블로그 이미지
평범하게 살고 싶은 월급쟁이 기술적인 토론 환영합니다.같이 이야기 하고 싶으시면 부담 말고 연락주세요:이메일-bwcho75골뱅이지메일 닷컴. 조대협


Archive»


 
 

텐서플로우에서 array index를 문자열로 변환하는 방법


조대협 (http://bcho.tistory.com)


예전에, 얼굴 인식 모델을 만들때, 라벨 숫자로 하지 않고 사람 이름 문자열로 했다가 이 문자열의 배열 인덱스를 구하는 것을 구현하지 못해서 라벨을 다시 숫자로 데이타를 재생성한 적이 있었다. 텐서플로우에서 텐서는 파이썬의 일반 자료형이 아니기 때문에, 파이썬의 배열등을 사용하지 못해서 생기는 문제였는데, 포기하고 있다가 다른 코드를 보던중에, 이 부분을 해결해주는 코드를 찾아서, 정리해놓는다.


tf.contrib.lookup 에 이를 지원하기 위한 함수들이 정의되어 있다.

https://www.tensorflow.org/api_docs/python/tf/contrib/lookup


배열 인덱스로 문자열로 리턴하기


코드를 보자


import tensorflow as tf


table = tf.contrib.lookup.index_to_string_table_from_tensor(

    tf.constant(['Jessica','Jolie','Kidman','Sulyun'])

)


sess = tf.InteractiveSession()


# Initialize Table

tf.tables_initializer().run()


p1 = table.lookup(tf.to_int64(3))

print p1.eval()


p2 = table.lookup(tf.to_int64([0,2]))

print p2.eval()


tf.contrib.lookup.index_to_string_from_tensor() 메서드를 이용하여, index를 string으로 lookup 하기 위한 테이블을 생성한다. 이 때 테이블에 들어가는 배열은 tf.constant로 정의해서 전달한다.


다음 이렇게 정의된 테이블을 사용하기 위해서는 테이블을 초기화 해줘야 한다. 초기화는

tf.tables_initializer().run()


를 사용한다. 이렇게 초기화 된 테이블은 세션이 시작된 후에, table.lookup($배열의 인덱스)를 호출하면, 그 인덱스에 해당하는 문자열 배열값을 리턴한다.
다음은 실행 결과이다.

Sulyun
['Jessica' 'Kidman']


문자열로 배열 인덱스 구하기


반대로 문자열로 배열의 인덱스를 리턴할 수 도 있다. 함수는 tf.contrib.lookup.index_table_from_tensor()를 이용하여, 문자열이 들어간 배열을 tf.constant 형태로 넘기면 되고, 찾을때는 마찬가지로 lookup() 함수를 이용하면 된다.


import tensorflow as tf


table = tf.contrib.lookup.index_table_from_tensor(

    mapping = tf.constant(['Jessica','Jolie','Kidman','Sulyun'])

)


sess = tf.InteractiveSession()

tf.tables_initializer().run()


p1 = table.lookup(tf.constant('Kidman'))

print p1.eval()


p2 = table.lookup(tf.constant(['Jessica','Sulyun','Soho']))

print p2.eval()




저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

얼굴 인식 모델을 만들어보자 #4 클라우드를 이용하여 학습 시키기

(머신러닝 학습 및 예측 시스템의 운영환경화)


조대협 (http://bcho.tistory.com)

앞에서 모델을 만들고 학습도 다했다. 이제, 이 모델을 실제 운영 환경에서 운영할 수 있는 스케일로 포팅을 하고자 한다.


로컬 환경 대비 실제 운영 환경으로 확장할때 고려해야 하는 사항은


  • 대규모 학습 데이타를 저장할 수 있는 공간

  • 대규모 학습 데이타를 전처리하기 위한 병렬 처리 환경
    이 내용은 이미  http://bcho.tistory.com/1177에서 다루었다.

  • 대규모 학습 데이타를 빠르게 학습 시킬 수 있는 컴퓨팅 파워

  • 학습된 데이타를 이용한 대규모 예측 서비스를 할 수 있는 기능


위의 요건을 만족하면서 텐서플로우로 환경을 올리는 방법은 여러가지가 있지만, 클라우드를 선택하기로 한다.

이유는

  • 첫번째 모델 개발에 집중하고, 텐서플로우의 설치 및 운영 등에 신경쓰지 않도록 한다. 단순한 텐서플로우 설치뿐만 아니라 여러 장비를 동시에 이용하여 분산 학습을 하려면, 클러스터 구성 및 유지가 부담이 된다.

  • 클라우드 컴퓨팅 파워를 이용하여, 대규모 데이타에 대한 전처리를 수행하고 개개별 학습 속도를 높이는 것은 물론이고, 모델을 튜닝하여 동시에 여러 모델을 학습 시킬 수 있다.

  • 대용량 학습 데이타를 저장하기 위한 스토리지 인프라에 대한 구성 및 운영 비용을 절감한다.


즉 설정이나 운영은 클라우드에 맏겨 놓고, 클라우드의 무한한 자원과 컴퓨팅 파워를 이용하여 빠르게 모델을 학습하기 위함이다.

구글 클라우드


아무래도 일하는 성격상 구글 클라우드를 먼저 볼 수 밖에 없는데, 구글 클라우드에서는 텐서플로우의 매니지드 서비스인 CloudML을 제공한다.


CloudML은 별도의 설치나 환경 설정 없이 텐서플로우로 만든 모델을 학습 시키거나 학습된 결과로 예측을 하는 것이 가능하다. 주요 특징을 보면 다음과 같다.


  • 학습시에, 별도의 설정 없이 텐서플로우 클러스터 크기 조절이 가능하다. 싱글 머신에서 부터 GPU 머신 그리고 여러대의 클러스터 머신 사용이 가능하다

  • 하이퍼 패러미터 튜닝이 가능하다. DNN의 네트워크의 폭과 깊이도 하이퍼 패러미터로 지정할 수 있으며, CloudML은 이런 하이퍼패러미터의 최적값을 자동으로 찾아준다.

  • 예측 서비스에서는 Tensorflow Serv를 별도의 빌드할 필요 없이 미리 환경 설정이 다되어 있으며 (bazel 빌드의 끔직함을 겪어보신 분들은 이해하실듯) gRPC가 아닌 간단한 JSON 호출로 예측 (PREDICTION) 요청을 할 수 있다

  • 분당 과금이다. 이게 강력한 기능인데, 구글 클라우드는 기본적으로 분당 과금으로 CPU를 사용하던, GPU를 사용하던 정확히 사용한 만큼만 과금하기 때문에, 필요할때 필요한 만큼만 사용하면 된다. 일부 클라우드의 경우에는 시간당 과금을 사용하기 때문에, 8대의 GPU머신에서 1시간 5분을 학습하더라도 8대에 대해서 2시간 요금을 내야하기 때문에 상대적으로 비용 부담이 높다.

  • 가장 큰 메리트는 TPU (Tensorflow Processing Unit)을 지원한다는 것인데, 딥러닝 전용 GPU라고 생각하면 된다. 일반적인 CPU또는 GPU대비 15~30배 정도 빠른 성능을 제공한다.


    현재는 Close Alpha로 특정 사용자에게만 시범 서비스를 제공하고 있지만 곧 CloudML을 통해서 일반 사용자에게도 서비스가 제공될 예정이다.

CloudML을 이용하여 학습하기

코드 수정

CloudML에서 학습을 시키려면 약간의 코드를 수정해야 한다. 수정해야 하는 이유는 학습 데이타를 같이 올릴 수 없기 때문인데, 여기에는 두 가지 방법이 있다.


  • 학습 데이타를 GCS (Google Cloud Storage)에 올려놓은 후, 학습이 시작되기 전에 로컬 디렉토리로 복사해 오거나

  • 또는 학습 데이타를 바로 GCS로 부터 읽어오도록 할 수 있다.


첫번째 방법은 gsutil 이라는 GCS 명령어를 이용하여 학습 시작전에 GCS에서 학습 데이타를 카피해오면 되고,

두번째 방법은 학습 데이타의 파일명을 GCS 로 지정하면 된다.

예를 들어 텐서 플로우 코드에서 이미지 파일을 아래와 같이 로컬 경로에서 읽어왔다면

   image =  tf.image.decode_jpeg(tf.read_file(“/local/trainingdata/”+image_file),channels=FLAGS.image_color)


GCS에서 읽어오려면 GCS 경로로 바꿔 주면 된다. GCS 버킷명이 terrycho-training-data라고 하면

   image =  tf.image.decode_jpeg(tf.read_file(“gs://terrycho-training-data/trainingdata/”+image_file),channels=FLAGS.image_color)


첫번째 방법의 경우에는 데이타가 아주 많지 않고, 분산 학습이 아닌경우 매우 속도가 빠르다. 두번째 방법의 경우에는 데이타가 아주아주 많아서 분산 학습이 필요할때 사용한다. 아무래도 로컬 파일 억세스가 GCS 억세스 보다 빠르기 때문이다.


다음은 첫번째 방식으로 학습 데이타를 로컬에 복사해서 학습하는 방식의 코드이다.


https://github.com/bwcho75/facerecognition/blob/master/CloudML%20Version/face_recog_model/model_localfile.py

코드 내용은 앞서 만들 모델 코드와 다를것이 없고 단지 아래 부분과, 파일 경로 부분만 다르다

def gcs_copy(source, dest):

   print('Recursively copying from %s to %s' %

       (source, dest))

   subprocess.check_call(['gsutil', '-q', '-m', 'cp', '-R']

       + [source] + [dest]


gcs_copy 함수는 GCS의 source 경로에서 파일을 dest 경로로 복사해주는 명령이다.


def prepare_data():

   # load training and testing data index file into local

   gcs_copy( 'gs://'+DESTINATION_BUCKET+'/'+TRAINING_FILE,'.')

   gcs_copy( 'gs://'+DESTINATION_BUCKET+'/'+VALIDATION_FILE,'.')

   

   # loading training and testing images to local

   image_url = 'gs://'+DESTINATION_BUCKET+'/images/*'


   if not os.path.exists(FLAGS.local_image_dir):

        os.makedirs(FLAGS.local_image_dir)

   gcs_copy( image_url,FLAGS.local_image_dir)

   

prepare_data()    

main()


그리고 prepare_data를 이용해서, 학습과 테스트용 이미지 목록 파일을 복사하고, 이미지들도 로컬에 복사한다.

로컬에 데이타 복사가 끝나면 main()함수를 호출하여 모델을 정의하고 학습을 시작한다.



디렉토리 구조

코드를 수정하였으면, CloudML을 이용하여 학습을 하려면, 파일들을 패키징 해야 한다. 별 다를것은 없고


[작업 디렉토리]

  • __init__.py

  • {모델 파일명}.py


식으로 디렉토리를 구성하면 된다.

얼굴 학습 모델을 model_localfile.py라는 이름으로 저장하였다


명령어

이제 학습용 모델이 준비되었으면, 이 모델을 CloudML에 집어 넣으면 된다.

명령어가 다소 길기 때문에, 쉘 스크립트로 만들어놓거나 또는 파이썬 노트북에 노트 형식으로 만들어 놓으면 사용이 간편하다. 다음은 파이썬 노트북으로 만들어놓은 내용이다.


import google.auth

import os

import datetime


os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/Users/terrycho/keys/terrycho-ml.json"

job_name = 'preparefacedata'+ datetime.datetime.now().strftime('%y%m%d%H%M%S')


리모트로 구글 클라우드의 CloudML을 호출하기 때문에, GOOGLE_APPLICATION_CREDIENTIALS에 서비스 어카운트 파일을 지정한다.

그리고 CloudML에 학습을 실행하면, 각 학습은 JOB으로 등록되는데, 손쉽게 JOB을 찾아서 모니터링 하거나 중지할 수 있도록, JOB ID를 현재 시간으로 생성한다.



print job_name

# Job name whatever you want

JOB_NAME=job_name

# the directory of folder that include your source and init file

PACKAGE_PATH='/Users/terrycho/anaconda/work/face_recog/face_recog_model'

# format: folder_name.source_file_name

MODULE_NAME='face_recog_model.model_localfile'

# bucket you created

STAGING_BUCKET='gs://terrycho-face-recog-stage'

# I recommand "europe-west1" region because there are not enough GPUs in US region for you.....

REGION='us-east1'

# Default is CPU computation. set BASIC_GPU to use Tesla K80 !

SCALE_TIER='BASIC_GPU'


# Submit job with these settings

!gcloud ml-engine jobs submit training $JOB_NAME \

--package-path=$PACKAGE_PATH \

--module-name=$MODULE_NAME \

--staging-bucket=$STAGING_BUCKET \

--region=$REGION \

--scale-tier=$SCALE_TIER \


다음은 cloudml 명령어를 실행하면 된다. 각 인자를 보면

  • JOB_NAME은 학습 JOB의 이름이다.

  • package-path는 __init__.py와 학습 모델 및 관련 파일들이 있는 디렉토리가 된다.

  • module-name은 package-path안에 있는 학습 실행 파일이다.

  • staging-bucket은 CloudML에서 학습 코드를 올리는 임시 Google Cloud Storage로, Google Cloud Storage 만든 후에, 그 버킷 경로를 지정하면 된다.

  • region은 CloudML을 사용한 리전을 선택한다.

  • 마지막으로 scale-tier는 학습 머신의 사이즈를 지정한다.

스케일 티어

설명

BASIC

싱글 머신. CPU

BASIC_GPU

싱글 머신 + K80 GPU

STANDARD_1

분산 머신

PREMIUM_1

대규모 분산 머신

CUSTOM

사용자가 클러스터 크기를 마음대로 설정


일반적인 모델은 BASIC_GPU를 사용하면 되고, 모델이 분산 학습이 가능하도록 개발되었으면 STANDARD_1 이나 PREMIUM_1을 사용하면 된다.


이렇게 명령을 수행하면 모델코드가 CloudML로 전송되고, 전송된 코드는 CloudML에서 실행된다.

학습 모니터링

학습이 시작되면 JOB을 구글 클라우드 콘솔의 CloudML 메뉴에서 모니터링을 할 수 있다.




다음은 CloudML에서의 JOB 목록이다.  (진짜 없어 보인다…)




실행중인 JOB에서 STOP 버튼을 누르면 실행중인 JOB을 정지시킬 수도 있고, View Logs 버튼을 누르면, 학습 JOB에서 나오는 로그를 볼 수 있다. ( 텐서플로우 코드내에서 print로 찍은 내용들도 모두 여기 나온다.)




여기까지 간단하게나마 CloudML을 이용하여 모델을 학습하는 방법을 알아보았다.

본인의 경우 연예인 인식 모델을 MAC PRO 15” i7 (NO GPU)에서 학습한 경우 7000 스텝가지 약 8시간이 소요되었는데, CloudML의 BASIC_GPU를 사용하였을때는 10,000 스탭에 약 1시간 15분 정도 (GCS를 사용하지 않고 직접 파일을 로컬에 복사해놓고 돌린 경우) 가 소요되었다. (빠르다)


여기서 사용된 전체 코드는 https://github.com/bwcho75/facerecognition/tree/master/CloudML%20Version 에 있다.


  • model_gcs.py 는 학습데이타를 GCS에서 부터 읽으면서 학습하는 버전이고

  • model_localfile.py는 학습데이타를 로컬 디스크에 복사해놓고 학습하는 버전이다.


다음 글에서는 학습된 모델을 배포하여 실제로 예측을 실행할 수 있는 API를 개발해보도록 하겠다.

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

 

얼굴 인식 모델을 만들어보자

#3 - 학습된 모델로 예측하기


조대협 (http://bcho.tistory.com)


앞글에 걸쳐서 얼굴 인식을 위한 데이타를 수집 및 정재하고, 이를 기반으로 얼굴 인식 모델을 학습 시켰다.

 

 

이번글에서는 학습이 된 데이타를 가지고, 사진을 넣어서 실제로 인식하는 코드를 만들어보자

전체 소스 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb 와 같다.

모델 로딩 하기

 

모델 학습에 사용한 CNN 모델을 똑같이 정의한다. conv1(),conv2(),conv3(),conv4(),fc1(),fc2(), build_model() 등 학습에 사용된 CNN 네트워크를 똑같이 정의하면 된다.

 

다음으로 이 모델에 학습된 값들을 채워 넣어야 한다.

# build graph

images = tf.placeholder(tf.float32,[None,FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

keep_prob = tf.placeholder(tf.float32) # dropout ratio

 

예측에 사용할 image 를 넘길 인자를  images라는 플레이스홀더로 정의하고, dropout 비율을 정하는 keep_prob도 플레이스 홀더로 정의한다.

 

prediction = tf.nn.softmax(build_model(images,keep_prob))

 

그래프를 만드는데, build_model에 의해서 나온 예측 결과에 softmax 함수를 적용한다. 학습시에는 softmax 함수의 비용이 크기 때문에 적용하지 않았지만, 예측에서는 결과를 쉽게 알아보기 위해서  softmax 함수를 적용한다. Softmax 함수는 카테고리 별로 확률을 보여줄때 전체 값을 1.0으로 해서 보여주는것인데, 만약에 Jolie,Sulyun,Victora 3개의 카테코리가 있을때 각각의 확률이 70%,20%,10%이면 Softmax를 적용한 결과는 [0.7,0.2,0.1] 식으로 출력해준다.

 

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

 

다음 텐서플로우 세션을 초기화 하고,

 

saver = tf.train.Saver()

saver.restore(sess, 'face_recog')

 

마지막으로 Saver의 restore 함수를 이용하여 ‘face_recog’라는 이름으로 저장된 학습 결과를 리스토어 한다. (앞의 예제에서, 학습이 완료된 모델을 ‘face_recog’라는 이름으로 저장하였다.)

 

예측하기

로딩 된 모델을 가지고 예측을 하는 방법은 다음과 같다. 이미지 파일을 읽은 후에, 구글 클라우드 VISION API를 이용하여, 얼굴의 위치를 추출한후, 얼굴 이미지만 크롭핑을 한후에, 크롭된 이미지를 텐서플로우 데이타형으로 바꾼후에, 앞서 로딩한 모델에 입력하여 예측된 결과를 받게 된다.

 

얼굴 영역 추출하기

먼저 vision API로 얼굴 영역을 추출하는 부분이다. 앞의 이미지 전처리에 사용된 부분과 다르지 않다.

 

import google.auth

import io

import os

from oauth2client.client import GoogleCredentials

from google.cloud import vision

from PIL import Image

from PIL import ImageDraw

 

FLAGS.image_size = 96

 

# set service account file into OS environment value

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/Users/terrycho/keys/terrycho-ml.json"

 

위와 같이 구글 클라우드 Vision API를 사용하기 위해서 억세스 토큰을 Service Account 파일로 다운 받아서 위와 같이 GOOGLE_APPLICATION_CREDENTIALS 환경 변수에 세팅 하였다.

 

visionClient = vision.Client()

print ('[INFO] processing %s'%(imagefile))

 

#detect face

image = visionClient.image(filename=imagefile)

faces = image.detect_faces()

face = faces[0]

 

다음 vision API 클라이언트를 생성한 후에, detect_faces() 를 이용하여 얼굴 정보를 추출해낸다.

 

print 'number of faces ',len(faces)

 

#get face location in the photo

left = face.fd_bounds.vertices[0].x_coordinate

top = face.fd_bounds.vertices[0].y_coordinate

right = face.fd_bounds.vertices[2].x_coordinate

bottom = face.fd_bounds.vertices[2].y_coordinate

rect = [left,top,right,bottom]

 

추출된 얼굴 정보에서 첫번째 얼굴의 위치 (상하좌우) 좌표를 리턴 받는다.

얼굴 영역을 크롭하기

앞에서 입력 받은 상하좌우 좌표를 이용하여, 이미지 파일을 열고,  크롭한다.

 

fd = io.open(imagefile,'rb')

image = Image.open(fd)

 

import matplotlib.pyplot as plt

# display original image

print "Original image"

plt.imshow(image)

plt.show()

 

 

# draw green box for face in the original image

print "Detect face boundary box "

draw = ImageDraw.Draw(image)

draw.rectangle(rect,fill=None,outline="green")

 

plt.imshow(image)

plt.show()

 

crop = image.crop(rect)

im = crop.resize((FLAGS.image_size,FLAGS.image_size),Image.ANTIALIAS)

plt.show()

im.save('cropped'+imagefile)

 

크롭된 이미지를 텐서플로우에서 읽는다.

 

print "Cropped image"

tfimage = tf.image.decode_jpeg(tf.read_file('cropped'+imagefile),channels=3)

tfimage_value = tfimage.eval()

 

크롭된 파일을 decode_jpeg() 메서드로 읽은 후에, 값을 tfimage.eval()로 읽어드린다.

 

tfimages = []

tfimages.append(tfimage_value)

 

앞에서 정의된 모델이 한개의 이미지를 인식하는게 아니라 여러개의 이미지 파일을 동시에 읽도록 되어 있기 때문에, tfimages라는 리스트를 만든 후, 인식할 이미지를 붙여서 전달한다.

 

plt.imshow(tfimage_value)

plt.show()

fd.close()

 

p_val = sess.run(prediction,feed_dict={images:tfimages,keep_prob:1.0})

name_labels = ['Jessica Alba','Angelina Jolie','Nicole Kidman','Sulhyun','Victoria Beckam']

i = 0

for p in p_val[0]:

   print('%s %f'% (name_labels[i],float(p)) )

   i = i + 1

 

tfimages 에 이미지를 넣어서 모델에 넣고 prediction 값을 리턴 받는다. dropout은 사용하지 않기 때문에, keep_prob을 1.0으로 한다.

나온 결과를 가지고 Jessica, Jolie,Nicole Kidman, Sulhyun, Victoria Beckam 일 확률을 각각 출력한다.


전체 코드는 https://github.com/bwcho75/facerecognition/blob/master/2.%2BFace%2BRecognition%2BPrediction%2BTest.ipynb


다음은 설현 사진을 가지고 예측을 한 결과 이다.


 

이 코드는 학습된 모델을 기반으로 얼굴을 인식이 가능하기는 하지만 실제 운영 환경에 적용하기에는 부족하다. 파이썬 모델 코드를 그대로 옮겼기 때문에, 성능도 상대적으로 떨어지고, 실제 운영에서는 모델을 업그레이드 배포 할 수 있고, 여러 서버를 이용하여 스케일링도 지원해야 한다.

그래서 텐서플로우에서는 Tensorflow Serving 이라는 예측 서비스 엔진을 제공하고 구글 클라우에서는 Tensorflow Serving의 매니지드 서비스인, CloudML 서비스를 제공한다.

 

앞의 두 글이 로컬 환경에서 학습과 예측을 진행했는데, 다음 글에서는 상용 서비스에 올릴 수 있는 수준으로 학습과 예측을 할 수 있는 방법에 대해서 알아보도록 하겠다.

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

연예인 얼굴 인식 모델을 만들어보자

#2 CNN 모델을 만들고 학습 시켜보기

조대협 (http://bcho.tistroy.com)

선행 학습 자료

이 글은 딥러닝 컨볼루셔널 네트워크 (이하 CNN)을 이용하여 사람의 얼굴을 인식하는 모델을 만드는 튜토리얼이다. 이 글을 이해하기 위해서는 머신러닝과 컨볼루셔널 네트워크등에 대한 사전 지식이 필요한데, 사전 지식이 부족한 사람은 아래 글을 먼저 읽어보기를 추천한다.

 

머신러닝의 개요 http://bcho.tistory.com/1140

머신러닝의 기본 원리는 http://bcho.tistory.com/1139

이산 분류의 원리에 대해서는 http://bcho.tistory.com/1142

인공 신경망에 대한 개념은 http://bcho.tistory.com/1147

컨볼루셔널 네트워크에 대한 개념 http://bcho.tistory.com/1149

학습용 데이타 전처리 http://bcho.tistory.com/1176

학습용 데이타 전처리를 스케일링 하기 http://bcho.tistory.com/1177

손글씨를 CNN을 이용하여 인식하는 모델 만들기 http://bcho.tistory.com/1156

손글씨 인식 CNN 모델을 이용하여 숫자 인식 하기 http://bcho.tistory.com/1157

환경

본 예제는 텐서플로우 1.1과 파이썬 2.7 그리고 Jupyter 노트북 환경 및 구글 클라우드를 사용하여 개발되었다.

준비된 데이타

학습에 사용한 데이타는 96x96 사이즈의 얼굴 이미지로, 총 5명의 사진(안젤리나 졸리, 니콜키드만, 제시카 알바, 빅토리아 베컴,설현)을 이용하였으며, 인당 학습 데이타 40장 테스트 데이타 10장으로 총 250장의 얼굴 이미지를 사용하였다.

사전 데이타를 준비할때, 정면 얼굴을 사용하였으며, 얼굴 각도 변화 폭이 최대한 적은 이미지를 사용하였다. (참고 : https://www.slideshare.net/Byungwook/ss-76098082 ) 만약에 이 모델로 학습이 제대로 되지 않는다면 학습에 사용된 데이타가 적절하지 않은것이기 때문에 데이타를 정재해서 학습하기를 권장한다.

데이타 수집 및 정재 과정에 대한 내용은 http://bcho.tistory.com/1177 를 참고하기 바란다.

 

컨볼루셔널 네트워크 모델

얼굴 인식을 위해서, 머신러닝 모델 중 이미지 인식에 탁월한 성능을 보이는 CNN 모델을 사용하였다. 테스트용 모델이기 때문에 모델은 복잡하지 않게 설계하였다.

 

학습과 예측에 사용되는 이미지는 96x96픽셀의 RGB 컬러 이미지를 사용하였다.

아래 그림과 같은 모델을 사용했는데, 총 4개의 Convolutional 계층과, 2개의 Fully connected 계층, 하나의 Dropout 계층을 사용하였다.


Convolutional 계층의 크기는 각각 16,32,64,128개를 사용하였고, 사용된 Convolutional 필터의 사이즈는 3x3 이다.

Fully connected 계층은 각각 512, 1024를 사용하였고 Dropout 계층에서는 Keep_prob값을 0.7로 둬서 30%의 뉴론이 drop out 되도록 하여 학습을 진행하였다.

 

학습 결과 5개의 카테고리에 대해서 총 200장의 이미지로 맥북 프로 i7 CPU 기준 7000 스텝정도의 학습을 진행한 결과 테스트 정확도 기준 90% 정도의 정확도를 얻을 수 있었다.

코드 설명

텐서플로우로 구현된 코드를 살펴보자

파일에서 데이타 읽기

먼저 학습 데이타를 읽어오는 부분이다.

학습과 테스트에서 읽어드리는 데이타의 포맷은 다음과 같다

 

/Users/terrycho/training_data_class5_40/validate/s1.jpg,Sulhyun,3

이미지 파일 경로, 사람 이름 , 숫자 라벨

 

파일에서 데이타를 읽어서 처리 하는 함수는 read_data_batch(), read_data(), get_input_queue()  세가지 함수가 사용된다.

  • get_input_queue() 함수는 CSV 파일을 한줄씩 읽어서, 파일 경로 및 숫자 라벨 두가지를 리턴할 수 있는 큐를 만들어서 리턴한다.

  • read_data() 함수는 get_input_queue()에서 리턴한 큐로 부터 데이타를 하나씩 읽어서 리턴한다.

  • read_batch_data()함수는 read_data() 함수를 이용하여, 데이타를 읽어서 일정 단위(배치)로 묶어서 리턴을 하고, 그 과정에서 이미지 데이타를 뻥튀기 하는 작업을 한다.

즉 호출 구조는 다음과 같다.

 

read_batch_data():

 → Queue = get_input_queue()

 → image,label = read_data(Queue)

 → image_data = 이미지 데이타 뻥튀기

Return image_data,label

 

실제 코드를 보자

get_input_queue

get_input_queue() 함수는 CSV 파일을 읽어서 image와 labels을 리턴하는 input queue를 만들어서 리턴하는 함수이다.

 

def get_input_queue(csv_file_name,num_epochs = None):

   train_images = []

   train_labels = []

   for line in open(csv_file_name,'r'):

       cols = re.split(',|\n',line)

       train_images.append(cols[0])

       # 3rd column is label and needs to be converted to int type

       train_labels.append(int(cols[2]) )

                           

   input_queue = tf.train.slice_input_producer([train_images,train_labels],

                                              num_epochs = num_epochs,shuffle = True)

   

   return input_queue

 

CSV 파일을 순차적으로 읽은 후에, train_images와 train_labels라는 배열에 넣은 다음 tf.train.slice_input_producer를 이용하여 큐를 만들어냈다. 이때 중요한 점은 shuffle=True라는 옵션을 준것인데, 만약에 이 옵션을 주지 않으면, 학습 데이타를 큐에서 읽을때 CSV에서 읽은 순차적으로 데이타를 리턴한다. 즉 현재 데이타 포맷은 Jessica Alba가 40개, Jolie 가 40개, Nicole Kidman이 40개 .. 식으로 순서대로 들어가 있기 때문에, Jessica Alba를 40개 리턴한 후 Jolie를 40개 리턴하는 식이 된다.  이럴 경우 Convolutional 네트워크가 Jessica Alba에 치우쳐지기 때문에 제대로 학습이 되지 않는다. Shuffle은 필수이다.

read_data()

input_queue에서 데이타를 읽는 부분인데 특이한 점은 input_queue에서 읽어드린 이미지 파일명의 파일을 읽어서 데이타 객체로 저장해야 한다. 텐서플로우에서는 tf.image.decode_jpeg, tf.image.decode_png 등을 이용하여 이러한 기능을 제공한다.

def read_data(input_queue):

   image_file = input_queue[0]

   label = input_queue[1]

   

   image =  tf.image.decode_jpeg(tf.read_file(image_file),channels=FLAGS.image_color)

   

   return image,label,image_file

read_data_batch()

마지막으로 read_data_batch() 함수 부분이다.get_input_queue에서 읽은 큐를 가지고 read_data함수에 넣어서 이미지 데이타와 라벨을 읽어서 리턴하는 값을 받아서 일정 단위로 (배치) 묶어서 리턴하는 함수이다. 중요한 부분이 데이타를 뻥튀기 하는 부분이 있다.

이 모델에서 학습 데이타가 클래스당 40개 밖에 되지 않기 때문에 학습데이타가 부족하다. 그래서 여기서 사용한 방법은 read_data에서 리턴된 이미지 데이타에 대해서 tf.image.random_xx 함수를 이용하여 좌우를 바꾸거나, brightness,contrast,hue,saturation 함수를 이용하여 매번 색을 바꿔서 리턴하도록 하였다.

 

def read_data_batch(csv_file_name,batch_size=FLAGS.batch_size):

   input_queue = get_input_queue(csv_file_name)

   image,label,file_name= read_data(input_queue)

   image = tf.reshape(image,[FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

   

   # random image

   image = tf.image.random_flip_left_right(image)

   image = tf.image.random_brightness(image,max_delta=0.5)

   image = tf.image.random_contrast(image,lower=0.2,upper=2.0)

   image = tf.image.random_hue(image,max_delta=0.08)

   image = tf.image.random_saturation(image,lower=0.2,upper=2.0)

   

   batch_image,batch_label,batch_file = tf.train.batch([image,label,file_name],batch_size=batch_size)

   #,enqueue_many=True)

   batch_file = tf.reshape(batch_file,[batch_size,1])

 

   batch_label_on_hot=tf.one_hot(tf.to_int64(batch_label),

       FLAGS.num_classes, on_value=1.0, off_value=0.0)

   return batch_image,batch_label_on_hot,batch_file

 

그리고 마지막 부분에 label을 tf.one_hot을 이용해서 변환한것을 볼 수 있는데, 입력된 label은 0,1,2,3,4 과 같은 단일 정수이다. 그런데, CNN에서 나오는 결과는 정수가 아니라 클래스가 5개인 (분류하는 사람이 5명이기 때문에) 행렬이다. 즉 Jessica Alba일 가능성이 90%이고, Jolie일 가능성이 10%이면 결과는 [0.9,0.1,0,0,0] 식으로 리턴이 되기 때문에, 입력된 라벨 0은 [1,0,0,0,0], 라벨 1은 [0,1,0,0,0] 라벨 2는 [0,0,1,0,0] 식으로 변환되어야 한다. tf.one_hot 이라는 함수가 이 기능을 수행해준다.

 

모델 코드

모델은 앞서 설명했듯이 4개의 Convolutional 계층과, 2개의 Fully connected 계층 그리고 Dropout 계층을 사용한다. 각각의 계층별로는 코드가 다르지 않고 인지만 다르니 하나씩 만 설명하도록 한다.

 

Convolutional 계층

아래 코드는 두번째 Convolutional 계층의 코드이다.

  • FLAGS.conv2_layer_size 는 이 Convolutional 계층의 뉴런의 수로 32개를 사용한다.

  • FLAGS.conv2_filter_size 는 필터 사이즈를 지정하는데, 3x3 을 사용한다.

  • FLAGS.stride2 = 1 는 필터의 이동 속도로 한칸씩 이동하도록 정의했다.

 

# convolutional network layer 2

def conv2(input_data):

   FLAGS.conv2_filter_size = 3

   FLAGS.conv2_layer_size = 32

   FLAGS.stride2 = 1

   

   with tf.name_scope('conv_2'):

       W_conv2 = tf.Variable(tf.truncated_normal(

                       [FLAGS.conv2_filter_size,FLAGS.conv2_filter_size,FLAGS.conv1_layer_size,FLAGS.conv2_layer_size],

                                             stddev=0.1))

       b2 = tf.Variable(tf.truncated_normal(

                       [FLAGS.conv2_layer_size],stddev=0.1))

       h_conv2 = tf.nn.conv2d(input_data,W_conv2,strides=[1,1,1,1],padding='SAME')

       h_conv2_relu = tf.nn.relu(tf.add(h_conv2,b2))

       h_conv2_maxpool = tf.nn.max_pool(h_conv2_relu

                                       ,ksize=[1,2,2,1]

                                       ,strides=[1,2,2,1],padding='SAME')

       

       

   return h_conv2_maxpool

 

다음 Weight 값 W_conv2 와 Bias 값 b2를 지정한후에, 간단하게 tf.nn.conv2d 함수를 이용하면 2차원의 Convolutional 네트워크를 정의해준다. 다음 결과가 나오면 이 결과를 액티베이션 함수인 relu 함수에 넣은 후에, 마지막으로 max pooling 을 이용하여 결과를 뽑아낸다.

 

각 값의 의미에 대해서는 http://bcho.tistory.com/1149 의 컨볼루셔널 네트워크 개념 글을 참고하기 바란다.

같은 방법으로 총 4개의 Convolutional 계층을 중첩한다.

 

Fully Connected 계층

앞서 정의한 4개의 Convolutional 계층을 통과하면 다음 두개의 Fully Connected 계층을 통과하게 되는데 모양은 다음과 같다.

  • FLAGS.fc1_layer_size = 512 를 통하여 Fully connected 계층의 뉴런 수를 512개로 지정하였다.

 

# fully connected layer 1

def fc1(input_data):

   input_layer_size = 6*6*FLAGS.conv4_layer_size

   FLAGS.fc1_layer_size = 512

   

   with tf.name_scope('fc_1'):

       # 앞에서 입력받은 다차원 텐서를 fcc에 넣기 위해서 1차원으로 피는 작업

       input_data_reshape = tf.reshape(input_data, [-1, input_layer_size])

       W_fc1 = tf.Variable(tf.truncated_normal([input_layer_size,FLAGS.fc1_layer_size],stddev=0.1))

       b_fc1 = tf.Variable(tf.truncated_normal(

                       [FLAGS.fc1_layer_size],stddev=0.1))

       h_fc1 = tf.add(tf.matmul(input_data_reshape,W_fc1) , b_fc1) # h_fc1 = input_data*W_fc1 + b_fc1

       h_fc1_relu = tf.nn.relu(h_fc1)

   

   return h_fc1_relu

 

Fully connected 계층은 단순하게 relu(W*x + b) 함수이기 때문에 이 함수를 위와 같이 그대로 적용하였다.

마지막 계층

Fully connected 계층을 거쳐 나온 데이타는 Dropout 계층을 거친후에, 5개의 카테고리에 대한 확률로 결과를 내기 위해서 final_out 계층을 거치게 되는데, 이 과정에서 softmax 함수를 사용해야 하나, 학습 과정에서는 별도로 softmax 함수를 사용하지 않는다. softmax는 나온 결과의 합이 1.0이 되도록 값을 변환해주는 것인데, 학습 과정에서는 5개의 결과 값이 어떤 값이 나오던 가장 큰 값에 해당하는 것이 예측된 값이기 때문에, 그 값과 입력된 라벨을 비교하면 되기 때문이다.

즉 예를 들어 Jessica Alba일 확률이 100%면 실제 예측에서는 [1,0,0,0,0] 식으로 결과가 나와야 되지만, 학습 중는 Jessica Alaba 로 예측이 되었다고만 알면 되기 때문에 결과가 [1292,-0.221,-0.221,-0.221] 식으로 나오더라도 최대값만 찾으면 되기 때문에 별도로 softmax 함수를 적용할 필요가 없다. Softmax 함수는 연산 비용이 큰 함수이기 때문에 일반적으로 학습 단계에서는 적용하지 않는다.

 

마지막 계층의 코드는 다음과 같다.

# final layer

def final_out(input_data):

 

   with tf.name_scope('final_out'):

       W_fo = tf.Variable(tf.truncated_normal([FLAGS.fc2_layer_size,FLAGS.num_classes],stddev=0.1))

       b_fo = tf.Variable(tf.truncated_normal(

                       [FLAGS.num_classes],stddev=0.1))

       h_fo = tf.add(tf.matmul(input_data,W_fo) , b_fo) # h_fc1 = input_data*W_fc1 + b_fc1

       

   # 최종 레이어에 softmax 함수는 적용하지 않았다.

       

   return h_fo

전체 네트워크 모델 정의

이제 각 CNN의 각 계층을 함수로 정의 하였으면 각 계층을 묶어 보도록 하자. 묶는 법은 간단하다 앞 계층에서 나온 계층을 순서대로 배열하고 앞에서 나온 결과를 뒤의 계층에 넣는 식으로 묶으면 된다.

 

# build cnn_graph

def build_model(images,keep_prob):

   # define CNN network graph

   # output shape will be (*,48,48,16)

   r_cnn1 = conv1(images) # convolutional layer 1

   print ("shape after cnn1 ",r_cnn1.get_shape())

   

   # output shape will be (*,24,24,32)

   r_cnn2 = conv2(r_cnn1) # convolutional layer 2

   print ("shape after cnn2 :",r_cnn2.get_shape() )

   

   # output shape will be (*,12,12,64)

   r_cnn3 = conv3(r_cnn2) # convolutional layer 3

   print ("shape after cnn3 :",r_cnn3.get_shape() )

 

   # output shape will be (*,6,6,128)

   r_cnn4 = conv4(r_cnn3) # convolutional layer 4

   print ("shape after cnn4 :",r_cnn4.get_shape() )

   

   # fully connected layer 1

   r_fc1 = fc1(r_cnn4)

   print ("shape after fc1 :",r_fc1.get_shape() )

 

   # fully connected layer2

   r_fc2 = fc2(r_fc1)

   print ("shape after fc2 :",r_fc2.get_shape() )

   

   ## drop out

   # 참고 http://stackoverflow.com/questions/34597316/why-input-is-scaled-in-tf-nn-dropout-in-tensorflow

   # 트레이닝시에는 keep_prob < 1.0 , Test 시에는 1.0으로 한다.

   r_dropout = tf.nn.dropout(r_fc2,keep_prob)

   print ("shape after dropout :",r_dropout.get_shape() )

   

   # final layer

   r_out = final_out(r_dropout)

   print ("shape after final layer :",r_out.get_shape() )

 

   return r_out

 

이 build_model 함수는 image 를 입력 값으로 받아서 어떤 카테고리에 속할지를 리턴하는 컨볼루셔널 네트워크이다.  중간에 Dropout 계층이 추가되어 있는데, tf.nn.dropout함수를 이용하면 간단하게 dropout 계층을 구현할 수 있다. r_fc2는 Dropout 계층 앞의 Fully Connected 계층에서 나온 값이고,  두번째 인자로 남긴 keep_prob는 Dropout 비율이다.

 

   r_dropout = tf.nn.dropout(r_fc2,keep_prob)

   print ("shape after dropout :",r_dropout.get_shape() )

 

모델 학습

데이타를 읽는 부분과 학습용 모델 정의가 끝났으면 실제로 학습을 시켜보자

 

def main(argv=None):

   

   # define placeholders for image data & label for traning dataset

   

   images = tf.placeholder(tf.float32,[None,FLAGS.image_size,FLAGS.image_size,FLAGS.image_color])

   labels = tf.placeholder(tf.int32,[None,FLAGS.num_classes])

   image_batch,label_batch,file_batch = read_data_batch(TRAINING_FILE)

 

먼저 학습용 모델에 넣기 위한 image 데이타를 읽어드릴 placeholder를 images로 정의하고, 다음으로 모델에 의해 계산된 결과와 비교하기 위해서 학습데이타에서 읽어드린 label 데이타를 저장하기 위한 placeholder를 labels로 정의한다. 다음 image_batch,label_batch,fle_batch 변수에 배치로 학습용 데이타를 읽어드린다. 그리고 dropout 계층에서 dropout 비율을 지정할 keep_prob를 place holder로 정의한다.

각 변수가 지정되었으면, build_model 함수를 호출하여, images 값과 keep_prob 값을 넘겨서 Convolutional 네트워크에 값을 넣도록 그래프를 정의하고 그 결과 값을 prediction으로 정의한다.

 

   keep_prob = tf.placeholder(tf.float32) # dropout ratio

   prediction = build_model(images,keep_prob)

   # define loss function

   loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=labels))

   tf.summary.scalar('loss',loss)

 

   #define optimizer

   optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)

   train = optimizer.minimize(loss)

 

중간 중간에 학습 과정을 시각화 하기 위해서 tf.summary.scalar 함수를 이용하여 loss 값을 저장하였다.

 

그래프 생성이 완료 되었으면, 학습에서 계산할 비용 함수를 정의한다. 비용함수는 sofrmax cross entopy 함수를 이용하여, 모델에 의해서 예측된 값 prediction 과, 학습 파일에서 읽어드린 label 값을 비교하여 loss 값에 저장한다.

그리고 이 비용 최적화 함수를 위해서 옵티마이져를 AdamOptimizer를 정의하여, loss 값을 최적화 하도록 하였다.

 

학습용 모델 정의와, 비용 함수, 옵티마이저 정의가 끝났으면 학습 중간 중간 학습된 모델을 테스트하기 위한 Validation 관련 항목등을 정의한다.

 

   # for validation

   #with tf.name_scope("prediction"):

   validate_image_batch,validate_label_batch,validate_file_batch = read_data_batch(VALIDATION_FILE)

   label_max = tf.argmax(labels,1)

   pre_max = tf.argmax(prediction,1)

   correct_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(labels,1))

   accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

           

   tf.summary.scalar('accuracy',accuracy)

      

   startTime = datetime.now()

 

학습용 데이타가 아니라 검증용 데이타를 VALIDATION_FILE에서 읽어서 데이타를 validate_image_batch,validate_label_batch,validate_file_batch에 저장한다. 다음, 정확도 체크를 위해서 학습에서 예측된 라벨값과, 학습 데이타용 라벨값을 비교하여 같은지 틀린지를 비교하고, 이를 가지고 평균을 내서 정확도 (accuracy)로 사용한다.

 

학습용 모델과, 테스트용 데이타 등이 준비되었으면 이제 학습을 시작한다.

학습을 시직하기 전에, 학습된 모델을 저장하기 위해서 tf.train.Saver()를 지정한다. 그리고, 그래프로 loss와 accuracy등을 저장하기 위해서 Summary write를 저장한다.

다음 tf.global_variable_initializer()를 수행하여 변수를 초기화 하고, queue에서 데이타를 읽기 위해서 tf.train.Corrdinator를 선언하고 tf.start_queue_runners를 지정하여, queue 러너를 실행한다.

 

   #build the summary tensor based on the tF collection of Summaries

   summary = tf.summary.merge_all()

   

   with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess:

       saver = tf.train.Saver() # create saver to store training model into file

       summary_writer = tf.summary.FileWriter(FLAGS.log_dir,sess.graph)

       

       init_op = tf.global_variables_initializer() # use this for tensorflow 0.12rc0

       coord = tf.train.Coordinator()

       threads = tf.train.start_queue_runners(sess=sess, coord=coord)

       sess.run(init_op)

 

변수 초기화와 세션이 준비되었기 때문에 이제 학습을 시작해보자. for 루프를 이용하여 총 10,000 스텝의 학습을 하도록 하였다.

 

       for i in range(10000):

           images_,labels_ = sess.run([image_batch,label_batch])

 

다음 image_batch와 label_batch에서 값을 읽어서 앞에서 정의한 모델에 넣고 train 그래프 (AdamOptimizer를 정의한)를 실행한다.

 

           sess.run(train,feed_dict={images:images_,labels:labels_,keep_prob:0.7})

 

이때 앞에서 읽은 images_와, labels_ 데이타를 피딩하고 keep_prob 값을 0.7로 하여 30% 정도의 값을 Dropout 시킨다.

 

다음 10 스텝 마다 학습 상태를 체크하도록 하였다.

           

           if i % 10 == 0:

               now = datetime.now()-startTime

               print('## time:',now,' steps:',i)         

               

               # print out training status

               rt = sess.run([label_max,pre_max,loss,accuracy],feed_dict={images:images_

                                                         , labels:labels_

                                                         , keep_prob:1.0})

               print ('Prediction loss:',rt[2],' accuracy:',rt[3])

위와 같이 loss 값과 accuracy 값을 받아서 출력하여 현재 모델의 비용 함수 값과 정확도를 측정하고

 

               # validation steps

               validate_images_,validate_labels_ = sess.run([validate_image_batch,validate_label_batch])

               rv = sess.run([label_max,pre_max,loss,accuracy],feed_dict={images:validate_images_

                                                         , labels:validate_labels_

                                                         , keep_prob:1.0})

               print ('Validation loss:',rv[2],' accuracy:',rv[3])

학습용 데이타가 아니라 위와 같이 테스트용 데이타를 피딩하여, 테스트용 데이타로 정확도를 검증한다. 이때 keep_prob를 1.0으로 해서 Dropout 없이 100% 네트워크를 활용한다.

 

               if(rv[3] > 0.9):

                   Break

 

만약에 테스트 정확도가 90% 이상이면 학습을 멈춘다. 그리고 아래와 같이 Summary

 

               # validation accuracy

               summary_str = sess.run(summary,feed_dict={images:validate_images_

                                                         , labels:validate_labels_

                                                         , keep_prob:1.0})

 

               summary_writer.add_summary(summary_str,i)

               summary_writer.flush()

 

마지막으로 다음과 같이 학습이 다된 모델을 saver.save를 이용하여 저장하고, 사용된 리소스들을 정리한다.

       saver.save(sess, 'face_recog') # save session

       coord.request_stop()

       coord.join(threads)

       print('finish')

   

main()

 

이렇게 학습을 끝내면 본인의 경우 약 7000 스텝에서 테스트 정확도 91%로 끝난것을 확인할 수 있다.

 

아래는 텐서보드를 이용하여 학습 과정을 시각화한 내용이다.

 


 

코드는 공개가 가능하지만 학습에 사용한 데이타는 저작권 문제로 공유가 불가능하다. 약 200장의 사진만 제대로 수집을 하면 되기 때문에 각자 수집을 해서 학습을 도전해보는 것을 권장한다. (더 많은 인물에 대한 시도를 해보는것도 좋겠다.)

정리 하며

혹시나 이 튜토리얼을 따라하면서 학습 데이타를 공개할 수 있는 분들이 있다면 다른 분들에게도 많은 도움이 될것이라고 생각한다. 가능하면 데이타가 공개되었으면 좋겠다.

전체 코드는 https://github.com/bwcho75/facerecognition/blob/master/1.%2BFace%2BRecognition%2BTraining.ipynb 에 있다.

그리고 직접 사진을 수집해보면, 데이타 수집 및 가공이 얼마나 어려운지 알 수 있기 때문에 직접 한번 시도해보는 것도 권장한다. 아래는 크롬브라우져 플러그인으로 구글 검색에서 나온 이미지를 싹 긁을 수 있는 플러그인이다. Bulk Download Images (ZIG)

https://www.youtube.com/watch?v=k5ioaelzEBM

 



이 플러그인을 이용하면 손쉽게 특정 인물의 데이타를 수집할 수 있다.

다음 글에서는 학습이 끝난 데이타를 이용해서 실제로 예측을 해보는 부분에 대해서 소개하도록 하겠다.

 

 

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


Machine Learning Pipeline


조대협 (http://bcho.tistory.com)

대부분 모델 개발과 알고리즘에 집중

머신러닝을 공부하고 나서는 주로 통계학이나, 모델 자체에 많은 공부를 하는 노력을 드렸었다. 선형대수나 미적분 그리고 방정식에 까지 기본으로 돌아가려고 노력을 했었고, 그 중간에 많은 한계에도 부딪혔지만, 김성훈 교수님의 모두를 위한 딥러닝 강의를 접하고 나서, 수학적인 지식도 중요하지만 수학적인 깊은 지식이 없어도 모델 자체를 이해하고 근래에 발전된 머신러닝 개발 프레임웍을 이용하면 모델 개발이 가능하다는 것을 깨달았다.

 

계속해서 모델을 공부하고, 머신러닝을 공부하는 분들을 관심있게 지켜보고 실제 머신러닝을 사용하는 업무들을 살펴보니 재미있는 점이 모두 모델 자체 개발에만 집중한다는 것이다. 커뮤니티에 올라오는 글의 대부분은 어떻게 모델을 구현하는지 어떤 알고리즘을 사용하는지에 대한 내용들이 많았고, 실 업무에 적용하는 분들을 보면 많은 곳들이 R을 이용하여 데이타를 분석하고 모델링을 하는데, 데이타를 CSV 파일 형태로 다운 받아서 정재하고 데이타를 분석하고 모델을 개발하는 곳이 많은 것을 보았다. 데이타의 수집 및 전처리 및 개발된 모델에 대한 서비스에 대해서는 상대적으로 많은 정보를 접하지 못했는데, 예상하기로 대부분 모델 개발에 집중하기 때문이 아닌가 싶다.

 

엔지니어 백그라운드를 가진 나로써는 CSV로 데이타를 끌어다가 정재하고 분석하는 것이 매우 불편해 보이고 이해가 되지 않았다. 빅데이타 분석 시스템에 바로 연결을 하면, CSV로 덤프 받고 업로드 하는 시간등에 대한 고민이 없을텐데.” 왜 그렇게 할까 ?”라는 의문이 계속 생기기 시작하였다.

미니 프로젝트를 시작하다

이런 의문을 가지던중 CNN 네트워크 모델에 대한 대략적인 학습이 끝나고, 실제로 적용하면서 경험을 쌓아보기로 하였다. 그래서 얼굴 인식 모델 개발을 시작하였다. CNN 모델이라는 마법을 사용하면 쉽게 개발이 될줄 알았던 프로젝트가 벌써 몇달이 되어 간다. 학습용 데이타를 구하고, 이를 학습에 적절하도록 전처리 하는 과정에서 많은 실수가 있었고, 그 과정에서 많은 재시도가 있었다.

 

(자세한 내용은 http://bcho.tistory.com/1174 , https://www.slideshare.net/Byungwook/ss-76098082 를 참조)

 

특히나 데이타 자체를 다시 처리해야 하는 일이 많았기 때문에, 데이타 전처리 코드를 지속적으로 개선하였고 개선된 코드를 이용하여 데이타를 지속적으로 다시 처리해서 데이타의 품질을 높여나갔는데, 처리 시간이 계속해서 많이 걸렸다.

자동화와 스케일링의 필요성

특히 이미지 전처리 부분은 사진에서 얼굴이 하나만 있는 사진을 골라내고 얼굴의 각도와 선글라스 유무등을 확인한후 사용 가능한 사진에서 얼굴을 크롭핑하고 학습용 크기로 리사이즈 하는 코드였는데 (자세한 내용 http://bcho.tistory.com/1176) 싱글 쓰레드로 만들다 보니 아무래도 시간이 많이 걸렸다. 실제 운영환경에서는 멀티 쓰레드 또는 멀티 서버를 이용하여 스케일링을 할 필요가 있다고 느꼈다.

 

또한 이미지 수집에서 부터 필터링, 그리고 학습 및 학습된 모델의 배포와 서비스 까지 이 전 과정을 순차적으로 진행을 하되 반복적인 작업이기 때문에 자동화할 필요성이 있다고 생각했다.

아이 체중 예측 모델을 통한 파이프라인에 대한 이해

그러던 중에 팀 동료로 부터 좋은 예제 하나를 전달 받게 되었다.

미국 아기들의 환경에 따른 출생 체중을 예측하는 간단한 선형 회귀 모델을 구현한 파이썬 노트북인데 (https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/blogs/babyweight/babyweight.ipynb) 하나의 노트북에 전체 단계를 모두 구현해놓았다.

 


 

데이타에 대한 분석을 통한 데이타 특성 추출, 추출된 특성을 통한 모델 개발, 모델 학습을 위한 데이타 전처리 그리고 학습 및 학습된 모델을 통한 예측 서비스 까지 모든 과정을 하나의 노트북에 구현해놓았다.

(시간이 있으면 꼭 보기를 강력 추천한다.)

 

흥미로운 점이 데이타 전처리를 Apache Beam이라는 데이타 처리 플랫폼을 썼고, 그 전처리 코드를 파이썬 노트북에 하나로 다 정리한것이다. (실제로 수행은 로컬에서도 가능하지만, 클라우드에서도 실행이 가능해서 충분한 스케일링을 지원한다.)

 

Apache Beam의 구글의 빅데이타 분석 프레임웍으로 Apache Spark 과 같은 프레임웍이라고 보면된다. Google Dataflow라는 이름으로 구글 클라우드에서 서비스가 되는데, Apache Beam이라는 오픈소스로 공개가 되었다. ( http://bcho.tistory.com/1123 http://bcho.tistory.com/1122 http://bcho.tistory.com/1124 )

 

아 이렇게 하는구나 하는 생각이 들었고, 그즘 실무에서 이와 같은 흐름으로 실제로 머신러닝을 수행하는 것을 볼 기회가 있었다.

데이타 전처리를 스케일링하다.

서비스가 가능한 수준의 전체 머신러닝 서비스 파이프라인을 만들어보고 싶어졌다. 마침 또 Apache Beam의 경우에는 예전에 Java 코드로 실시간 분석을 해본 경험이 있고 이번에 2.0 버전이 릴리즈 되서 이번에는 2.0에서 파이썬을 공부해보기로 하고 개발에 들어갔다.

 

특히 기존의 데이타 전처리 코드는 싱글 쓰레드로 돌기 때문에 스케일링에 문제가 있었지만, Apache Beam을 사용할 경우 멀티 쓰레드 뿐만 아니라 동시에 여러대의 머신에서 돌릴 수 있고 이러한 병렬성에 대해서는 크게 고민을 하지 않아도 Apache Beam이 이 기능을 다 제공해준다. 또한 이 데이타 전처리 코드를 돌릴 런타임도 별도 설치할 필요가 없이 커멘드 하나로 구글 클라우드에서 돌릴 수 가 있다. (직업 특성상 클라우드 자원을 비교적 자유롭게 사용할 수 있었다.)

 

Apache Beam으로 전처리 코드를 컨버팅 한결과 기존 싱글 쓰레드 파이썬 코드가 400~500장의 이미지 전처리에 1~2시간이 걸렸던 반면, 전환후에 대략 15~17분이면 끝낼 수 있었다. 전처리 중에는 서버의 대수가 1대에서 시작해서 부하가 많아지자 자동으로 5대까지 늘어났다. 이제는 아무리 많은 데이타가 들어오더라도 서버의 대수만 단순하게 늘리면 수분~수십분내에 수십,수만장의 데이타 처리가 가능하게 되었다.


<그림. Apache Beam 기반의 이미지 전처리 시스템 실행 화면 >

 

Apache Beam 기반의 이미지 전처리 코드는 https://github.com/bwcho75/facerecognition/blob/master/Preprocess%2Bface%2Brecognition%2Bdata%2Band%2Bgenerate%2Btraining%2Bdata.ipynb 에 공개해 놨다.

 

머신러닝 파이프라인 아키텍쳐와 프로세스

이번 과정을 통해서 머신러닝의 학습 및 예측 시스템 개발이 어느 정도 정형화된 프로세스화가 가능하고 시스템 역시 비슷한 패턴의 아키텍쳐를 사용할 수 있지 않을까 하는 생각이 들었고, 그 내용을 아래와 같이 정리한다.

파이프라인 개발 프로세스

지금까지 경험한 머신러닝 개발 프로세스는 다음과 같다.

 

  1. 데이타 분석
    먼저 머신러닝에 사용할 전체 데이타셋을 분석한다. 그래프도 그려보고 각 변수간의 연관 관계나 분포도를 분석하여, 학습에 사용할 변수를 정의하고 어떤 모델을 사용할지 판단한다.

  2. 모델 정의
    분석된 데이타를 기반으로 모델을 정의하고, 일부 데이타를 샘플링하여 모델을 돌려보고 유효한 모델인지를 체크한다. 모델이 유효하지 않다면 변수와 모델을 바꿔 가면서 최적의 모델을 찾는다.

  3. 데이타 추출 및 전처리
    유효한 모델이 개발이 되면, 일부 데이타가 아니라 전체 데이타를 가지고 학습을 한다. 전체 데이타를 추출해서 모델에 넣어서 학습을 하려면 데이타의 크기가 크면 매번 매뉴얼로 하기가 어렵기 때문에 데이타 추출 및 전처리 부분을 자동화 한다.   

  4. 전체 데이타를 이용한 반복 학습 및 튜닝
    모델 자체가 유효하다고 하더라도 전체 데이타를 가지고 학습 및 검증을 한것이 아니기 때문에 의외의 데이타가 나오거나 전처리에 의해서 필터링되지 않은 데이타가 있을 수 있기 때문에 지속적으로 데이타 추출 및 전처리 모듈을 수정해야 하고, 마찬가지로 모델 역시 정확도를 높이기 위해서 지속적으로 튜닝을 한다. 이 과정에서 전체 데이타를 다루기 때문에 모델 역시 성능을 위해서 분산형 구조로 개선되어야 한다.

  5. 모델 배포
    학습 모델이 완성되었으면 학습된 모델을 가지고 예측을 할 수 있는 시스템을 개발하고 이를 배포한다.

  6. 파이프라인 연결 및 자동화
    머신러닝의 모델은 위의 과정을 통해서 만들었지만, 데이타가 앞으로도 지속적으로 들어올 것이고 지속적인 개선이 필요하기 때문에 이 전과정을 자동화 한다. 이때 중요한것은 데이타 전처리, 학습, 튜닝, 배포등의 각 과정을 물 흐르듯이 연결하고 자동화를 해야 하는데 이렇게 데이타를 흐르는 길을 데이타 플로우라고 한다. (흔히 Luigi, Rundeck, Airflow와 같은 데이타플로우 오케스트레이션 툴을 이용한다)

 

전체적인 프로세스에 대해서 좋은 영상이 있어서 공유한다.


아키텍쳐

위의 프로세스를 기반으로한 머신러닝 파이프라인 아키텍쳐 는 다음과 같다.


 

 

Inputs

머신 러닝 파이프라인의 가장 처음단은 데이타를 수집하고 이 수집된 데이타를 저장하는 부분이다.

데이타 수집은 시간,일,주,월과 같이 주기적으로 데이타를 수집하는 배치 프로세싱과, 실시간으로 데이타를 수집하는 리얼타임 프로세싱 두가지로 나뉘어 진다. 이 두 파이프라인을 통해서 데이타 소스로 부터 데이타를 수집하고 필터링하고 정재하여, 데이타 레이크에 저장한다. 이 구조는 일반적인 빅데이타 분석 시스템의 구조와 유사하다. (참고 자료 http://bcho.tistory.com/984 http://bcho.tistory.com/671 )

 

개인적으로 머신러닝을 위해서 중요한 부분 중 하나는 데이타 레이크를 얼마나 잘 구축하느냐이다. 데이타 레이크는 모든 데이타가 모여 있는 곳으로 보통 데이타 레이크를 구축할때는 많은 데이타를 모으는 데만 집중하는데, 데이타를 잘 모으는 것은 기본이고 가장 중요한 점은 이 모여 있는 데이타에 대한 접근성을 제공하는 것이다.

 

무슨 이야기인가 하면, 보통 머신러닝 학습을 위해서 학습 데이타를 받거나 또는 데이타에 대한 연관성 분석등을 하기 위해서는 데이타 레이크에서 데이타를 꺼내오는데, 데이타 레이크를 개발 운영 하는 사람과 데이타를 분석하고 머신러닝 모델을 만드는 사람은 보통 다르기 때문에, 모델을 만드는 사람이 데이타 레이크를 운영하는 사람에게 “무슨 무슨 데이타를 뽑아서 CSV로 전달해 주세요.” 라고 이야기 하는 것이 보통이다. 그런데 이 과정이 번거롭기도 하고 시간이 많이 걸린다.

가장 이상적인 방법은 데이타를 분석하고 모델링 하는 사람이 데이타 레이크 운영팀에 부탁하지 않고서도 손쉽고 빠르게 데이타에 접근해서 데이타를 읽어오고 분석을 할 수 있어야 한다.

직업 특성상 구글의 빅쿼리를 많이 접하게 되는데, 빅쿼리는 대용량 데이타를 저장할 수 있을 뿐만 아니라 파이썬 노트북이나 R 스튜디오 플러그인을 통해서 바로 데이타를 불러와서 분석할 수 있다.  


<그림 INPUT 계층의 빅데이타 저장 분석 아키텍쳐>

Pre processing & Asset creation

Pre processing은 수집한 데이타를 학습 시스템에 넣기 위해서 적절한 데이타만 필터링하고 맞는 포맷으로 바꾸는 작업을 한다. 작은 모델이나 개발등에서는 샘플링된 데이타를 로컬에서 내려 받아서 R이나 numpy/pandas등으로 작업이 가능하지만, 데이타가 수테라에서 수백테라이상이 되는 빅데이타라면 로컬에서는 작업이 불가능하기 때문에, 데이타 전처리 컴포넌트를 만들어야 한다.

일반적으로 빅데이타 분석에서 사용되는 기술을 사용하면 되는데, 배치성 전처리는 하둡이나 스파크와 같은 기술이 보편적으로 사용되고 실시간 스트리밍 분석은 스파크 스트리밍등이 사용된다.


Train

학습은 전처리된 데이타를 시스템에 넣어서 모델을 학습 시키는 단계이다. 이 부분에서 생각해야 할점은 첫번째는 성능 두번째는 튜닝이다. 성능 부분에서는 GPU등을 이용하여 학습속도를 늘리고 여러대의 머신을 연결하여 학습을 할 수 있는 병렬성이 필요하다. 작은 모델의 경우에는 수시간에서 하루 이틀 정도 소요되겠지만 모델이 크면 한달 이상이 걸리기 때문에 고성능 하드웨어와 병렬 처리를 통해서 학습 시간을 줄이는 접근이 필요하다. 작은 모델의 경우에는 NVIDIA GPU를 데스크탑에 장착해놓고 로컬에서 돌리는 것이 가성비 적으로 유리하고, 큰 모델을 돌리거나 동시에 여러 모델을 학습하고자 할때는 클라우드를 사용하는 것이 절대 적으로 유리하다 특히 구글 클라우드의 경우에는  알파고에서 사용된 GPU의 다음 세대인 TPU (텐서플로우 전용 딥러닝 CPU)를 제공한다. https://cloud.google.com/tpu/ CPU나 GPU대비 최대 15~30배 정도의 성능 차이가 난다.

 

 

학습 단계에서는 세부 변수를 튜닝할 필요가 있는데, 예를 들어 학습 속도나 뉴럴 네트워크의 폭이나 깊이, 드롭 아웃의 수, 컨볼루셔널 필터의 크기등등이 있다. 이러한 변수들을 하이퍼 패러미터라고 하는데, 학습 과정에서 모델의 정확도를 높이기 위해서 이러한 변수들을 자동으로 튜닝할 수 있는 아키텍쳐를 가지는 것이 좋다.

 

텐서플로우등과 같은 머신러닝 전용 프레임웍을 사용하여 직접 모델을 구현하는 방법도 있지만, 모델의 난이도가 그리 높지 않다면 SparkML등과 같이 미리 구현된 모델의 런타임을 사용하는 방법도 있다.

Predict

Predict에서는 학습된 모델을 이용하여 예측 기능을 서비스 하는데, 텐서플로우에서는  Tensorflow Serv를 사용하면 되지만, Tensorflow Serv의 경우에는 bazel 빌드를 이용하여 환경을 구축해야 하고, 대규모 서비를 이용한 분산 환경 서비스를 따로 개발해야 한다. 거기다가 인터페이스가 gRPC이다. (귀찮다.)

구글 CloudML의 경우에는 별도의 빌드등도 필요 없고 텐서 플로우 모델만 배포하면 대규모 서비스를 할 수 있는 런타임이 바로 제공되고 무엇보다 gRPC 인터페이스뿐만 아니라 HTTP/REST 인터페이스를 제공한다. 만약에 Production에서 머신러닝 모델을 서비스하고자 한다면 구글 CloudML을 고려해보기를 권장한다.

Dataflow Orchestration

이 전과정을 서로 유기적으로 묶어 주는 것을 Dataflow Orchestration이라고 한다.

예를 들어 하루에 한번씩 이 파이프라인을 실행하도록 하고, 파이프라인에서 데이타 전처리 과정을 수행하고, 이 과정이 끝나면 자동으로 학습을 진행하고 학습 정확도가 정해진 수준을 넘으면 자동으로 학습된 모델은 서비스 시스템에 배포하는 이 일련의 과정을 자동으로 순차적으로 수행할 수 있도록 엮어 주는 과정이다.

airbnb에서 개발한 Airflow나 luigi 등의 솔루션을 사용하면 된다.

아직도 갈길은 멀다.

얼굴 인식이라는 간단한 모델을 개발하고 있지만, 전체를 자동화 하고, 클라우드 컴퓨팅을 통해서 학습 시간을 단축 시키고 예측 서비스를 할 수 있는 컴포넌트를 개발해야 하고, 향후에는 하이퍼 패러미터 튜닝을 자동으로 할 수 있는 수준까지 가보려고 한다. 그 후에는 GAN을 통한 얼굴 합성들도 도전하려고 하는데, node.js 공부하는데도 1~2년을 투자한후에나 조금이나마 이해할 수 있게 되었는데, 머신러닝을 시작한지 이제 대략 8개월 정도. 길게 보고 해야 하겠다.

 



 

 

저작자 표시 비영리
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
 

티스토리 툴바