오버피팅의 해결

이런 오버피팅 문제를 해결하는 방법으로는 여러가지가 있는데 대표적인 방법으로는

  • 충분히 많은 학습 데이타를 넣거나

  • 피쳐의 수를 줄이거나

  • Regularization (정규화)를 이용하는 방법이 있다.



그림 출처 : 출처 : https://kousikk.wordpress.com/2014/11/20/problem-of-overfitting-in-machine-learning/




저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

딥러닝의 개념과 유례

빅데이타/머신러닝 | 2016.11.27 20:37 | Posted by 조대협


딥러닝의 역사와 기본 개념

조대협 (http://bcho.tistory.com)

인경 신경망 알고리즘의 기본 개념


알파고나 머신러닝에서 많이 언급되는 알고리즘은 단연 딥러닝이다.

이 딥러닝은 머신러닝의 하나의 종류로 인공 신경망 알고리즘의 새로운 이름이다.


인공 신경망은 사람의 두뇌가 여러개의 뉴론으로 연결되서 복잡한 연산을 수행한다는데서 영감을 받아서, 머신러닝의 연산을 여러개의 간단한 노드를 뉴론 처럼 상호 연결해서 복잡한 연산을 하겠다는 아이디어이다.


<출처 : http://webspace.ship.edu/cgboer/theneuron.html >


이 뉴런의 구조를 조금 더 단순하게 표현해보면 다음과 같은 모양이 된다.


뉴런은 돌기를 통해서 여러 신경 자극 (예를 들어 피부에서 촉각)을 입력 받고, 이를 세포체가 인지하여 신호로 변환해준다. 즉 신경 자극을 입력 받아서 신호라는 결과로 변환해주는 과정을 거치는데,


이를 컴퓨터로 형상화 해보면 다음과 같은 형태가 된다.


뉴런의 돌기처럼 외부에서 입력값 X1,X2,X3를 읽어드리고, 이 입력값들은 돌기를 거치면서 인식되어 각각 W1*X1, W2*X2, W3*X3로 변환이 되어 세포체에 도착하여 여러 돌기에서 들어온 값은 (W1*X1+W2*X2+W3*X3)+b 값으로 취합된다.

이렇게 취합된 값은 세포체내에서 인지를 위해서 어떤 함수 f(x)를 거치게 되고, 이 값이 일정 값을 넘게 되면, Y에 1이라는 신호를 주고, 일정값을 넘지 않으면 0이라는 값을 준다.


즉 뉴런을 본떠서 입력값 X1...n에 대해서, 출력값  Y가 0 또는 1이 되는 알고리즘을 만든것이다.

Perceptron


이를 수식을 사용하여 한번 더 단순화를 시켜보면

X를 행렬이라고 하고,  X = [X1,X2,X3] 라고 하자.

그리고 역시 이에 대응되는 행렬 W를 정의하고 W=[W1,W2,W3] 라고 하면


<뉴런을 본떠서 만든 Perceptron>


입력 X를 받아서 W를 곱한 후에, 함수 f(x)를 거쳐서 0 또는 1의 결과를 내는 Y를 낸다.

즉 입력 X를 받아서 참(1)인지 거짓(0) 인지를 판별해주는 계산 유닛을 Perceptron이라고 한다.


이 Perceptron은 결국 W*X+b인 선을 그려서 이 선을 기준으로 1 또는 0을 판단하는 알고리즘이다.

예를 들어서 동물의 크기 (X1)와 동물의 복종도 (X2)라는 값을 가지고, 개인지 고양이인지를 구별하는 Perceptron이 있을때,

W*X+b로 그래프를 그려보면 (X=[X1,X2], W=[W1,W2] 다음과 같은 직선이 되고, 이 직선 윗부분이면 개, 아랫 부분이면 고양이 식으로 분류가 가능하다.



이 Perceptron은 입력에 따라서 Y를 1,0으로 분류해주는 알고리즘으로 앞에서 설명한 로지스틱 회귀 알고리즘을 사용할 수 있는데, 이때 로지스틱 회귀에서 사용한 함수 f(x)는 sigmoid 함수를 사용하였기 때문에, 여기서는 f(x)를 이 sigmoid 함수를 사용했다. 이 함수 f(x)를 Activation function이라고 한다. 이 Activation function은 중요하니 반드시 기억해놓기 바란다.


( 참고. 손쉬운 이해를 위해서 로지스틱 회귀와 유사하게 sigmoid 함수를 사용했지만,  sigmoid 함수이외에 다양한 함수를 Activation 함수로 사용할 수 있으며, 요즘은 sigmoid 함수의 정확도가 다른 Activation function에 비해 떨어지기 때문에, ReLu와 같은 다른 Activation function을 사용한다. 이 Activation function)에 대해서는 나중에 설명하겠다.)


Perceptron의 XOR 문제

그런데 이 Perceptron는 결정적인 문제를 가지고 있는데, 직선을 그려서 AND,OR 문제를 해결할 수 는 있지만,  XOR 문제를 풀어낼 수 가 없다는 것이다.


다음과 같은 Perceptron이 있을때


다음 그림 처럼 AND나 OR 문제는 직선을 그려서 해결이 가능하다.


그러나 다음과 같은 XOR 문제는 WX+b의 그래프로 해결이 가능할까?



<그림 XOR 문제>



하나의 선을 긋는 Perceptron으로는 이 문제의 해결이 불가능하다.


MLP (Multi Layer Perceptron) 다중 계층 퍼셉트론의 등장

이렇게 단일 Perceptron으로 XOR 문제를 풀 수 없음을 증명되었는데, 1969년에 Marvin Minsky 교수가, 이 문제를 해결 하는 방법으로 Perceptron을 다중으로 겹치면 이 문제를 해결할 수 있음을 증명하였다.



<그림 Multi Layer Perceptron의 개념도>


그런데, 이 MLP 역시 다른 문제를 가지고 있는데, MLP에서 학습을 통해서 구하고자 하는 것은 최적의 W와 b의 값을 찾아내는 것인데, 레이어가 복잡해질 수 록, 연산이 복잡해져서 현실적으로 이 W와 b의 값을 구하는 것이 불가능 하다는 것을 Marvin Minsky 교수가 증명 하였다.

Back Propagation 을 이용한 MLP 문제 해결

이런 문제를 해결 하기 위해서 Back propagation이라는 알고리즘이 도입되었는데, 기본 개념은

뉴럴 네트워크를 순방향으로 한번 연산을 한 다음에, 그 결과 값을 가지고, 뉴럴 네트워크를 역방향 (backward)로 계산하면서 값을 구한다는 개념이다.


Backpropagation의 개념에 대해서는 다음글에서 자세하게 설명하도록 한다.


Back Propagation 문제와 ReLu를 이용한 해결

그러나 이 Back Propagation 역시 문제를 가지고 있었는데, 뉴럴 네트워크가 깊어질 수 록 Backpropagation이 제대로 안된다.

즉 순방향(foward)한 결과를 역방향(backward)로 반영하면서 계산을 해야 하는데, 레이어가 깊을 수 록 뒤에 있는 값이 앞으로 전달이 되지 않는 문제 이다. 이를 Vanishing Gradient 문제라고 하는데, 그림으로 개념을 표현해보면 다음과 같다.

뒤에서 계산한 값이 앞의 레이어로 전달이 잘 되지 않는 것을 표현하기 위해서 흐리게 네트워크를 표현하였다.



이는 ReLu라는 activation function (앞에서는 sigmoid 함수를 사용했다.)으로 해결이 되었다.


뉴럴 네트워크의 초기값 문제

이 문제를 캐나다 CIFAR 연구소의 Hinton 교수님이 “뉴럴네트워크는 학습을 할때 초기값을 잘 주면 학습이 가능하다" 라는 것을 증명하면서 깊은 레이어를 가진 뉴럴 네트워크의 사용이 가능하게 된다.

이때 소개된 알고리즘이 초기값을 계산할 수 있는 RBM (Restricted Boltzmann Machine)이라는 알고리즘으로 이 알고리즘을 적용한 뉴럴 네트워크는 특히 머신러닝 알고리즘을 테스트 하는 ImageNet에서 CNN (Convolutional Neural Network)가 독보적인 성능을 내면서 뉴럴 네트워크가 주목 받기 시작하였다.


딥러닝

딥러닝이라는 어원은 새로운 알고리즘이나 개념을 이야기 하는 것이 아니고, 뉴럴 네트워크가 새롭게 주목을 받기 시작하면서 Hinton 교수님 등이 뉴럴네트워크에 대한 리브랜딩의 의미로 뉴럴 네트워크를 새로운 이름 “딥러닝"으로 부르기 시작하면서 시작 되었다.


추가

뉴럴네트워크와 딥러닝의 대략적인 개념과 역사에 대해서 알아보았다.

이 글에서는 뉴럴 네트워크에 대한 대략적인 개념만을 설명하고 있는데, 주로 언급되는 단어를 중심으로 기억하기를 바란다.

  • Perceptron

  • MLP (Multi Layer Perceptron)

  • Back propagation

  • ReLu

  • RBM


이외에도, Drop Out, Mini Batch, Ensemble 과 같은 개념이 있는데, 이 개념은 추후에 다시 설명하고, 딥러닝에서 이미지 인식에 많이 사용되는 CNN (Convolutional Neural Network)을 나중에 소개하도록 하겠다.



저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

수포자를 위한 딥러닝

#4 - 로지스틱 회귀를 이용한 이항 분류 문제의 해결

조대협 (http://bcho.tistory.com)


1장에서 머신러닝의 종류는 결과값의 타입이 연속형인 Regression (회귀) 문제와, 몇가지 정해진 분류로 결과(이산형)가 나오는 Classification(분류) 문제가 있다고 하였다. 2,3장에 걸쳐서 회귀 문제에 대해서 알아보았고, 이번장에서는 로지스틱 회귀를 이용한 분류 문제에 대해서 알아보자.

이 글의 내용은 Sung.Kim 교수님의 “모두를 위한 딥러닝”(http://hunkim.github.io/ml/) 을 참고하였다. 여러 자료들을 찾아봤는데, 이 강의 처럼 쉽게 설명해놓은 강의는 없는것 같다.

분류 문제(Classification)의 정의

분류 문제란 학습된 모델을 가지고, 입력된 값을 미리 정해진 결과로 분류해주는 모델을 이야기 한다.

분류 결과가 참/거짓과 같이 두개만 있을때 이항 분류 분석, 두개 이상일때는 다항 분류 분석이라고 하는데, 이번장에서 살펴볼 로지스틱 회귀 분석은 분류된 결과가 두 가지만 있는 이항 분류 모델이다. (다항 분류 모델은 로지스틱 회귀에 이어서 소프트맥스 회귀 분석에서 설명하도록 하겠다.)


이항 분류의 대표적인 예는 다음과 같다.

  • 이메일 스팸과 정상 이메일 검출

  • 신용카드 거래에서 정상 거래와 이상 거래 검출

  • 게임에서 어뷰징 사용자와 정상 사용자 검출


등이 이항 분류의 예가 될 수 있다.


예를 들어 아래와 같은 데이타가 있다고 가정하자



붉은 동그라미로 표시된 데이타와, 녹색 세모로 표시된 데이타를 분류하고 싶을때, 아래와 같이 이항 분류 문제는 이를 분류할 수 있는 이상적인 직선 그래프를 찾는 것이다.


로지스틱스 회귀 분석 (Logistics Regression)

선형 회귀 분석 (Linear regression) 으로 분류 문제 접근하기

이항 분류 모델에 대한 예를 들어보자. 종양의 크기에 따라서 양성 종양(암)인지 음성 종양인지를 판별하는 문제가 있다고 하자. 아래 그림은 종양의 크기에 대한 양성과 음성 여부를 그래프로 나타낸 것인데, X축은 종양의 크기, Y축은 종양의 양성과 음성 여부를 나타낸다. 1이면 양성 0이면 음성이다.


이 문제를 선형 회귀 모델로 정의해서 그래프를 그려보면 다음과 같다.

y=W*x

와 같은 그래프가 그려지고 대략 아래 그림에서 보는것과 같이 y > 0.5 보다 크면 양성 암, y <0.5 보다 작으면 음성암으로 판단할 수 있다.


그런데, 만약에 새로운 트레이닝 데이타에서, 종양의 크기가 큰 데이타가 들어오면 어떻게 될까?

아래 그림을 보자, 예를 들어 새로운 트레이닝 데이타에 종양의 크기가 5인 경우 양성 암이라는 데이타가 새로 들어왔다고 하자


이 경우 앞에서 선형 회귀로 만든 그래프의 기울기가 새로 들어온 데이타를 포함하면 맞지 않기 때문에 선형 회귀로 재학습을 시키게 되면 다음과 같은 기울기(점선 그래프)로 변하게 된다.


이 경우에는 앞에서 암이 양성인 여부를 판단할때 사용한 y가 0.5라는 기준은 더이상 사용할 수 없게 되고, y가 0.2 일때를, 새 기준으로 잡아서, 암의 양성/음성 여부를 판단해야 한다.

그러면 새로운 데이타가 들어올때 마다 기준점을 다시 잡아야 하는것인가? 또한 그렇게 만든 모델로 예측을 한다면, 학습에 사용되지 않은 큰 데이타가 들어온다면 오류가 발생할 수 도 있다.

그래서, 선형 회귀 분석 모델(Linear regression) 은 이항 분류에 적절하지 않다. 그렇다면 어떤 모델이 적절할까 ?

참고



시그모이드(sigmoid) 함수

이런 형태의 이항 분류 분석에 적절한 함수로 시그모이드(sigmoid)함수라는 것이 있다. 그래프의 모양은 다음과 같다. S 자 형태의 그래프 모양으로 중심축 (x=0)을 중심으로 좌측은 0으로 수렴하고 우측은 1로 수렴한다.



이 시그모이드 함수에 앞의 데이타를 적용해보면 다음과 같은 형태가 된다.


그림과 같이 y축을 0.5를 기준으로 판단할때 y가 0.5 일때 x가 2 인데, x<2 인 부분은 y=0으로 음성, x>2인 부분은 y=1로 양성이 된다.

큰 데이타 (x=100)가 추가된다하더라도 시그모이드 함수는 그 값이 1로 수렴되기 때문에, 앞의 선형 회귀 분석의 경우 처럼 암의 양성/음성인 경우를 결정하는 y와 x값이 변화하지 않는다.

가설 (Hyphothesis)

그래서, 이 시그모이드 함수를 사용하여 가설을 정의할 수 있다.

가설은 아래와 같다

y = sigmoid(Wx + b)


결과 값 y 는 0 또는 1의 값을 갖는다. 시그모이드 함수를 수학 공식으로 표현하면, 아래와 같다. (그렇다는 것만 알아두고 외워서 쓰자)
1 / (1+ math.exp(-(W*x+b) )


디시전 바운드리(Decision boundary)


y = sigmoid (W*x + b) 을 가설 함수로 그려진 위의 그래프에서 W는 1, b는 -2로 그래프로 우측으로 두칸을 이동하였다.

W에 1,  b에 -2 를 대입해보면 y = sigmoid(1*x-2) 의 형태의 그래프인데, “x가 2를 기준으로 좌,우측이 양성암이냐 아니냐” 를 결정하기 때문에 때문에,

1*x-2 <0 이면,  y=0이 되고

1*x+2 >0 이면, y=1이 된다.

이를 일반화 해보면, 시그모이드(sigmoid) 함수 내에 들어가는

W*x+b < 0 이면,  y=0이 되고,

W*x+b > 0 이면,  y=1이 된다.

즉 로지스틱 회귀 분석은 위의 조건을 만족하는 W와 b의 값을 찾는 문제이다.

그리고  시그모이드 함수내의

z=W*x+b

그래프를 기준으로나눠서 y가 0또는 1이 되는 기준을 삼는데, 이 그래프를 기준으로 결정을 하기 때문에, 이를 디시전 바운드리 (Decision boundary) 라고 한다.


변수가 x하나가 아니라, x1,x2가 있는 문제를 살펴보자


이 문제에서 가설 함수 y = sigmoid (W1*x1 + W2*x2 + b)가 될것이고,

z=W1*x1+W2*x2+b 가 디시전 바운드리 함수가 되며, 위의 그래프상에서는 붉은선과 초록선을 나누는 직선이 되고 이것이 바로 디시전 바운드리가 된다.

코스트 함수 (비용함수/Cost function)

자 그러면 가설 함수를 정의 했으니 적정 W와 b값을 찾기 위해서 코스트 함수를 정의해보자.

다시 한번 앞에서 코스트 함수의 개념을 되집어 보면, 코스트 함수의 개념은 가설 함수에 의해서 예측된 값과 트레이닝을 위해서 입력된 값(실제값) 사이의 차이를 계산해주는 함수로, 예측된 값과 입력된값 들의 차이에 대한 평균 값을 구한다.

로지스틱 회귀에서 사용되는 코스트 함수는 다음과 같다.

cost_function =(1/n) * Sum(
                              -y_origin*log(sigmoid(Wx+b)) - (1-y_origin)*log(1-(sigmoid(Wx+b)))

                        )

  • n 의 트레이닝 데이타의 수

  • Y_origin  는 트레이닝에 사용된 x에 대한 입력값


의미를 설명하겠지만, 머리가 아프면 넘어가도 좋다. 그냥 가져다 쓰면 된다.


그러면 어떻게 저런 코스트 함수가 사용되었는지를 알아보자.

선형회귀분석(Linear regression)의 코스트 함수를 다시 한번 살펴보자

코스트 함수는 측정값과 가설에 의해서 예측된 값의 차이의 제곱 평균을 나타내는 함수였다.

선형 회귀 분석에서의 코스트 함수는 다음과 같았다.

Cost =  Sum( (y_data_n - y_origin_n) ^ 2) / n

그리고 이 함수를 그래프로 그려보면 다음과 같이 매끈한 그래프가 나왔다.


그래프의 모양이 매끈한 골짜기 모양이였기 때문에 경사 하강법(Gradient descent)을 사용할 수 있었다.

그러면 로지스틱 회귀 분석에도 기존의 코스트 함수를 이용하여 경사하강법을 적용할 수 있는지 보자

코스트 함수에서 y_data_n에 가설 함수를 대입 시켜 보면